WYZNACZANIE WSPÓŁRZĘDNYCH ZŁĄCZOWYCH DLA SKOORDYNOWANYCH RUCHÓW ROBOTÓW CZTEROOSIOWYCH

Wielkość: px
Rozpocząć pokaz od strony:

Download "WYZNACZANIE WSPÓŁRZĘDNYCH ZŁĄCZOWYCH DLA SKOORDYNOWANYCH RUCHÓW ROBOTÓW CZTEROOSIOWYCH"

Transkrypt

1 dam SŁO 1 Skoordynowane ruchy robotów, Zadanie odwrotne WYZNCNIE WSÓŁRZĘDNYCH ZŁĄCZOWYCH DL SKOORDYNOWNYCH RUCHÓW ROOÓW CZEROOSIOWYCH W pracy przedstawiono algorytm generowania trajektorii dla zadania transportowego realizowanego przez dwa roboty. Wyznaczone w układach współrzędnych zadania, połoŝenia i orientacje punktów C robotów przekształcono do układów współrzędnych robotów, dla przyjętego ustawienia robotów na stanowisku. Dla wybranych modeli robotów czteroosiowych rozwiązano zadanie odwrotne. Uzyskane rozwiązanie zaimplementowano i zweryfikowano w systemie LabVIEW. rzedstawiono rozwiązanie dla wybranego zadania i konfiguracji stanowiska. CLCULION OF JOIN COORDINES FOR COORDINED MOION OF FOUR XES ROOS In the paper an algorithm of generation trajectories for transport tasks executed by two robots is presented. Calculated in task coordinated systems, positions and orientations of robots C are transformed into robots coordinated systems for defined robots positions. For selected model of four axes robots inverse kinematics is solved. Obtained solution is implemented and verified in LabVIEW system. he solution of a sample transport task and robot cell configuration is presented. 1. WSĘ Zastosowania przemysłowe robotów wymagają, poza automatycznym sterowaniem poszczególnymi robotami w celu wykonania wybranych fragmentów procesu technologicznego, koordynacji czasowej zadań realizowanych przez róŝne roboty w gnieździe. Koordynacja taka moŝe mieć charakter dyskretny rozpoczęcie danego zadania warunkowane jest określonym stanem urządzeń gniazda, zakończenie realizacji zadania (lub jego fragmentu) skutkuje zmianą stanu. Koordynacja taka moŝe być zrealizowana za pomocą dyskretnych sygnałów wejścia/wyjścia. Zadania takie jak transport duŝego i cięŝkiego przedmiotu przed dwa roboty, czy spawanie z udziałem pozycjonera (lub robota przemysłowego pełniącego rolę pozycjonera) wymagają ciągłej koordynacji ruchów robotów. W tej dziedzinie rozwijane są dwa podejścia. ierwsze to sterowanie robotami wymagającymi ciągłej koordynacji ruchów za pomocą jednego układu sterowania. 1 olitechnika Krakowska, Wydział Mechaniczny, Zakład Zautomatyzowanych Systemów rodukcyjnych Kraków, l. Jana awła II 37. el: , Fax: , slota@mech.pk.edu.pl

2 488 dam SŁO Rozwiązania takie dostarczane są przez producentów robotów (Fanuc [4], [1]). W tym przypadku jeden układ sterowania realizuje interpolację ruchów np. dwunastu osi napędowych. odejście drugie to bezpośrednie sterowanie robotami przez oddzielne układy sterowania, z uwzględnieniem sprzęŝenia pomiędzy układami sterowania w celu zapewnienia wymaganej koordynacji ruchów. Dotychczasowe prace autora dotyczyły koordynacji trajektorii dwóch robotów wykonujących wspólnie transport jednego przedmiotu. ZałoŜono, Ŝe obydwa roboty sterowane są przez oddzielne układy sterowania, które w celu zapewnienia koordynacji ruchów punktów C robotów wykorzystują sprzęŝenie połoŝeniowe. Opracowany algorytm wyznacza, dla zadanych pozycji początkowych i docelowych punktów C robotów, trajektorie punktów C robotów. Kolejne pozycje punktów trajektorii wyraŝone są poprzez współrzędne połoŝenia oraz orientacji. ołoŝenie określone jest w kartezjańskim układzie współrzędnych, orientację określają kąty obrotu wokół stałych osi układu współrzędnych. Opracowany algorytm został zaimplementowany i zweryfikowany w systemie LabVIEW z wykorzystaniem modułu Simulation Module. W algorytmie wyznaczania trajektorii nie uwzględniono konfiguracji stanowiska zrobotyzowanego. W celu weryfikacji realizowalności otrzymanych trajektorii na stanowisku rzeczywistym zaproponowano wykorzystanie systemu Delmia [3]. System ten udostępnia biblioteki modeli robotów przemysłowych róŝnych producentów, umoŝliwia konfigurację stanowiska zrobotyzowanego, definiowanie zadań dla robotów, weryfikację realizowalności zadań i wygenerowanie programów sterujących. W pracy [5] przedstawiono procedurę przeniesienia uzyskanych w programie LabVIEW i zapisanych w plikach tekstowych współrzędnych połoŝenia i orientacji punktów C do systemu Delmia. Dane te posłuŝyły do zdefiniowania zadań robotów dla przyjętej konfiguracji stanowiska z wykorzystaniem robotów czteroosiowych. Weryfikację działania stanowiska w środowisku wirtualnym dla robotów sześcioosiowych opisano w pracy []. Zaproponowany sposób weryfikacji algorytmu generowania skoordynowanych ruchów robotów jest sprawdzeniem offline. Sprawdzane są wygenerowane uprzednio trajektorie. Wykryte w ten sposób niezgodności z moŝliwościami rzeczywistego stanowiska zrobotyzowanego powodują konieczność ponownego wygenerowania trajektorii dla zmodyfikowanych parametrów i kolejnej weryfikacji wyników. by uniknąć takiego postępowania, naleŝy uzupełnić algorytm generowania skoordynowanych ruchów robotów o moŝliwość weryfikacji rozwiązania w trybie online. oniewaŝ podstawowe ograniczenia dotyczące ruchów robotów określone są w przestrzeni złączowej (zakresy ruchów, prędkości, przyspieszenia), dlatego konieczne jest wyraŝenie pozycji punktów trajektorii we współrzędnych złączowych. rezentowana praca ma na celu uzupełnienie modelu o moŝliwość definiowania konfiguracji stanowiska (wzajemne połoŝenie i orientacja robotów stanowiska, lokalizacja pozycji początkowych i docelowych punktów C robotów) oraz rozbudowa algorytmu wyznaczania skoordynowanych ruchów robotów o moduł rozwiązywania zadania odwrotnego dla robotów czteroosiowych. W rozdziale.1 przedstawiono zarys zaproponowanego algorytmu koordynacji ruchów w układzie współrzędnych zadania. rzekształcenie współrzędnych trajektorii z układu zadania do układu współrzędnych robota zamieszczono w rozdziale., a w rozdziale.3 przedstawiono rozwiązanie zadania odwrotnego kinematyki dla robota czteroosiowego ZD 130S firmy Kawasaki.

3 WYZNCNIE WSÓŁRZĘDNYCH ZŁĄCZOWYCH 489. GENEROWNIE SKOORDYNOWNYCH RUCHÓW ROOÓW.1 lgorytm generowania trajektorii we współrzędnych kartezjańskich rajektoria punktów C obydwu robotów wyznaczana jest przez ten sam algorytm jedna instancja algorytmu wylicza współrzędne pozycji punktu C robota, druga - współrzędne punktu C robota. lgorytm wyznacza współrzędne kartezjańskie połoŝenia punktu C robota () ( x y z ) ( ( x y z ) ) w układzie współrzędnych zadania robota () X Y Z ( X Y Z ). rzyjęto, Ŝe układy zadania obydwu robotów mają taką samą orientację, a ich wzajemne połoŝenie określone jest danymi wejściowymi. ZałoŜono, Ŝe dla algorytmu wyznaczającego trajektorię punktu C jednego robota dostępne są współrzędne połoŝenia i orientacji punktu C drugiego robota. Kolejne współrzędne połoŝenia ( x y z ) ( ( x y z ) ) wyznaczane są jako złoŝenie dwóch ruchów: ruchu zaprogramowanego z połoŝenia bieŝącego do połoŝenia docelowego (w aktualnej wersji algorytmu ruch zaprogramowany to ruch wzdłuŝ linii prostej ze stałą prędkością V ( V )), ruchu korekcyjnego wzdłuŝ kierunku łączącego punkty C obydwu robotów. Celem ruchu korekcyjnego jest minimalizacja zmiany odległości pomiędzy punktami C robotów. Odległość referencyjna, która ma być zachowana, to odległość pomiędzy punktami C ( x y z ) oraz ( x y z ) w chwili początkowej. Ze względu na nieznajomość celu drugiego robota, do wyliczenia prędkości ruchu korekcyjnego wykorzystano strukturę układu automatycznej regulacji, ze zmianą odległości pomiędzy punktami C jako uchybem. Wartość prędkości ruchu korekcyjnego robota () C ( V ) obliczana jest na podstawie zmiany odległości pomiędzy punktami C l(t) jako suma dwóch składników: części proporcjonalnej do wyliczonej zmiany odległości l(t) oraz części proporcjonalnej do całki ze zmiany odległości l(t). W celu wyznaczenia orientacji punktów C robotów przyjęto takie ustawienie wykorzystywanych robotów czteroosiowych, Ŝe orientacja punktu C robota moŝe być zmieniana tylko przez obrót wokół osi Z ( Z ). Orientacja ta jest wyraŝona poprzez kąt γ ( γ ), jaki z osią X ( X ) tworzy rzut wektora ( ) na płaszczyznę X Y ( X Y ). Wyznaczone według przedstawionego powyŝej algorytmu połoŝenia punktów C robotów () ( ) oraz początkowa orientacja punktów C γ ( γ 0 ) względem rzutu wektora ( ) wykorzystywane są do wyliczenia wartości kątów γ i γ. Dane wejściowe algorytmu to: połoŝenie i orientacja początkowa punktu C robota () - x y z ) i ( x y z ) i ( 0 γ ), ( połoŝenie i orientacja docelowa punktu C robota () - ( x y z ) i ( ( x y z ) i γ ), D D D D D D D D D V C γ 0 γ D

4 490 dam SŁO zaprogramowana prędkość ruchu punktu C robota () - V ( V ) parametry korektora trajektorii robota () współczynnik wzmocnienia czas zdwojenia ( ). k ( k ),. Konfiguracja stanowiska W celu przekształcenia wygenerowanych współrzędnych trajektorii skoordynowanych ruchów w układach kartezjańskich zadania na współrzędne złączowe robotów naleŝy określić konfigurację stanowiska. Ustawienie robota () w gnieździe określone jest przez układ współrzędnych X Y Z ( X Y Z ). ołoŝenie układu współrzędnych zadania R R R względem układu współrzędnych robota () określa przesunięcie X Y Z ( X Y Z R R R ). rzyjęto, Ŝe orientacja układu współrzędnych zadania względem układu współrzędnych robota () określona jest przez kąt obrotu wokół osi Z ( Z ) - R R ( γ ). Dla tak określonej konfiguracji stanowiska wyznaczane są współrzędne trajektorii w układzie robota zaleŝności od (1) do (4). γ x y = x + x cosγ y sin γ (1) = y + x sin γ + y cosγ () z = z + z (3) γ = γ + γ (4).3 Wyznaczanie współrzędnych złączowych W pracy przyjęto, Ŝe zadanie transportu realizowane jest przez dwa identyczne roboty czteroosiowe firmy Kawasaki ZD130S. Schemat kinematyczny robota przedstawiono na rysunku 1. Wartości współrzędnych złączowych określają zaleŝności od (5) do (8): ϕ = arctan y 1 x (5) l ϕ = arccos 1 l d l d l + l d π 1 ϕ = arccos + ϕ 3 l l ϕ gdzie: = ϕ z l + l 4 6 π + arctan (6) x' l l 3 5 γ (8) d = ( x l (9) ' l l ) + ( z + l + ) x ' = x + y (10) (7)

5 WYZNCNIE WSÓŁRZĘDNYCH ZŁĄCZOWYCH 491 l ϕ 3 l 6 l 5 ϕ d l 1 z l 3 l4 Z X' x' Y X' ϕ 4 X x ϕ 1 y Rys.1. Schemat układu kinematycznego robota ZD130S

6 49 dam SŁO Wartości parametrów występujących w zaleŝnościach () oraz (3) dla wybranego modelu ZD130S przedstawiono w tabeli 1. ab. 1. Wartości parametrów robota arametr l 1 l l 3 l 4 l 5 l 6 Wartość [mm] RZYKŁD rzedstawione w punkcie.3 zaleŝności zostały wprowadzone do algorytmu wyznaczania skoordynowanych trajektorii. Na rysunku przedstawiono fragment schematu blokowego algorytmu wyznaczania współrzędnych kartezjańskich i złączowych dla robota, zbudowanego w module Simulation Module systemu LabVIEW. Rys.. Schemat blokowy algorytmu w systemie LabVIEW W modelu występują bloki: Generator współrzędnych kartezjańskich blok ten wyznacza trajektorie skoordynowanych ruchów punktów C robotów w ich układach współrzędnych zadania, Zadanie odwrotne blok odpowiedzialny za przekształcenie współrzędnych pozycji C z układu współrzędnych zadania do układu współrzędnych robota, zgodnie z zaleŝnościami od (1) do (4) oraz rozwiązania zadania odwrotnego według wzorów od (5) do (8), Wykresy współrzędnych kartezjańskich blok słuŝący do przedstawienia trajektorii w układzie współrzędnych zadania, Wykresy współrzędnych złączowych blok słuŝący do przedstawienia na wykresie wyznaczonych współrzędnych złączowych,

7 WYZNCNIE WSÓŁRZĘDNYCH ZŁĄCZOWYCH 493 Zapis do pliku blok zapisu do pliku tekstowego współrzędnych kartezjańskich i złączowych trajektorii. Działanie algorytmu zostało zweryfikowana dla danych przedstawionych w tabeli. ab.. Wartości danych wejściowych Robot Robot X Y Z [mm] 0;0;0 X Y Z [mm] 800;-600;0 ( ) x y z [mm] 0;0;100 x y z ) [mm] 0;0; ( 0 γ [deg] 0 γ [deg] 0 ( x y z ) [mm] 300;500;100 ( x y z ) [mm] 300;1700;100 D D D D D γ [deg] 0 γ [deg] 0 V [mm/s] 10 V [mm/s] 00 R R R X Y Z [mm] 1800;-00;1100 X Y Z [mm] 000;400;1100 R γ [deg] 0 γ [deg] 180 k [1/s] 0 k [1/s] 0 [s] 0, [s] 0, oniŝej zamieszczono uzyskane wyniki. Wyznaczone współrzędne złączowe dla robota ZD130S, ustawionego według danych zamieszczonych w tabeli, pokazano na rysunku 3. Rysunek 4 przedstawia widok wygenerowanych trajektorii na płaszczyźnie X Y układu współrzędnych zadania robota. D D D D D Rys.3. Wykresy współrzędnych złączowych robota

8 494 dam SŁO Rys.4. Wykresy trajektorii punktów C w układzie współrzędnych zadania robota 4. ODSUMOWNIE Opracowany algorytm koordynacji trajektorii punktów C dwóch robotów, realizujących wspólnie zadanie transportowe, wyznaczał współrzędne trajektorii w układzie współrzędnych zadania. Zaproponowany we wcześniejszych pracach autora sposób weryfikacji algorytmu miał charakter sprawdzenia offline. Uzupełnienie algorytmu o wyznaczanie współrzędnych złączowych, zaprezentowane w niniejszej pracy, umoŝliwi uwzględnienie konfiguracji stanowiska oraz parametrów robotów w trakcie generowania trajektorii robotów. Dalsze prace dotyczyć będą uwzględnienia w algorytmie generowania skoordynowanych trajektorii ograniczeń, wynikających z konfiguracji stanowiska i zastosowanych robotów. 5. LIEU [1] pplication manual MultiMove,, MultiMove 3HC _RevG_en.pdf [] Słota.: Generowanie skoordynowanych ruchów robotów w przestrzeni 3D weryfikacja w środowisku wirtualnym, praca przyjęta do publikacji w omiary utomatyka Robotyka /011 [3] [4] [5]

Procedura tworzenia modelu stanowiska w systemie Delmia w celu weryfikacji algorytmu generowania skoordynowanych ruchów robotów

Procedura tworzenia modelu stanowiska w systemie Delmia w celu weryfikacji algorytmu generowania skoordynowanych ruchów robotów Dr inŝ. Adam Słota Politechnika Krakowska, Wydział Mechaniczny slota@mech.pk.edu.pl Procedura tworzenia modelu stanowiska w systemie Delmia w celu weryfikacji algorytmu generowania skoordynowanych ruchów

Bardziej szczegółowo

Notacja Denavita-Hartenberga

Notacja Denavita-Hartenberga Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć

Bardziej szczegółowo

Mechanika Robotów. Wojciech Lisowski. 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej

Mechanika Robotów. Wojciech Lisowski. 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej Katedra Robotyki i Mechatroniki Akademia Górniczo-Hutnicza w Krakowie Mechanika Robotów Wojciech Lisowski 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej Mechanika Robotów KRiM, WIMIR, AGH

Bardziej szczegółowo

Informatyka I Lab 06, r.a. 2011/2012 prow. Sławomir Czarnecki. Zadania na laboratorium nr. 6

Informatyka I Lab 06, r.a. 2011/2012 prow. Sławomir Czarnecki. Zadania na laboratorium nr. 6 Informatyka I Lab 6, r.a. / prow. Sławomir Czarnecki Zadania na laboratorium nr. 6 Po utworzeniu nowego projektu, dołącz bibliotekę bibs.h.. Największy wspólny dzielnik liczb naturalnych a, b oznaczamy

Bardziej szczegółowo

MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH CATIA I MATLAB MODEL OF SERIAL MANIPULATOR IN CATIA AND MATLAB

MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH CATIA I MATLAB MODEL OF SERIAL MANIPULATOR IN CATIA AND MATLAB Kocurek Łukasz, mgr inż. email: kocurek.lukasz@gmail.com Góra Marta, dr inż. email: mgora@mech.pk.edu.pl Politechnika Krakowska, Wydział Mechaniczny MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH

Bardziej szczegółowo

Manipulatory i roboty mobilne AR S1 semestr 5

Manipulatory i roboty mobilne AR S1 semestr 5 Manipulatory i roboty mobilne AR S semestr 5 Konrad Słodowicz MN: Zadanie proste kinematyki manipulatora szeregowego - DOF Położenie manipulatora opisać można dwojako w przestrzeni kartezjańskiej lub zmiennych

Bardziej szczegółowo

Symulacja działania sterownika dla robota dwuosiowego typu SCARA w środowisku Matlab/Simulink.

Symulacja działania sterownika dla robota dwuosiowego typu SCARA w środowisku Matlab/Simulink. Symulacja działania sterownika dla robota dwuosiowego typu SCARA w środowisku Matlab/Simulink. Celem ćwiczenia jest symulacja działania (w środowisku Matlab/Simulink) sterownika dla dwuosiowego robota

Bardziej szczegółowo

Laboratorium z Systemów Wytwarzania. Instrukcja do ćw. nr 5

Laboratorium z Systemów Wytwarzania. Instrukcja do ćw. nr 5 Interpolacja Termin ten wszedł juŝ na stałe do naszego codziennego uŝytku. Spotykamy się z nim w wielu dziedzinach przetwarzania informacji. Bez interpolacji, mielibyśmy problem z zapisem informacji o

Bardziej szczegółowo

Projektowanie systemów zrobotyzowanych

Projektowanie systemów zrobotyzowanych ZAKŁAD PROJEKTOWANIA TECHNOLOGII Laboratorium Projektowanie systemów zrobotyzowanych Instrukcja 4 Temat: Programowanie trajektorii ruchu Opracował: mgr inż. Arkadiusz Pietrowiak mgr inż. Marcin Wiśniewski

Bardziej szczegółowo

WPŁYW KINEMATYCZNYCH CHARAKTERYSTYK RUCHU CHWYTAKA NA POŁOśENIA, PRĘDKOŚCI I PRZYSPIESZENIA OGNIW AGROROBOTA

WPŁYW KINEMATYCZNYCH CHARAKTERYSTYK RUCHU CHWYTAKA NA POŁOśENIA, PRĘDKOŚCI I PRZYSPIESZENIA OGNIW AGROROBOTA InŜynieria Rolnicza 11/006 Andrzej Graboś, Marek Boryga Katedra Podstaw Techniki Akademia Rolnicza w Lublinie WPŁYW KINEMATYCZNYCH CHARAKTERYSTYK RUCHU CHWYTAKA NA POŁOśENIA, PRĘDKOŚCI I PRZYSPIESZENIA

Bardziej szczegółowo

ANALIZA KINEMATYKI MANIPULATORÓW NA PRZYKŁADZIE ROBOTA LINIOWEGO O CZTERECH STOPNIACH SWOBODY

ANALIZA KINEMATYKI MANIPULATORÓW NA PRZYKŁADZIE ROBOTA LINIOWEGO O CZTERECH STOPNIACH SWOBODY MECHNIK 7/ Dr inż. Borys BOROWIK Politechnika Częstochowska Instytut Technologii Mechanicznych DOI:.78/mechanik..7. NLIZ KINEMTYKI MNIPULTORÓW N PRZYKŁDZIE ROBOT LINIOWEGO O CZTERECH STOPNICH SWOBODY Streszczenie:

Bardziej szczegółowo

Programowanie w systemie Delmia robotów przemysłowych dla zadań paletyzacji i spawania

Programowanie w systemie Delmia robotów przemysłowych dla zadań paletyzacji i spawania Dr inŝ. Adam Słota Dr inŝ. Krzysztof Krupa Mgr inŝ. Andrzej Konicki Mgr inŝ. Piotr Doktor Politechnika Krakowska, Wydział Mechaniczny slota@mech.pk.edu.pl Programowanie w systemie Delmia robotów przemysłowych

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.) PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: KINEMATYKA I DYNAMIKA MANIPULATORÓW I ROBOTÓW Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na specjalności: Systemy sterowania Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU

Bardziej szczegółowo

2.2 Opis części programowej

2.2 Opis części programowej 2.2 Opis części programowej Rysunek 1: Panel frontowy aplikacji. System pomiarowy został w całości zintegrowany w środowisku LabVIEW. Aplikacja uruchamiana na komputerze zarządza przebiegiem pomiarów poprzez

Bardziej szczegółowo

MODEL MANIPULATORA O DWÓCH STOPNIACH SWOBODY

MODEL MANIPULATORA O DWÓCH STOPNIACH SWOBODY Adam Labuda Janusz Pomirski Andrzej Rak Akademia Morska w Gdyni MODEL MANIPULATORA O DWÓCH STOPNIACH SWOBODY W artykule opisano konstrukcję modelu manipulatora o dwóch przegubach obrotowych. Obie osie

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY PIERWSZEJ POZIOM PODSTAWOWY. I. Liczby (20 godz.) ( b ) 2

PLAN WYNIKOWY DLA KLASY PIERWSZEJ POZIOM PODSTAWOWY. I. Liczby (20 godz.) ( b ) 2 PLAN WYNIKOWY DLA KLASY PIERWSZEJ POZIOM PODSTAWOWY I. Liczby (0 godz.) TEMAT ZAJĘĆ Zapis dziesiętny liczby rzeczywistej Wzory skróconego mnoŝenia Nierówności liniowe Przedziały liczbowe Powtórzenie przedstawiać

Bardziej szczegółowo

Kalibracja robotów przemysłowych

Kalibracja robotów przemysłowych Kalibracja robotów przemysłowych Rzeszów 27.07.2013 Kalibracja robotów przemysłowych 1. Układy współrzędnych w robotyce... 3 2 Deklaracja globalnego układu współrzędnych.. 5 3 Deklaracja układu współrzędnych

Bardziej szczegółowo

INTEGRACJA STEROWNIKA PLC Z WIRTUALNYM MODELEM URZĄDZENIA W SYSTEMIE DELMIA AUTOMATION

INTEGRACJA STEROWNIKA PLC Z WIRTUALNYM MODELEM URZĄDZENIA W SYSTEMIE DELMIA AUTOMATION Dr inŝ. Adam Słota, email: slota@mech.pk.edu.pl Politechnika Krakowska, Wydział Mechaniczny Mgr inŝ. Maciej Gruza, email: gruzam@interia.pl Politechnika Krakowska, Wydział Mechaniczny INTEGRACJA STEROWNIKA

Bardziej szczegółowo

Laboratorium Sterowania Robotów Sprawozdanie

Laboratorium Sterowania Robotów Sprawozdanie Instytut Automatyki Politechniki Łódzkiej FTIMS, Informatyka wtorek 10:15 12:00 Laboratorium Sterowania Robotów Sprawozdanie Skład grupy laboratoryjnej: Krzysztof Łosiewski 127260 Łukasz Nowak 127279 Kacper

Bardziej szczegółowo

Laboratorium Podstaw Robotyki ĆWICZENIE 4

Laboratorium Podstaw Robotyki ĆWICZENIE 4 Laboratorium Podstaw Robotyki Politechnika Poznańska Katedra Sterowania i Inżynierii Systemów ĆWICZENIE 4 System sterowania robotem mobilnym MTracker 1 Celem ćwiczenia jest poznanie sposobów sterowania

Bardziej szczegółowo

Laboratorium Podstaw Robotyki ĆWICZENIE 4

Laboratorium Podstaw Robotyki ĆWICZENIE 4 Laboratorium Podstaw Robotyki Politechnika Poznańska Katedra Sterowania i Inżynierii Systemów ĆWICZENIE 4 System sterowania robotem mobilnym MTracker Celem ćwiczenia jest poznanie sposobów sterowania nieholonomicznym,

Bardziej szczegółowo

Wyznaczanie sił w przegubach maszyny o kinematyce równoległej w trakcie pracy, z wykorzystaniem metod numerycznych

Wyznaczanie sił w przegubach maszyny o kinematyce równoległej w trakcie pracy, z wykorzystaniem metod numerycznych kinematyka równoległa, symulacja, model numeryczny, sterowanie mgr inż. Paweł Maślak, dr inż. Piotr Górski, dr inż. Stanisław Iżykowski, dr inż. Krzysztof Chrapek Wyznaczanie sił w przegubach maszyny o

Bardziej szczegółowo

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym Mechanika ogólna Wykład nr 14 Elementy kinematyki i dynamiki 1 Kinematyka Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI. Robot do pokrycia powierzchni terenu

WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI. Robot do pokrycia powierzchni terenu WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI Robot do pokrycia powierzchni terenu Zadania robota Zadanie całkowitego pokrycia powierzchni na podstawie danych sensorycznych Zadanie unikania przeszkód

Bardziej szczegółowo

Regulacja prędkości posuwu belki na prowadnicach pionowych przy wykorzystaniu sterownika Versa Max

Regulacja prędkości posuwu belki na prowadnicach pionowych przy wykorzystaniu sterownika Versa Max Instytut Automatyki i Robotyki Prowadzący(a) Grupa Zespół data ćwiczenia Lp. Nazwisko i imię Ocena 1. 2. 3. LABORATORIUM 4. PODSTAW 5. AUTOMATYKI Ćwiczenie PA9b 1 Regulacja prędkości posuwu belki na prowadnicach

Bardziej szczegółowo

Podstawy robotyki - opis przedmiotu

Podstawy robotyki - opis przedmiotu Podstawy robotyki - opis przedmiotu Informacje ogólne Nazwa przedmiotu Podstawy robotyki Kod przedmiotu 06.9-WE-AiRP-PR Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki Automatyka i robotyka

Bardziej szczegółowo

Programowanie obrabiarek CNC. Nr 5

Programowanie obrabiarek CNC. Nr 5 olitechnika oznańska Instytut Technologii Mechanicznej Laboratorium rogramowanie obrabiarek CNC Nr 5 Obróbka wałka wielostopniowego Opracował: Dr inŝ. Wojciech taszyński oznań, 2008-04-18 1. Układ współrzędnych

Bardziej szczegółowo

Laboratorium Programowanie Obrabiarek CNC. Nr H04

Laboratorium Programowanie Obrabiarek CNC. Nr H04 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Programowanie Obrabiarek CNC Nr H04 Programowanie zarysów swobodnych FK Opracował: Dr inŝ. Wojciech Ptaszyński Poznań, 06 stycznia

Bardziej szczegółowo

2.12. Zadania odwrotne kinematyki

2.12. Zadania odwrotne kinematyki Politechnika Poznańska, Katedra Sterowania i Inżynierii Systemów str. 1 2.12. Zadania odwrotne kinematyki Określenie zadania odwrotnego kinematyki T 0 N = [ ] n s a p = r 11 r 12 r 13 p x r 21 r 22 r 23

Bardziej szczegółowo

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7 Łukasz Deńca V rok Koło Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE

Bardziej szczegółowo

SPOSOBY POMIARU KĄTÓW W PROGRAMIE AutoCAD

SPOSOBY POMIARU KĄTÓW W PROGRAMIE AutoCAD Dr inż. Jacek WARCHULSKI Dr inż. Marcin WARCHULSKI Mgr inż. Witold BUŻANTOWICZ Wojskowa Akademia Techniczna SPOSOBY POMIARU KĄTÓW W PROGRAMIE AutoCAD Streszczenie: W referacie przedstawiono możliwości

Bardziej szczegółowo

Manipulator OOO z systemem wizyjnym

Manipulator OOO z systemem wizyjnym Studenckie Koło Naukowe Robotyki Encoder Wydział Automatyki, Elektroniki i Informatyki Politechnika Śląska Manipulator OOO z systemem wizyjnym Raport z realizacji projektu Daniel Dreszer Kamil Gnacik Paweł

Bardziej szczegółowo

Kalibracja kamery. Kalibracja kamery

Kalibracja kamery. Kalibracja kamery Cel kalibracji Celem kalibracji jest wyznaczenie parametrów określających zaleŝności między układem podstawowym a układem związanym z kamerą, które występują łącznie z transformacją perspektywy oraz parametrów

Bardziej szczegółowo

PODSTAWY RACHUNKU WEKTOROWEGO

PODSTAWY RACHUNKU WEKTOROWEGO Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)

Bardziej szczegółowo

Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki

Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki dr inż. Marek Wojtyra Instytut Techniki Lotniczej

Bardziej szczegółowo

Wprowadzenie do robotyki

Wprowadzenie do robotyki Wprowadzenie do robotyki Robotyka to nauka i technologia projektowania, budowy i zastosowania sterowanych komputerowo urządzeń mechanicznych popularnie zwanych robotami. Robot urządzenie mechaniczne, które

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podsta Automatyki Transmitancja operatorowa i widmowa systemu, znajdowanie odpowiedzi w dziedzinie s i w

Bardziej szczegółowo

URZĄDZENIE DO DEMONSTRACJI POWSTAWANIA KRZYWYCH LISSAJOUS

URZĄDZENIE DO DEMONSTRACJI POWSTAWANIA KRZYWYCH LISSAJOUS URZĄDZENIE DO DEMONSTRACJI POWSTAWANIA KRZYWYCH LISSAJOUS Urządzenie słuŝące do pokazu krzywych Lissajous powstających w wyniku składania mechanicznych drgań harmonicznych zostało przedstawione na rys.

Bardziej szczegółowo

Planowanie trajektorii narzędzia skrawającego koparki hydraulicznej

Planowanie trajektorii narzędzia skrawającego koparki hydraulicznej WITKOWSKI Grzegorz 1 PŁONECKI Leszek 2 Planowanie trajektorii narzędzia skrawającego koparki hydraulicznej WSTĘP Urabianie gruntu przez zautomatyzowaną maszynę do prac ziemnych wiąże się wykonywaniem przez

Bardziej szczegółowo

Reprezentacja i analiza obszarów

Reprezentacja i analiza obszarów Cechy kształtu Topologiczne Geometryczne spójność liczba otworów liczba Eulera szkielet obwód pole powierzchni środek cięŝkości ułoŝenie przestrzenne momenty wyŝszych rzędów promienie max-min centryczność

Bardziej szczegółowo

Temat ćwiczenia: Wyznaczenie elementów orientacji zewnętrznej pojedynczego zdjęcia lotniczego

Temat ćwiczenia: Wyznaczenie elementów orientacji zewnętrznej pojedynczego zdjęcia lotniczego Uniwersytet Rolniczy w Krakowie Wydział InŜynierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Temat ćwiczenia: Wyznaczenie elementów orientacji zewnętrznej pojedynczego zdjęcia lotniczego

Bardziej szczegółowo

ROBOTYKA. Odwrotne zadanie kinematyki - projekt. http://www.mbmaster.pl

ROBOTYKA. Odwrotne zadanie kinematyki - projekt. http://www.mbmaster.pl ROBOTYKA Odwrotne zadanie kinematyki - projekt Zawartość. Wstęp...... Proste zadanie kinematyki cel...... Odwrotne zadanie kinematyki cel..... Analiza statyczna robota..... Proste zadanie kinematyki....

Bardziej szczegółowo

Laboratorium z Napęd Robotów

Laboratorium z Napęd Robotów POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT MASZYN, NAPĘDÓW I POMIARÓW ELEKTRYCZNYCH Laboratorium z Napęd Robotów Robot precyzyjny typu SCARA Prowadzący: mgr inŝ. Waldemar Kanior Sala 101, budynek

Bardziej szczegółowo

Laboratorium Napędu Robotów

Laboratorium Napędu Robotów POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT MASZYN, NAPĘDÓW I POMIARÓW ELEKTRYCZNYCH Laboratorium Napędu Robotów Wieloosiowy liniowy napęd pozycjonujący robot ramieniowy RV-2AJ CEL ĆWICZENIA Celem

Bardziej szczegółowo

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Podstawy Automatyki laboratorium

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Podstawy Automatyki laboratorium Cel ćwiczenia: Celem ćwiczenia jest uzyskanie wykresów charakterystyk skokowych członów róŝniczkujących mechanicznych i hydraulicznych oraz wyznaczenie w sposób teoretyczny i graficzny ich stałych czasowych.

Bardziej szczegółowo

KONTROLING I MONITOROWANIE ZLECEŃ PRODUKCYJNYCH W HYBRYDOWYM SYSTEMIE PLANOWANIA PRODUKCJI

KONTROLING I MONITOROWANIE ZLECEŃ PRODUKCYJNYCH W HYBRYDOWYM SYSTEMIE PLANOWANIA PRODUKCJI KONTROLING I MONITOROWANIE ZLECEŃ PRODUKCYJNYCH W HYBRYDOWYM SYSTEMIE PLANOWANIA PRODUKCJI Adam KONOPA, Jacek CZAJKA, Mariusz CHOLEWA Streszczenie: W referacie przedstawiono wynik prac zrealizowanych w

Bardziej szczegółowo

Kinematyka robotów mobilnych

Kinematyka robotów mobilnych Kinematyka robotów mobilnych Maciej Patan Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Adaptacja slajdów do wykładu Autonomous mobile robots R. Siegwart (ETH Zurich Master Course:

Bardziej szczegółowo

ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA

ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA Inżynieria Rolnicza 7(105)/2008 ANALIZA OBCIĄŻEŃ JEDNOSTEK NAPĘDOWYCH DLA PRZESTRZENNYCH RUCHÓW AGROROBOTA Katedra Podstaw Techniki, Uniwersytet Przyrodniczy w Lublinie Streszczenie. W pracy przedstawiono

Bardziej szczegółowo

Rok akademicki: 2015/2016 Kod: RME s Punkty ECTS: 12. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2015/2016 Kod: RME s Punkty ECTS: 12. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Roboty przemysłowe Rok akademicki: 2015/2016 Kod: RME-1-504-s Punkty ECTS: 12 Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Mechatronika Specjalność: Poziom studiów: Studia I stopnia

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40-006 Katowice tel. 0323591627, e-mail: ewa.malicka@us.edu.pl opracowanie: dr Ewa Malicka Laboratorium z Krystalografii

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY PIERWSZEJ POZIOM ROZSZERZONY. I. Liczby (31 godz.) ( b ) 2

PLAN WYNIKOWY DLA KLASY PIERWSZEJ POZIOM ROZSZERZONY. I. Liczby (31 godz.) ( b ) 2 PLAN WYNIKOWY DLA KLASY PIERWSZEJ POZIOM ROZSZERZONY TEMAT ZAJĘĆ EDUKACYJNYCH Zapis dziesiętny liczby rzeczywistej Wzory skróconego mnoŝenia Nierówności pierwszego stopnia Przedziały liczbowe Działania

Bardziej szczegółowo

Laboratorium Podstaw Robotyki ĆWICZENIE 3

Laboratorium Podstaw Robotyki ĆWICZENIE 3 Laboratorium Podstaw Robotyki Politechnika Poznańska Katedra Sterowania i Inżynierii Systemów ĆWICZENIE 3 Kinematyka i lokalizacja dwukołowego robota mobilnego Celem ćwiczenia jest wyprowadzenie modelu

Bardziej szczegółowo

LABORATORIUM 7: Problem komiwojażera (TSP) cz. 2

LABORATORIUM 7: Problem komiwojażera (TSP) cz. 2 Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl OBLICZENIA EWOLUCYJNE LABORATORIUM 7: Problem komiwojażera (TSP) cz. 2 opracował:

Bardziej szczegółowo

Automatyzacja. Ćwiczenie 9. Transformata Laplace a sygnałów w układach automatycznej regulacji

Automatyzacja. Ćwiczenie 9. Transformata Laplace a sygnałów w układach automatycznej regulacji Automatyzacja Ćwiczenie 9 Transformata Laplace a sygnałów w układach automatycznej regulacji Rodzaje elementów w układach automatyki Blok: prostokąt ze strzałkami reprezentującymi jego sygnał wejściowy

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PROGRAMOWANIE ROBOTÓW Programming of robots Kierunek: MECHATRONIKA Rodzaj przedmiotu: obowiązkowy na specjalności: SYSTEMY STEROWANIA, Rodzaj zajęć: wykład, laboratorium Forma studiów:

Bardziej szczegółowo

WYZNACZANIE BRYŁY FOTOMETRYCZNEJ LAMP I OPRAW OŚWIETLENIOWYCH

WYZNACZANIE BRYŁY FOTOMETRYCZNEJ LAMP I OPRAW OŚWIETLENIOWYCH 6-965 Poznań tel. (-61) 6652688 fax (-61) 6652389 STUDIA NIESTACJONARNE II STOPNIA wersja z dnia 2.11.212 KIERUNEK ELEKTROTECHNIKA SEM 3. Laboratorium TECHNIKI ŚWIETLNEJ TEMAT: WYZNACZANIE BRYŁY FOTOMETRYCZNEJ

Bardziej szczegółowo

Ćwiczenie nr 5 Zautomatyzowane tworzenie dokumentacji

Ćwiczenie nr 5 Zautomatyzowane tworzenie dokumentacji Ćwiczenie nr 5 Zautomatyzowane tworzenie dokumentacji technicznej Od wersji 2013 programu AutoCAD istnieje możliwość wykonywania pełnej dokumentacji technicznej dla obiektów 3D tj. wykonywanie rzutu bazowego

Bardziej szczegółowo

Dla naszego obiektu ciągłego: przy czasie próbkowania T p =2.

Dla naszego obiektu ciągłego: przy czasie próbkowania T p =2. 1. Celem zadania drugiego jest przeprowadzenie badań symulacyjnych układu regulacji obiektu G(s), z którym zapoznaliśmy się w zadaniu pierwszym, i regulatorem cyfrowym PID, którego parametry zostaną wyznaczone

Bardziej szczegółowo

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi) Kinematyka Mechanika ogólna Wykład nr 7 Elementy kinematyki Dział mechaniki zajmujący się matematycznym opisem układów mechanicznych oraz badaniem geometrycznych właściwości ich ruchu, bez wnikania w związek

Bardziej szczegółowo

Geometria. Hiperbola

Geometria. Hiperbola Geometria. Hiperbola Definicja 1 Dano dwa punkty na płaszczyźnie: F 1 i F 2 oraz taką liczbę d, że F 1 F 2 > d > 0. Zbiór punktów płaszczyzny będących rozwiązaniami równania: XF 1 XF 2 = ±d. nazywamy hiperbolą.

Bardziej szczegółowo

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium Programowanie obrabiarek CNC. Nr 2

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium Programowanie obrabiarek CNC. Nr 2 1 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Programowanie obrabiarek CNC Nr 2 Obróbka z wykorzystaniem kompensacji promienia narzędzia Opracował: Dr inŝ. Wojciech Ptaszyński

Bardziej szczegółowo

Kinematyka manipulatora równoległego typu DELTA 106 Kinematyka manipulatora równoległego hexapod 110 Kinematyka robotów mobilnych 113

Kinematyka manipulatora równoległego typu DELTA 106 Kinematyka manipulatora równoległego hexapod 110 Kinematyka robotów mobilnych 113 Spis treści Wstęp 11 1. Rozwój robotyki 15 Rys historyczny rozwoju robotyki 15 Dane statystyczne ilustrujące rozwój robotyki przemysłowej 18 Czynniki stymulujące rozwój robotyki 23 Zakres i problematyka

Bardziej szczegółowo

Modułowy programowalny przekaźnik czasowy firmy Aniro.

Modułowy programowalny przekaźnik czasowy firmy Aniro. Modułowy programowalny przekaźnik czasowy firmy Aniro. Rynek sterowników programowalnych Sterowniki programowalne PLC od wielu lat są podstawowymi systemami stosowanymi w praktyce przemysłowej i stały

Bardziej szczegółowo

PRZETWORNIKI CYFROWO - ANALOGOWE POMIARY, WŁAŚCIWOŚCI, ZASTOSOWANIA.

PRZETWORNIKI CYFROWO - ANALOGOWE POMIARY, WŁAŚCIWOŚCI, ZASTOSOWANIA. strona 1 PRZETWORNIKI CYFROWO - ANALOGOWE POMIARY, WŁAŚCIWOŚCI, ZASTOSOWANIA. Cel ćwiczenia Celem ćwiczenia jest przedstawienie istoty działania przetwornika C/A, źródeł błędów przetwarzania, sposobu definiowania

Bardziej szczegółowo

SYSTEM BIOMETRYCZNY IDENTYFIKUJĄCY OSOBY NA PODSTAWIE CECH OSOBNICZYCH TWARZY. Autorzy: M. Lewicka, K. Stańczyk

SYSTEM BIOMETRYCZNY IDENTYFIKUJĄCY OSOBY NA PODSTAWIE CECH OSOBNICZYCH TWARZY. Autorzy: M. Lewicka, K. Stańczyk SYSTEM BIOMETRYCZNY IDENTYFIKUJĄCY OSOBY NA PODSTAWIE CECH OSOBNICZYCH TWARZY Autorzy: M. Lewicka, K. Stańczyk Kraków 2008 Cel pracy projekt i implementacja systemu rozpoznawania twarzy, który na podstawie

Bardziej szczegółowo

DOBÓR ŚRODKÓW TRANSPORTOWYCH DLA GOSPODARSTWA PRZY POMOCY PROGRAMU AGREGAT - 2

DOBÓR ŚRODKÓW TRANSPORTOWYCH DLA GOSPODARSTWA PRZY POMOCY PROGRAMU AGREGAT - 2 InŜynieria Rolnicza 14/2005 Michał Cupiał, Maciej Kuboń Katedra InŜynierii Rolniczej i Informatyki Akademia Rolnicza im. Hugona Kołłątaja w Krakowie DOBÓR ŚRODKÓW TRANSPORTOWYCH DLA GOSPODARSTWA PRZY POMOCY

Bardziej szczegółowo

Konfiguracja sterowników Horner APG do pracy w trybie Modbus RTU Master

Konfiguracja sterowników Horner APG do pracy w trybie Modbus RTU Master INFORMATOR TECHNICZNY HORNER Informator techniczny nr 10 -- grudzień 2008 Konfiguracja sterowników Horner APG do pracy w trybie Modbus RTU Master Konfiguracja sterownika MASTER Konfiguracja sterowniki

Bardziej szczegółowo

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t 4. 1 3. " P r ze c ie k " w idm ow y 1 0 2 4.13. "PRZECIEK" WIDMOWY Rozważmy szereg czasowy {x r } dla r = 0, 1,..., N 1 uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem

Bardziej szczegółowo

INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki

INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki Opracowano na podstawie: INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki 1. Kaczorek T.: Teoria sterowania, PWN, Warszawa 1977. 2. Węgrzyn S.: Podstawy automatyki, PWN, Warszawa 1980 3.

Bardziej szczegółowo

Instrukcja uŝytkownika

Instrukcja uŝytkownika Instrukcja uŝytkownika Instalator systemu Rejestracji Czasu Pracy 20 listopada 2008 Wersja 1.0 Spis treści 1Wstęp... 3 2Serwer FireBird... 3 3Baza danych instalacja i rejestracja... 9 3.1Instalacja...

Bardziej szczegółowo

1. Pojęcia związane z dynamiką fazy dynamiczne sygnału

1. Pojęcia związane z dynamiką fazy dynamiczne sygnału Wprowadzenie Ćwiczenie obrazuje najważniejsze cechy cyfrowych systemów terowania dynamiką na przykładzie limitera stosowanego w profesjonalnych systemach audio, a szczególnie: Pokazuje jak w poprawny sposób

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy LUELSK PRÓ PRZED MTURĄ 08 poziom podstawowy Schemat oceniania Zadania zamknięte (Podajemy kartotekę zadań, która ułatwi Państwu przeprowadzenie jakościowej analizy wyników). Zadanie. (0 ). Liczby rzeczywiste.

Bardziej szczegółowo

Projektowanie systemów zrobotyzowanych

Projektowanie systemów zrobotyzowanych ZAKŁAD PROJEKTOWANIA TECHNOLOGII Laboratorium Projektowanie systemów zrobotyzowanych Instrukcja 2 Temat: Rozpoczęcie pracy z programem RobotStudio Opracował: mgr inż. Arkadiusz Pietrowiak mgr inż. Marcin

Bardziej szczegółowo

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie

Bardziej szczegółowo

Podstawy robotyki wykład V. Jakobian manipulatora. Osobliwości

Podstawy robotyki wykład V. Jakobian manipulatora. Osobliwości Podstawy robotyki Wykład V Jakobian manipulatora i osobliwości Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Metoda bezpośrednia uzyskania macierzy

Bardziej szczegółowo

1. Opis aplikacji. 2. Przeprowadzanie pomiarów. 3. Tworzenie sprawozdania

1. Opis aplikacji. 2. Przeprowadzanie pomiarów. 3. Tworzenie sprawozdania 1. Opis aplikacji Interfejs programu podzielony jest na dwie zakładki. Wszystkie ustawienia znajdują się w drugiej zakładce, są przygotowane do ćwiczenia i nie można ich zmieniac bez pozwolenia prowadzącego

Bardziej szczegółowo

WZMACNIACZ OPERACYJNY. Podstawowe właściwości wzmacniaczy operacyjnych. Rodzaj wzmacniacza Rezystancja wejściowa Rezystancja wyjściowa

WZMACNIACZ OPERACYJNY. Podstawowe właściwości wzmacniaczy operacyjnych. Rodzaj wzmacniacza Rezystancja wejściowa Rezystancja wyjściowa WZMACNIACZ OPEACYJNY kłady aktywne ze wzmacniaczami operacyjnymi... Podstawowe właściwości wzmacniaczy operacyjnych odzaj wzmacniacza ezystancja wejściowa ezystancja wyjściowa Bipolarny FET MOS-FET Idealny

Bardziej szczegółowo

KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium Mechaniki technicznej

KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI. Laboratorium Mechaniki technicznej KATEDRA AUTOMATYKI, BIOMECHANIKI I MECHATRONIKI Laboratorium Mechaniki technicznej Ćwiczenie 1 Badanie kinematyki czworoboku przegubowego metodą analitycznonumeryczną. 1 Cel ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga;

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Sieci Hopfielda Najprostsze modele sieci z rekurencją sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Modele bardziej złoŝone: RTRN (Real Time Recurrent Network), przetwarzająca sygnały w czasie

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych Napęd hydrauliczny

Instrukcja do ćwiczeń laboratoryjnych Napęd hydrauliczny Instrukcja do ćwiczeń laboratoryjnych Napęd hydrauliczny Sterowanie układem hydraulicznym z proporcjonalnym zaworem przelewowym Opracowanie: Z. Kudźma, P. Osiński, M. Stosiak 1 Proporcjonalne elementy

Bardziej szczegółowo

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola

Bardziej szczegółowo

ANALIZA HIERARCHICZNA PROBLEMU W SZACOWANIU RYZYKA PROJEKTU INFORMATYCZNEGO METODĄ PUNKTOWĄ. Joanna Bryndza

ANALIZA HIERARCHICZNA PROBLEMU W SZACOWANIU RYZYKA PROJEKTU INFORMATYCZNEGO METODĄ PUNKTOWĄ. Joanna Bryndza ANALIZA HIERARCHICZNA PROBLEMU W SZACOWANIU RYZYKA PROJEKTU INFORMATYCZNEGO METODĄ PUNKTOWĄ Joanna Bryndza Wprowadzenie Jednym z kluczowych problemów w szacowaniu poziomu ryzyka przedsięwzięcia informatycznego

Bardziej szczegółowo

Układ współrzędnych dwu trój Wykład 2 "Układ współrzędnych, system i układ odniesienia"

Układ współrzędnych dwu trój Wykład 2 Układ współrzędnych, system i układ odniesienia Układ współrzędnych Układ współrzędnych ustanawia uporządkowaną zależność (relację) między fizycznymi punktami w przestrzeni a liczbami rzeczywistymi, czyli współrzędnymi, Układy współrzędnych stosowane

Bardziej szczegółowo

Materiały pomocnicze do ćwiczeń laboratoryjnych

Materiały pomocnicze do ćwiczeń laboratoryjnych Materiały pomocnicze do ćwiczeń laboratoryjnych Badanie napędów elektrycznych z luzownikami w robocie Kawasaki FA006E wersja próbna Literatura uzupełniająca do ćwiczenia: 1. Cegielski P. Elementy programowania

Bardziej szczegółowo

AutoCAD Mechanical - Konstruowanie przekładni zębatych i pasowych. Radosław JABŁOŃSKI Wydział Mechaniczny Technologiczny Politechnika Śląska, Gliwice

AutoCAD Mechanical - Konstruowanie przekładni zębatych i pasowych. Radosław JABŁOŃSKI Wydział Mechaniczny Technologiczny Politechnika Śląska, Gliwice AutoCAD Mechanical - Konstruowanie przekładni zębatych i pasowych Radosław JABŁOŃSKI Wydział Mechaniczny Technologiczny Politechnika Śląska, Gliwice Streszczenie: W artykule opisano funkcje wspomagające

Bardziej szczegółowo

Tworzenie zespołu. Ustalenie aktualnego projektu. Laboratorium Technik Komputerowych I, Inventor, ćw. 4

Tworzenie zespołu. Ustalenie aktualnego projektu. Laboratorium Technik Komputerowych I, Inventor, ćw. 4 Tworzenie zespołu Wstawianie komponentów i tworzenie wiązań między nimi. Ustalenie aktualnego projektu Projekt, w Inventorze, to plik tekstowy z rozszerzeniem.ipj, definiujący foldery zawierające pliki

Bardziej szczegółowo

P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H

P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H W O J S K O W A A K A D E M I A T E C H N I C Z N A W Y D Z I A Ł E L E K T R O N I K I Drukować dwustronnie P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H Grupa... Data wykonania

Bardziej szczegółowo

WIECZOROWE STUDIA NIESTACJONARNE LABORATORIUM UKŁADÓW ELEKTRONICZNYCH

WIECZOROWE STUDIA NIESTACJONARNE LABORATORIUM UKŁADÓW ELEKTRONICZNYCH POLITECHNIKA WARSZAWSKA Instytut Radioelektroniki Zakład Radiokomunikacji WIECZOROWE STUDIA NIESTACJONARNE Semestr III LABORATORIUM UKŁADÓW ELEKTRONICZNYCH Ćwiczenie Temat: Badanie wzmacniacza operacyjnego

Bardziej szczegółowo

Algorytm kinematyki odwrotnej typu jakobianu pseudoodwrotnego dla manipulatorów mobilnych. Mariusz Janiak 1

Algorytm kinematyki odwrotnej typu jakobianu pseudoodwrotnego dla manipulatorów mobilnych. Mariusz Janiak 1 Na prawach rękopisu INSTYTUT INFORMATYKI AUTOMATYKI I ROBOTYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii??? nr??/26 Algorytm kinematyki odwrotnej typu jakobianu pseudoodwrotnego dla manipulatorów mobilnych.

Bardziej szczegółowo

METODYKA BADAŃ DOKŁADNOŚCI I POWTARZALNOŚCI ODWZOROWANIA TRAJEKTORII ROBOTA PRZEMYSŁOWEGO FANUC M-16iB

METODYKA BADAŃ DOKŁADNOŚCI I POWTARZALNOŚCI ODWZOROWANIA TRAJEKTORII ROBOTA PRZEMYSŁOWEGO FANUC M-16iB METODYKA BADAŃ DOKŁADNOŚCI I POWTARZALNOŚCI ODWZOROWANIA TRAJEKTORII ROBOTA PRZEMYSŁOWEGO FANUC M-16iB Marcin WIŚNIEWSKI Jan ŻUREK Olaf CISZAK Streszczenie W pracy omówiono szczegółowo metodykę pomiaru

Bardziej szczegółowo

Zasilacze: prostowniki, prostowniki sterowane, stabilizatory

Zasilacze: prostowniki, prostowniki sterowane, stabilizatory Zakład Napędów Wieloźródłowych Instytut Maszyn Roboczych CięŜkich PW Laboratorium Elektrotechniki i Elektroniki Ćwiczenie E1 - protokół Zasilacze: prostowniki, prostowniki sterowane, stabilizatory Data

Bardziej szczegółowo

Politechnika Poznańska Instytut Technologii Mechanicznej. Programowanie obrabiarek CNC. Nr 2. Obróbka z wykorzystaniem kompensacji promienia narzędzia

Politechnika Poznańska Instytut Technologii Mechanicznej. Programowanie obrabiarek CNC. Nr 2. Obróbka z wykorzystaniem kompensacji promienia narzędzia 1 Politechnika Poznańska Instytut Technologii Mechanicznej Programowanie obrabiarek CNC Nr 2 Obróbka z wykorzystaniem kompensacji promienia narzędzia Opracował: Dr inż. Wojciech Ptaszyński Poznań, 2015-03-05

Bardziej szczegółowo

R L. Badanie układu RLC COACH 07. Program: Coach 6 Projekt: CMA Coach Projects\ PTSN Coach 6\ Elektronika\RLC.cma Przykłady: RLC.cmr, RLC1.

R L. Badanie układu RLC COACH 07. Program: Coach 6 Projekt: CMA Coach Projects\ PTSN Coach 6\ Elektronika\RLC.cma Przykłady: RLC.cmr, RLC1. OAH 07 Badanie układu L Program: oach 6 Projekt: MA oach Projects\ PTSN oach 6\ Elektronika\L.cma Przykłady: L.cmr, L1.cmr, V L Model L, Model L, Model L3 A el ćwiczenia: I. Obserwacja zmian napięcia na

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,

Bardziej szczegółowo

KUKA Roboter CEE GmbH. Konfiguracja i połączenie układów bezpieczeństwa w gniazdach zrobotyzowanych na przykładzie robotów KUKA

KUKA Roboter CEE GmbH. Konfiguracja i połączenie układów bezpieczeństwa w gniazdach zrobotyzowanych na przykładzie robotów KUKA KUKA Roboter CEE GmbH Konfiguracja i połączenie układów bezpieczeństwa w gniazdach zrobotyzowanych na przykładzie robotów KUKA 2 Wyłącznik awaryjny 3 Ochrona operatora 4 Dodatkowe elementy zatrzymujące

Bardziej szczegółowo

Ćw. 18: Pomiary wielkości nieelektrycznych II

Ćw. 18: Pomiary wielkości nieelektrycznych II Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 18: Pomiary wielkości nieelektrycznych

Bardziej szczegółowo

OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA

OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA Wprowadzenie W robotyce przez pojęcie manipulacji rozumiemy przemieszczanie w przestrzeni przedmiotów i narzędzi za pomocą specjalnego mechanizmu. W związku z tym pojawia

Bardziej szczegółowo

ANALIZA BEZPIECZEŃSTWA SIL I HAZOP W ENERGETYCE NA WYBRANYCH PRZYKŁADACH

ANALIZA BEZPIECZEŃSTWA SIL I HAZOP W ENERGETYCE NA WYBRANYCH PRZYKŁADACH ANALIZA BEZPIECZEŃSTWA SIL I HAZOP W ENERGETYCE NA WYBRANYCH PRZYKŁADACH ZARYS PROBLEMÓW PRAKTYCZNYCH I SPOSOBÓW PODEJŚCIA Tadeusz Konieczniak Dyrektor ds. Rozwoju J.T.C. S.A. TECHNOLOGIA PROCESU Ogólne

Bardziej szczegółowo

Ćw. 12. Akwizycja sygnałów w komputerowych systemach pomiarowych ( NI DAQPad-6015 )

Ćw. 12. Akwizycja sygnałów w komputerowych systemach pomiarowych ( NI DAQPad-6015 ) Ćw. 12. Akwizycja sygnałów w komputerowych systemach pomiarowych ( NI DAQPad-6015 ) Problemy teoretyczne: Podstawy architektury kart kontrolno-pomiarowych na przykładzie modułu NI DAQPad-6015 Teoria próbkowania

Bardziej szczegółowo