Uogólniony model układu planetarnego
|
|
- Filip Świderski
- 7 lat temu
- Przeglądów:
Transkrypt
1 Uogólniony model układu planetarnego Michał Marek Seminarium Zakładu Geodezji Planetarnej
2 PLAN PREZENTACJI 1. Wstęp, motywacja, cele 2. Teoria wykorzystana w modelu 3. Zastosowanie modelu na układach planetarnych 4. Podsumowanie
3 Wstęp Celem pracy magisterskiej było określenie, w których przypadkach i w jakim stopniu zmieni się dynamika systemów planetarnych, jeśli ich składniki będziemy traktować jako obiekty rozciągłe, a także gdy uwzględni się efekty relatywistyczne wynikające z OTW.
4 Model oddziaływań grawitacyjnych dwóch obiektów, w którym to układ jest izolowany oraz oba ciała są całkowicie sferyczne (bez deformacji pływowych czy rotacyjnych) lub traktowane jako masy punktowe, sprowadza się do zagadnienia Keplera. Jest to dobre podejście, gdy odległości pomiędzy oboma ciałami są znacznie większe od ich rozmiarów.
5 Na ogół stosuje się model oddziałujących na siebie grawitacyjnie mas punktowych.
6 W rzeczywistości, kształty w różnym stopniu odbiegają od sferycznego a także istnieją układy składające się z większej ilości składników niż dwa ciała. Niektóre masywne, pozasłoneczne planety znajdują się na orbitach o rozmiarach mniejszych niż ziemska i oddziaływania pływowe z macierzystą gwiazdą mogą wpływać na dynamikę układu.
7 Teoria wykorzystana w modelu Potencjał odśrodkowy W układzie odniesienia związanym z rotującą sferą, dowolny punkt umieszczony na jej powierzchni, doznaje bezwładnościowego przyspieszenia odśrodkowego.
8 Potencjał pływowy Potencjał pływowy deformuje powierzchnię gwiazdy. Deformacja zmienia się wraz z rotacją gwiazdy i ruchem zaburzającej planety.
9 Dyssypacja energii Ze względu, że gwiazdy są nieelastyczne, część energii układu jest tracona kosztem tarcia wewnętrznego podczas zmiany kształtu gwiazdy.
10 Dyssypacja energii Poprawka do równań ruchu: Model: gwiazda o promieniu r1 i masie m1 + punktowa planeta o masie m2 odległa o d od m1.
11 Dyssypacja energii Równanie te zawiera informacje o strukturze wewnętrznej gwiazdy. n=1.0 gaz doskonały n=1.5 ciśnienie gazu dominuje nad promieniowaniem n=3.0 ciśnienie promieniowania dominuje nad ciśnieiem gazu
12 Poprawka relatywistyczna Wpływ, jaki wywiera masa na geometryczne właściwości czasoprzestrzeni wyjaśnia OTW. Oś wielka orbity Merkurego doznaje obrotu o 574 sekund łuku na wiek, z czego 43 sek. spowodowane jest zakrzywieniem czasoprzestrzeni przez Słońce. Podejście relatywistyczne traktuje się jako zaburzenie problemu Keplera. Najprostszy model uwzględnia poprawkę rzędu.
13 Zastosowanie Ipsylon And Model, w którym mc=4.11mj, md=1.98mj, M=1.3Ms
14 Ewolucja mimośrodu orbity pozwala w przybliżony sposób określić, jak zachowuje się orbita w czasie. By była ona okresowa wartość mimośrodu musi być mniejsza od jedności. (Kiseleva-Eggleton &Bois, 2001)
15 Uwzględnienie poprawki TF Promień gwiazdy R* = 1.56R (Ford et al., 1998), promienie planet: RC = 1.09RJ, RD = 1.035RJ (Burrows et al., 2001), parametry wewnętrzne: n* = 2.36, nc,d = 1.5. Zastosowanie poprawki TF zmieniło dynamikę układu z chaotycznego na stabilny.
16 Uwzględnienie poprawki TF cd Po początkowym zmniejszeniu wielkiej półosi wewnętrznej orbity, następuje stabilizacja wokół 0.82 AU.
17 Relatywistyka Uwzględnienie poprawki post-newtonowskiej prowadzi do wiekowych zmian argumentu perycentrum. Czyli rotacji lini apsyd orbity. Argument perycentrum opisuje położenie orbity w przestrzeni. Jest to kąt pozycyjny mierzony w płaszczyźnie orbity między kierunkami od ciała centralnego do węzła wstępującego i do perycentrum.
18 Relatywistyka Takie zmiany (w argumencie perycentrum) mogą być także spowodowane zniekształceniem gwiazdy oraz obecnością dodatkowego ciała. Zmiany w ruchu linii apsyd wpływają na ewolucję układu, w tym na zachowanie się mimośrodu.
19 (Mardling & Lin, 2004) Hipotetyczny układ: Mb=1Mz, Pb=2.3d., ab=0.02au M=0.2Ms Mc=1Mj, ac=0.7au, ec=0.2 Uwzględnienie poprawki relatywistycznej (kolor zielony) zmienia dynamikę układu.
20 Uwzględnienie poprawki relatywistycznej (kolor czerwony) zmienia dynamikę układu. HD M=1.11Ms Mc=0.11 Mj a=0.08au
21 HD M=1.04Ms Mc=0.062 Mj a=0.13 AU Uwzględnienie poprawki relatywistycznej (kolor czerwony) zmienia dynamikę
22 Podsumowanie Wykorzystując omawiane poprawki dynamika planet ulega zmianie. W szczególnych przypadkach otrzymujemy stabilne rozwiązania. Chociaż model punktowych oddziaływań przedstawiał układ planetarny jako niestabilny. Skala omawianych efektów jest porównywalna z wpływem na dynamikę układu od dodatkowej, małomasywnej planety.
23 Dziękuję za uwagę
Planety w układach podwójnych i wielokrotnych. Krzysztof Hełminiak
Planety w układach podwójnych i wielokrotnych. Krzysztof Hełminiak Plan wystąpienia Troszkę niedalekiej historii. Dlaczego wokół podwójnych? Pobieżna statystyka. Typy planet w układach podwójnych. Stabilność
Sztuczny satelita Ziemi. Ruch w polu grawitacyjnym
Sztuczny satelita Ziemi Ruch w polu grawitacyjnym Sztuczny satelita Ziemi Jest to obiekt, któremu na pewnej wysokości nad powierzchnią Ziemi nadano prędkość wystarczającą do uzyskania przez niego ruchu
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..)
Wykład 2 - zagadnienie dwóch ciał (od praw Keplera do prawa powszechnego ciążenia i z powrotem..) 24.02.2014 Prawa Keplera Na podstawie obserwacji zgromadzonych przez Tycho Brahe (głównie obserwacji Marsa)
Teoria ruchu Księżyca
Wykład 9 - Ruch Księżyca. Odkształcenia związane z rotacją, oddziaływanie przypływowe, efekty relatywistyczne, efekty związane z promieniowaniem Słońca. 14.04.2014 Miesiące księżycowe Miesiąc synodyczny
Grawitacja - powtórka
Grawitacja - powtórka 1. Oceń prawdziwość każdego zdania. Zaznacz, jeśli zdanie jest prawdziwe, lub, jeśli jest A. Jednorodne pole grawitacyjne istniejące w obszarze sali lekcyjnej jest wycinkiem centralnego
Spis treści. Przedmowa PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII. 1 Grawitacja 3. 2 Geometria jako fizyka 14
Spis treści Przedmowa xi I PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI 1 1 Grawitacja 3 2 Geometria jako fizyka 14 2.1 Grawitacja to geometria 14 2.2 Geometria a doświadczenie
14 POLE GRAWITACYJNE. Włodzimierz Wolczyński. Wzór Newtona. G- stała grawitacji 6, Natężenie pola grawitacyjnego.
Włodzimierz Wolczyński 14 POLE GRAWITACYJNE Wzór Newtona M r m G- stała grawitacji Natężenie pola grawitacyjnego 6,67 10 jednostka [ N/kg] Przyspieszenie grawitacyjne jednostka [m/s 2 ] Praca w polu grawitacyjnym
4π 2 M = E e sin E G neu = sin z. i cos A i sin z i sin A i cos z i 1
1 Z jaką prędkością porusza się satelita na orbicie geostacjonarnej? 2 Wiedząc, że doba gwiazdowa na planecie X (stała grawitacyjna µ = 500 000 km 3 /s 2 ) trwa 24 godziny, oblicz promień orbity satelity
Astronomia. Znając przyspieszenie grawitacyjne planety (ciała), obliczyć możemy ciężar ciała drugiego.
Astronomia M = masa ciała G = stała grawitacji (6,67 10-11 [N m 2 /kg 2 ]) R, r = odległość dwóch ciał/promień Fg = ciężar ciała g = przyspieszenie grawitacyjne ( 9,8 m/s²) V I = pierwsza prędkość kosmiczna
Ruchy planet. Wykład 29 listopada 2005 roku
Ruchy planet planety wewnętrzne: Merkury, Wenus planety zewnętrzne: Mars, Jowisz, Saturn, Uran, Neptun, Pluton Ruch planet wewnętrznych zachodzi w cyklu: koniunkcja dolna, elongacja wschodnia, koniunkcja
W poszukiwaniu nowej Ziemi. Andrzej Udalski Obserwatorium Astronomiczne Uniwersytetu Warszawskiego
W poszukiwaniu nowej Ziemi Andrzej Udalski Obserwatorium Astronomiczne Uniwersytetu Warszawskiego Gdzie mieszkamy? Ziemia: Masa = 1 M E Średnica = 1 R E Słońce: 1 M S = 333950 M E Średnica = 109 R E Jowisz
LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia
LIV Olimpiada Astronomiczna 2010 / 2011 Zawody III stopnia 1. Wskutek efektów relatywistycznych mierzony całkowity strumień promieniowania od gwiazdy, która porusza się w kierunku obserwatora z prędkością
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 10 Tomasz Kwiatkowski 8 grudzień 2010 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 10 1/36 Plan wykładu Wyznaczanie mas ciał niebieskich Gwiazdy podwójne Optycznie
GRAWITACJA MODUŁ 6 SCENARIUSZ TEMATYCZNY LEKCJA NR 2 FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA.
MODUŁ 6 SCENARIUSZ TEMATYCZNY GRAWITACJA OPRACOWANE W RAMACH PROJEKTU: FIZYKA ZAKRES ROZSZERZONY WIRTUALNE LABORATORIA FIZYCZNE NOWOCZESNĄ METODĄ NAUCZANIA. PROGRAM NAUCZANIA FIZYKI Z ELEMENTAMI TECHNOLOGII
Rotacja. W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a):
Rotacja W układzie związanym z planetą: siła odśrodkowa i siła Coroilisa. Potencjał efektywny w najprostszym przypadku (przybliżenie Roche a): Φ = ω2 r 2 sin 2 (θ) 2 GM r Z porównania wartości potencjału
SPRAWDZIAN NR Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową.
SPRAWDZIAN NR 1 IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Merkury krąży wokół Słońca po orbicie, którą możemy uznać za kołową. Zaznacz poprawne dokończenie zdania. Siłę powodującą ruch Merkurego wokół Słońca
Soczewkowanie grawitacyjne
Soczewkowanie grawitacyjne Obserwatorium Astronomiczne UW Plan Ugięcie światła - trochę historii Co to jest soczewkowanie Punktowa masa Soczewkowanie galaktyk... kwazarów... kosmologiczne Mikrosoczewkowanie
Nasza Galaktyka
13.1.1 Nasza Galaktyka Skupisko ok. 100 miliardów gwiazd oraz materii międzygwiazdowej składa się na naszą Galaktykę (w odróżnieniu od innych pisaną wielką literą). Większość gwiazd (podobnie zresztą jak
Analiza spektralna widma gwiezdnego
Analiza spektralna widma gwiezdnego JG &WJ 13 kwietnia 2007 Wprowadzenie Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe
Satelity Ziemi. Ruch w polu grawitacyjnym. dr inż. Stefan Jankowski
Satelity Ziemi Ruch w polu grawitacyjnym dr inż. Stefan Jankowski s.jankowski@am.szczecin.pl Satellites Satelity można podzielić na: naturalne (planety dla słońca/ gwiazd, księżyce dla planet) oraz sztuczne
Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy
Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy 14. Kule (3 pkt) Dwie małe jednorodne kule A i B o jednakowych masach umieszczono w odległości 10 cm od siebie. Kule te oddziaływały wówczas
Oddziaływania fundamentalne
Oddziaływania fundamentalne Silne: krótkozasięgowe (10-15 m). Siła rośnie ze wzrostem odległości. Znaczna siła oddziaływania. Elektromagnetyczne: nieskończony zasięg, siła maleje z kwadratem odległości.
Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego
Wykład 5 - całki ruchu zagadnienia n ciał i perturbacje ruchu keplerowskiego 20.03.2013 Układ n ciał przyciągających się siłami grawitacji Mamy n ciał przyciągających się siłami grawitacji. Masy ciał oznaczamy
1.6. Ruch po okręgu. ω =
1.6. Ruch po okręgu W przykładzie z wykładu 1 asteroida poruszała się po okręgu, wartość jej prędkości v=bω była stała, ale ruch odbywał się z przyspieszeniem a = ω 2 r. Przyspieszenie w tym ruchu związane
Podstawy fizyki sezon 1 VII. Pole grawitacyjne*
Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,
FIZYKA IV etap edukacyjny zakres podstawowy
FIZYKA IV etap edukacyjny zakres podstawowy Cele kształcenia wymagania ogólne I. Wykorzystanie wielkości fizycznych do opisu poznanych zjawisk lub rozwiązania prostych zadań obliczeniowych. II. Przeprowadzanie
Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii
Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą
FIZYKA-egzamin opracowanie pozostałych pytań
FIZYKA-egzamin opracowanie pozostałych pytań Andrzej Przybyszewski Michał Witczak Marcin Talarek. Definicja pracy na odcinku A-B 2. Zdefiniować różnicę energii potencjalnych gdy ciało przenosimy z do B
Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.
Imię i nazwisko Data Klasa Wersja A Sprawdzian 1. 1. Orbita każdej planety jest elipsą, a Słońce znajduje się w jednym z jej ognisk. Treść tego prawa podał a) Kopernik. b) Newton. c) Galileusz. d) Kepler..
Soczewki Grawitacyjne
Klub Dyskusyjny Fizyków 26 września 2013 Soczewki Grawitacyjne Marek Biesiada Zakład Astrofizyki i Kosmologii Instytut Fizyki Uniwersytetu Śląskiego Katowice Soczewki grawitacyjne Istota zjawiska Optyka
14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY
14R2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM ROZSZERZONY Ruch jednostajny po okręgu Dynamika bryły sztywnej Pole grawitacyjne Rozwiązanie zadań należy zapisać w wyznaczonych
Ruch obrotowy bryły sztywnej. Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe
Ruch obrotowy bryły sztywnej Bryła sztywna - ciało, w którym odległości między poszczególnymi punktami ciała są stałe Ruch obrotowy ruch po okręgu P, t 1 P 1, t 1 θ 1 θ Ruch obrotowy ruch po okręgu P,
Sprawdzian 2. Fizyka Świat fizyki. Astronomia. Sprawdziany podsumowujące. sin = 0,0166 cos = 0,9999 tg = 0,01659 ctg = 60,3058
Imię i nazwisko Data Klasa Wersja A Sprawdzian.. Jedna jednostka astronomiczna to odległość jaką przebywa światło (biegnące z szybkością 300 000 km/h) w ciągu jednego roku. jaką przebywa światło (biegnące
Obliczanie pozycji obiektu na podstawie znanych elementów orbity. Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie
Obliczanie pozycji obiektu na podstawie znanych elementów orbity Rysunek: Elementy orbity: rozmiar wielkiej półosi, mimośród, nachylenie a - wielka półoś orbity e - mimośród orbity i - nachylenie orbity
Podstawy fizyki sezon 1 VII. Pole grawitacyjne*
Podstawy fizyki sezon 1 VII. Pole grawitacyjne* Agnieszka Obłąkowska-Mucha WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha * Resnick, Halliday,
Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.
PRACA Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne. Rozważmy sytuację, gdy w krótkim czasie działająca siła spowodowała przemieszczenie ciała o bardzo małą wielkość Δs Wtedy praca wykonana
pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania fizyka, wzory fizyka, matura fizyka
4. Pole grawitacyjne. Praca. Moc.Energia zadania z arkusza I 4.8 4.1 4.9 4.2 4.10 4.3 4.4 4.11 4.12 4.5 4.13 4.14 4.6 4.15 4.7 4.16 4.17 4. Pole grawitacyjne. Praca. Moc.Energia - 1 - 4.18 4.27 4.19 4.20
Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna
Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna G m m r F = r r F = F Schemat oddziaływania: m pole sił m Prawo powszechnego ciążenia, siła grawitacyjna, pole grawitacyjna Masa M jest
Jak zmieni się wartość siły oddziaływania między dwoma ciałami o masie m każde, jeżeli odległość między ich środkami zmniejszy się dwa razy.
I ABC FIZYKA 2018/2019 Tematyka kartkówek oraz zestaw zadań na sprawdzian - Dział I Grawitacja 1.1 1. Podaj główne założenia teorii geocentrycznej Ptolemeusza. 2. Podaj treść II prawa Keplera. 3. Odpowiedz
DYNAMIKA dr Mikolaj Szopa
dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo
Pozorne orbity planet Z notatek prof. Antoniego Opolskiego. Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN
Pozorne orbity planet Z notatek prof. Antoniego Opolskiego Tomasz Mrozek Instytut Astronomiczny UWr Zakład Fizyki Słońca CBK PAN Początek Młody miłośnik astronomii patrzy w niebo Młody miłośnik astronomii
ZAŁĄCZNIK IV. Obliczanie rotacji / translacji obrazów.
ZAŁĄCZNIK IV. Obliczanie rotacji / translacji obrazów. Jak to zostało przedstawione w części 5.2.1, jeżeli zrobimy Słońcu zdjęcie z jakiegoś miejsca na powierzchni ziemi w danym momencie t i dokładnie
To ciała niebieskie o średnicach większych niż 1000 km, obiegające gwiazdę i nie mające własnych źródeł energii promienistej, widoczne dzięki
Jest to początek czasu, przestrzeni i materii tworzącej wszechświat. Podstawę idei Wielkiego Wybuchu stanowił model rozszerzającego się wszechświata opracowany w 1920 przez Friedmana. Obecnie Wielki Wybuch
Dyfrakcja to zdolność fali do uginania się na krawędziach przeszkód. Dyfrakcja światła stanowi dowód na to, że światło ma charakter falowy.
ZAŁĄCZNIK V. SŁOWNICZEK. Czas uniwersalny Czas uniwersalny (skróty: UT lub UTC) jest taki sam, jak Greenwich Mean Time (skrót: GMT), tzn. średni czas słoneczny na południku zerowym w Greenwich, Anglia
ASTRONOMIA Klasa Ia Rok szkolny 2012/2013
1 ASTRONOMIA Klasa Ia Rok szkolny 2012/2013 NR Temat Konieczne 1 Niebo w oczach dawnych kultur i cywilizacji - wie, jakie były wyobrażenia starożytnych (zwłaszcza starożytnych Greków) na budowę Podstawowe
Co to jest promieniowanie grawitacyjne? Szymon Charzyński KMMF UW
Co to jest promieniowanie grawitacyjne? Szymon Charzyński KMMF UW Ogólna teoria względności Ogólna Teoria Względności Ogólna Teoria Względności opisuje grawitację jako zakrzywienie czasoprzestrzeni. 1915
14-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY
Włodzimierz Wolczyński 14-TYP-2015 POWTÓRKA PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII ROZSZERZONY Obejmuje działy u mnie wyszczególnione w konspektach jako 10 RUCH JEDNOSTAJNY PO OKRĘGU 11 POWTÓRKA
Wielcy rewolucjoniści nauki
Isaak Newton Wilhelm Roentgen Albert Einstein Max Planck Wielcy rewolucjoniści nauki Erwin Schrödinger Werner Heisenberg Niels Bohr dr inż. Romuald Kędzierski W swoim słynnym dziele Matematyczne podstawy
Ekspansja Wszechświata
Ekspansja Wszechświata Odkrycie Hubble a w 1929 r. Galaktyki oddalają się od nas z prędkościami wprost proporcjonalnymi do odległości. Prędkości mierzymy za pomocą przesunięcia ku czerwieni efekt Dopplera
Ruch czarnej dziury w gromadzie kulistej
Ruch czarnej dziury w gromadzie kulistej Andrzej Odrzywołek Zakład Teorii Względności i Astrofizyki, Instytut Fizyki UJ 14 maja, poniedziałek, 12:15 A. Odrzywołek (ZTWiA) Ruch czarnej dziury w gromadzie
Wędrówki między układami współrzędnych
Wykład udostępniam na licencji Creative Commons: Wędrówki między układami współrzędnych Piotr A. Dybczyński Układ równikowy godzinny i układ horyzontalny zenit północny biegun świata Z punkt wschodu szerokość
Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.
Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53
Galaktyki aktywne II. Przesłanki istnienia,,centralnego silnika'' Dyski akrecyjne Czarne dziury
Galaktyki aktywne II Przesłanki istnienia,,centralnego silnika'' Dyski akrecyjne Czarne dziury Asymetria strug Na ogół jedna ze strug oddala się a druga przybliża do obserwatora Natężenie promieniowania
Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule
Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Grawitacja Grawitacja we Wszechświecie Planety przyciągają Księżyce Ziemia przyciąga Ciebie Słońce przyciąga Ziemię i inne planety Gwiazdy
Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności
Zasady dynamiki Newtona Pęd i popęd Siły bezwładności Copyright by pleciuga@o2.pl Inercjalne układy odniesienia Układy inercjalne to takie układy odniesienia, względem których wszystkie ciała nie oddziałujące
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule
Fizyka Kurs przygotowawczy na studia inżynierskie mgr Kamila Haule Grawitacja Grawitacja we Wszechświecie Ziemia przyciąga Ciebie Planety przyciągają Księżyce Słońce przyciąga Ziemię i inne planety Gwiazdy
Aktualizacja, maj 2008 rok
1 00015 Mechanika nieba C Dane osobowe właściciela arkusza 00015 Mechanika nieba C Arkusz I i II Czas pracy 120/150 minut Instrukcja dla zdającego 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera
Ruch pod wpływem sił zachowawczych
Ruch pod wpływem sił zachowawczych Fizyka I (B+C) Wykład XV: Energia potencjalna Siły centralne Ruch w polu grawitacyjnym Pole odpychajace Energia potencjalna Równania ruchu Znajomość energii potencjalnej
Mikrosoczewkowanie grawitacyjne. Dr Tomasz Mrozek Instytut Astronomiczny Uniwersytet Wrocławski
Mikrosoczewkowanie grawitacyjne Dr Tomasz Mrozek Instytut Astronomiczny Uniwersytet Wrocławski Ogólna teoria względności OTW została ogłoszona w 1915. Podstawowa idea względności: nie możemy mówid o takich
Plan wykładu. Mechanika układów planetarnych (Ukł. Słonecznego)
Mechanika nieba Marcin Kiraga: kiraga@astrouw.edu.pl 30 godzin wykładu + 30 godzin ćwiczeń wykłady poniedziałki - godzina 15:15 ćwiczenia wtorki - godzina 12:15 Warunki zaliczenia ćwiczeń: prace domowe
Gwiazdy zmienne. na przykładzie V729 Cygni. Janusz Nicewicz
Gwiazdy zmienne na przykładzie V729 Cygni Plan prezentacji Czym są gwiazdy zmienne? Rodzaje gwiazd zmiennych Układy podwójne gwiazd Gwiazdy zmienne zaćmieniowe Model Roche'a V729 Cygni Obserwacje Analiza
( W.Ogłoza, Uniwersytet Pedagogiczny w Krakowie, Pracownia Astronomiczna)
TEMAT: Analiza zdjęć ciał niebieskich POJĘCIA: budowa i rozmiary składników Układu Słonecznego POMOCE: fotografie róŝnych ciał niebieskich, przybory kreślarskie, kalkulator ZADANIE: Wykorzystując załączone
EGZAMIN MATURALNY W ROKU SZKOLNYM 2017/2018 FIZYKA I ASTRONOMIA
EGZAMIN MATURALNY W ROKU SZKOLNYM 2017/2018 FIZYKA I ASTRONOMIA POZIOM PODSTAWOWY FORMUŁA DO 2014 ( STARA MATURA ) ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MFA-P1 MAJ 2018 Zadania zamknięte Zadanie 1. (1
1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd 5.
Budowa i ewolucja Wszechświata Autor: Weronika Gawrych Spis treści: 1. Obserwacje nieba 2. Gwiazdozbiór na północnej strefie niebieskiej 3. Gwiazdozbiór na południowej strefie niebieskiej 4. Ruch gwiazd
MiBM sem. III Zakres materiału wykładu z fizyki
MiBM sem. III Zakres materiału wykładu z fizyki 1. Dynamika układów punktów materialnych 2. Elementy mechaniki relatywistycznej 3. Podstawowe prawa elektrodynamiki i magnetyzmu 4. Zasady optyki geometrycznej
Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego Typ równowagi zależy od zmiany położenia środka masy ( Równowaga Statyka Bryły sztywnej umieszczonej
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Ciemna materia w sferoidalnych galaktykach karłowatych. Ewa L. Łokas Centrum Astronomiczne PAN, Warszawa
Ciemna materia w sferoidalnych galaktykach karłowatych Ewa L. Łokas Centrum Astronomiczne PAN, Warszawa Sferoidalne galaktyki karłowate Leo I Grupy Lokalnej Carina Fornax Klasyczne sferoidalne galaktyki
Budowa i ewolucja gwiazd I. Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd
Budowa i ewolucja gwiazd I Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd Dynamiczna skala czasowa Dla Słońca: 3 h Twierdzenie o wiriale Temperatura wewnętrzna Cieplna skala
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski 12 październik 2009 r. Tomasz Kwiatkowski, Wstęp do astrofizyki I, Wykład 2 1/21 Plan wykładu Promieniowanie ciała doskonale czarnego Związek temperatury
Budowa i ewolucja gwiazd I. Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd
Budowa i ewolucja gwiazd I Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd Dynamiczna skala czasowa Dla Słońca: 3 h Twierdzenie o wiriale Temperatura wewnętrzna Cieplna skala
Gwiazdy neutronowe. Michał Bejger,
Gwiazdy neutronowe Michał Bejger, 06.04.09 Co to jest gwiazda neutronowa? To obiekt, którego jedna łyżeczka materii waży tyle ile wszyscy ludzie na Ziemi! Gwiazda neutronowa: rzędy wielkości Masa: ~1.5
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.
Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki
WYMAGANIA EDUKACYJNE Z FIZYKI
WYMAGANIA EDUKACYJNE Z FIZYKI KLASA I Budowa materii Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia. Uczeń: rozróżnia
Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego
Bryła sztywna Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego Obrót wokół ustalonej osi Prawa ruchu Dla bryły sztywnej obracajacej się wokół ostalonej osi mement
Z przedstawionych poniżej stwierdzeń dotyczących wartości pędów wybierz poprawne. Otocz kółkiem jedną z odpowiedzi (A, B, C, D lub E).
Zadanie 1. (0 3) Podczas gry w badmintona zawodniczka uderzyła lotkę na wysokości 2 m, nadając jej poziomą prędkość o wartości 5. Lotka upadła w pewnej odległości od zawodniczki. Jest to odległość o jedną
Ekosfery. Gimnazjum Klasy I III Doświadczenie konkursowe nr 5
Gimnazjum Klasy I III Doświadczenie konkursowe nr 5 Rok 017 1. Wstęp teoretyczny Badanie planet pozasłonecznych (zwanych inaczej egzoplanetami) jest aktualnie jednym z najbardziej dynamicznie rozwijających
Synteza jądrowa (fuzja) FIZYKA 3 MICHAŁ MARZANTOWICZ
Synteza jądrowa (fuzja) Cykl życia gwiazd Narodziny gwiazd: obłok molekularny Rozmiary obłoków (Giant Molecular Cloud) są rzędu setek lat świetlnych. Masa na ogół pomiędzy 10 5 a 10 7 mas Słońca. W obłoku
ETAP II. Astronomia to nauka. pochodzeniem i ewolucją. planet i gwiazd. na wydarzenia na Ziemi.
ETAP II Konkurencja I Ach te definicje! (każda poprawnie ułożona definicja warta jest aż dwa punkty) Astronomia to nauka o ciałach niebieskich zajmująca się badaniem ich położenia, ruchów, odległości i
Metody poszukiwania egzoplanet (planet pozasłonecznych) Autor tekstu: Bartosz Oszańca
Metody poszukiwania egzoplanet (planet pozasłonecznych) Autor tekstu: Bartosz Oszańca Badania pozasłonecznych układów planetarnych stają się w ostatnich latach coraz popularniejszą gałęzią astronomii.
Zadanie na egzamin 2011
Zadanie na egzamin 0 Zaproponował: Jacek Ciborowski. Wersja A dla medyków Na stacji kolejowej znajduje się peron, z którym wiążemy układ odniesienia U. Po szynach, z prędkością V = c/ względem peronu,
Konkurs Astronomiczny Astrolabium V Edycja 29 kwietnia 2019 roku Klasy IV VI Szkoły Podstawowej Odpowiedzi
Instrukcja Zaznacz prawidłową odpowiedź. W każdym pytaniu tylko jedna odpowiedź jest poprawna. Liczba punktów przyznawanych za właściwą odpowiedź na pytanie jest różna i uzależniona od stopnia trudności
Budowa Galaktyki. Materia rozproszona Rozkład przestrzenny materii Krzywa rotacji i ramiona spiralne
Budowa Galaktyki Materia rozproszona Rozkład przestrzenny materii Krzywa rotacji i ramiona spiralne Gwiazdy w otoczeniu Słońca Gaz międzygwiazdowy Hartmann (1904) Delta Orionis (gwiazda podwójna) obserwowana
Grawitacja. Wykład 7. Wrocław University of Technology
Wykład 7 Wrocław University of Technology 1 Droga mleczna Droga Mleczna galaktyka spiralna z poprzeczką, w której znajduje się m.in. nasz Układ Słoneczny. Galaktyka zawiera od 100 do 400 miliardów gwiazd.
Fizyka i Chemia Ziemi
Fizyka i Chemia Ziemi Układ Ziemia - Księżyc T.J. Jopek jopek@amu.edu.pl IOA UAM 2013-01-24 T.J.Jopek, Fizyka i chemia Ziemi 1 Ruch orbitalny Księżyca Obserwowane tarcze Księżyca 2013-01-24 T.J.Jopek,
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).
Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej
Obraz Ziemi widzianej z Księżyca
Grawitacja Obraz Ziemi widzianej z Księżyca Prawo powszechnego ciążenia Dwa punkty materialne o masach m 1 i m przyciągają się wzajemnie siłą proporcjonalną do iloczynu ich mas i odwrotnie proporcjonalną
Teoria Wielkiego Wybuchu FIZYKA 3 MICHAŁ MARZANTOWICZ
Teoria Wielkiego Wybuchu Epoki rozwoju Wszechświata Wczesny Wszechświat Epoka Plancka (10-43 s): jedno podstawowe oddziaływanie Wielka Unifikacja (10-36 s): oddzielenie siły grawitacji od reszty oddziaływań
Wykres Herzsprunga-Russela (H-R) Reakcje termojądrowe - B.Kamys 1
Wykres Herzsprunga-Russela (H-R) 2012-06-07 Reakcje termojądrowe - B.Kamys 1 Proto-gwiazdy na wykresie H-R 2012-06-07 Reakcje termojądrowe - B.Kamys 2 Masa-jasność, temperatura-jasność n=3.5 2012-06-07
60 C Od jazdy na rowerze do lotu w kosmos. Dionysis Konstantinou Corina Toma. Lot w kosmos
60 C Od jazdy na rowerze do lotu w kosmos Dionysis Konstantinou Corina Toma C Lot w kosmos Od jazdy na rowerze do lotu w Length kosmos of the CDay61 WPROWADZENIE Wyobraź sobie, że ludzie mogą podróżować
Kontrola wiadomości Grawitacja i elementy astronomii
Kontrola wiadomości Grawitacja i elementy astronomii I LO im. Stefana Żeromskiego w Lęborku 15 października Kartkówka w klasie IA - 20 minut Grupa 1 1 Wykonaj rysunek ilustrujący sposób wyznaczania odległości
KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów. Schemat punktowania zadań
KONKURS PRZEDMIOTOWY Z FIZYKI dla uczniów gimnazjów 7 stycznia 06 r. zawody II stopnia (rejonowe) Schemat punktowania zadań Maksymalna liczba punktów 60 Uwaga!. Za poprawne rozwiązanie zadania metodą,
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ
RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment
Bryła sztywna. zbiór punktów materialnych utrzymujących stałą odległość między sobą. Deformująca się piłka nie jest bryłą sztywną!
Bryła sztywna Ciało złożone z cząstek (punktów materialnych), które nie mogą się względem siebie przemieszczać. Siły utrzymujące punkty w stałych odległościach są siłami wewnętrznymi bryły sztywnej. zbiór
OPIS MODUŁ KSZTAŁCENIA (SYLABUS)
OPIS MODUŁ KSZTAŁCENIA (SYLABUS) I. Informacje ogólne: 1 Nazwa modułu Astronomia ogólna 2 Kod modułu 04-A-AOG-90-1Z 3 Rodzaj modułu obowiązkowy 4 Kierunek studiów astronomia 5 Poziom studiów I stopień
Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika
Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 2 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,
Metody wyznaczania masy Drogi Mlecznej
Metody wyznaczania masy Drogi Mlecznej Nasz grupa : Łukasz Bratek, Joanna Jałocha, Marek Kutschera, Szymon Sikora, Piotr Skindzier IFJ PAN, IF UJ Dla poznania masy Galaktyki, kluczową sprawą jest wyznaczenie