Polaryzacyjne metody zmiany fazy w interferometrii dwuwiązkowej

Wielkość: px
Rozpocząć pokaz od strony:

Download "Polaryzacyjne metody zmiany fazy w interferometrii dwuwiązkowej"

Transkrypt

1 Polaryzacyjne metody zmiany fazy w interferometrii dwuwiązkowej Cel ćwiczenia: Celem ćwiczenia jest demonstracja i ilościowa analiza wybranych metod dyskretnej i ciągłej zmiany fazy w interferometrach dwuwiązkowych z wykorzystaniem optyki polaryzacyjnej. Tematyka ćwiczenia obejmuje interferometry z wiązką odniesienia i rozdwojeniem czoła fali. Podstawy teoretyczne: W interferometrii dwuwiązkowej, szczególnie na etapie analizy informacji zawartej w interferogramie, często pojawiającym się wymaganiem jest zapewnienie możliwości zmiany fazy między interferującymi wiązkami. Podyktowane jest ono, między innymi: 1. koniecznością wizualizacji pełnej informacji o badanym przedmiocie fazowym na etapie analizy jakościowej (obserwacji interferogramu), np. obejmującej wnioskowanie dotyczące znaku zmiany fazy w przedmiocie. 2. algorytmami automatycznej analizy interferogramu bazującymi na cyfrowym przetwarzaniu rozkładów intensywności kilku obrazów prążkowych wzajemnie przesuniętych w fazie. Najszerzej spotykane metody realizacji zmiany fazy w interferometrze to obrót płytki płaskorównoległej wokół osi prostopadłej do osi optycznej interferometru, przemieszczanie zwierciadła w kierunku prostopadłym do jego powierzchni, lub przesuw w płaszczyźnie klina lub dzielnika wiązki w postaci siatki dyfrakcyjnej. Istnieje również grupa metod zmiany fazy w interferometrze wykorzystująca do tego celu elementy polaryzacyjne. Wspólną cechą różnych rozwiązań jest zapewnienie na wyjściu interferometru koherentnej superpozycji wiązek o ortogonalnych stanach polaryzacji. Wiązki te tworzą obraz prążkowy za analizatorem. Dwa podstawowe rozwiązania to: 1. na wyjściu interferometru generowane są wzajemnie prostopadłe liniowe polaryzacje wiązek przedmiotowej i odniesienia. W układzie należy zapewnić kontrolowane przesunięcie fazowe między tymi składowymi modulacji polaryzacji wyjściowej (oczywiście poza przesunięciem fazy wprowadzanym przez badany przedmiot umieszczony w wiązce przedmiotowej), analizator pozostaje nieruchomy; 2. na wyjściu interferometru wiązki mają wzajemnie przeciwskrętne polaryzacje kołowe, obrót analizatora w jego płaszczyźnie wprowadza żądany przesuw prążków. W tym przypadku superpozycja ortogonalnych polaryzacji kołowych daje wynikową polaryzację liniową o ustalonym kierunku. Wprowadzenie przesunięcia fazowego przez badany obiekt prowadzi do zmiany kierunku (azymutu) tej polaryzacji liniowej. Należy podkreślić, że do detekcji wynikowego rozkładu polaryzacji liniowej (obiekt wprowadza zazwyczaj niejednorodne przestrzennie zaburzenie fazowe) konieczny jest analizator. Obserwowane za nim prążki nie są wynikiem klasycznej interferencji i może bardziej poprawnym byłoby nazywanie ich prążkami polaryzacyjnymi.

2 Należy wspomnieć, że można stosować superpozycję dowolnych ortogonalnych stanów polaryzacji, np. eliptycznych. W praktyce najczęściej stosuje się przeciwskrętne polaryzacje kołowe i prostopadłe liniowe, gdyż są one łatwe do wytworzenia i detekcji. Wyżej podane podejścia można stosować w dwuwiązkowych interferometrach: z wiązką odniesienia i rozdwojeniem czoła fali, w których spotyka się zarówno konwencjonalne jak i dwójłomne elementy światłodzielące i rekombinujące. Na rys. 1 pokazano dwa przykładowe rozwiązania polaryzacyjnych modulatorów fazy w interferometrze z wiązką odniesienia interferometrze Michelsona / Twymana-Greena. Przedstawione układy interferometrów różnią się lokalizacją przesuwnika fazy PS. Na rys. 1a przesuwnik fazy (PS1) znajduje się na wejściu interferometru i składa się z obrotowej półfalówki H i stacjonarnej ćwierćfalówki Q. Rys. 2b pokazuje rozwiązanie z przesuwnikiem fazy PS2 na wyjściu interferometru, składającym się z ćwierćfalówki Q 3 i obrotowego analizatora. Rys. 1 Schematy interferometrów typu Michelsona / Twymana-Greena z polaryzacyjnymi przesuwnikami fazy. LP liniowa polaryzacja wejściowa, H półfalówka, Q ćwierćfalówka, T powierzchnia badana, R powierzchnia zwierciadła odniesienia, PBS polaryzacyjny dzielnik wiązki, PL - polaryzator liniowy. Rozkład intensywności w interferogramie można przedstawić ogólnym wzorem I(x,y) = a(x,y) 2 + b(x,y) 2 + 2a(x,y)b(x,y) sin[φ(x,y) + α], gdzie a(x,y) i b(x,y) oznaczają amplitudy interferujących wiązek, Φ(x,y) oznacza mierzony rozkład fazy, a α oznacza kontrolowane przesunięcie fazy wprowadzane przez obrotowy element polaryzacyjny. Wartość α jest równa α = nθ, gdzie θ oznacza azymut elementu obrotowego, n jest liczbą całkowitą zależną od typu zastosowanego przesuwnika fazy równą 4 dla PS1 i 2 dla PS2. Należy zwrócić uwagę, że błędy wykonania płytek opóźniających H (λ/2) i Q (λ/4) oraz ustawienia kątowego (azymutu) tych elementów wpływają na dokładność zadawanego przesunięcia fazowego. Przesuwnik (modulator) fazy PS1 Liniowo spolaryzowana wiązka przechodzi przez obrotową półfalówkę H i ćwierćfalówkę Q o azymucie osi szybkiej równym W ten sposób generowana jest

3 polaryzacja eliptyczna o zmiennej eliptyczności, położenie osi elipsy pozostaje niezmienne. Jedna z osi jest równoległa do szybkiej osi ćwierćfalówki, jej azymut wynosi Ten stan polaryzacji eliptycznej można rozłożyć na dwie składowe prostopadłe o równych amplitudach (leżące w płaszczyźnie padania i prostopadłej do niej), między którymi realizuje się zmienne przesunięcie fazowe. Transformację stanu polaryzacji na wejściu interferometru można również interpretować jak następuje: Polaryzację liniową, o zmiennym azymucie generowanym przez półfalówkę H, można przedstawić jako wynik superpozycji dwóch przeciwskrętnych polaryzacji kołowych. Po przejściu przez ćwierćfalówkę Q tworzone są dwie ortogonalne polaryzacje liniowe. W funkcji azymutu półfalówki H zmienia się faza między tymi składowymi. Składowa prostopadła jest odbijana w dzielniku polaryzacyjnym PBS, po przejściu przez Q 1 otrzymywany jest stan polaryzacji kołowej, która zmienia swą skrętność po odbiciu od powierzchni badanej. Po powtórnym przejściu przez Q 1 wiązka przedmiotowa ma polaryzację liniową, Wektor elektryczny drga w płaszczyźnie padania, a więc wiązka przedmiotowa jets przepuszczana przez PBS. Natomiast pozioma składowa wejściowej polaryzacji eliptycznej przechodzi przez PBS, następnie przez Q 2, odbija się od zwierciadła odniesienia R i po powtórnym przejściu przez Q 2 otrzymuje się polaryzację liniową o kierunku prostopadłym do płaszczyzny padania. Ta jest odbijana przez powierzchnię światłodzielącą PBS. Ortogonalne polaryzacje liniowe na wyjściu interferometru są sprowadzane do wspólnej płaszczyzny przez analizator PL. Przesuwnik (modulator) fazy PS2 Za pomocą półfalówki H do pryzmatu PBS wprowadzane są dwie ortogonalne składowe liniowe o równych amplitudach. Po przejściu wiązek przez gałęzie interferometru na wyjściu PBS otrzymuje się ponownie prostopadłe polaryzacje liniowe, które zamieniane są przez ćwierćfalówkę Q 3 na przeciwskrętne polaryzacje kołowe. Q 3, łącznie z obrotowym analizatorem PL, tworzą przesuwnik fazy. Jeśli obydwie wiązki na wejściu i wyjściu interferometru są całkowicie spolaryzowane, transformację stanów polaryzacji wiązek w interferometrze i jego modulację na wyjściu można opisać za pomocą macierzy Jonesa. W interferometrach z wydzieloną wiązką odniesienia biegnącą inną drogą niż wiązka przedmiotowa - taki właśnie przykład interferometru pokazano na rys. 1 - polaryzacyjne modulatory fazy, wymagające jednorodności rozkładu parametrów polaryzacyjnych polaryzatorów i płytek opóźniających w przekroju poprzecznym wiązki, nie wykazują wyraźnej przewagi nad klasycznymi przesuwnikami fazy typu obrotowa płytka płaskorównoległa czy poprzecznie przemieszczany klin optyczny. Natomiast w interferometrach typu wspólnej drogi polaryzacyjne modulatory fazy są nie do zastąpienia. W układach tego typu, zarówno z wiązką odniesienia jak i z rozdwojeniem czoła fali, obydwie wiązki biegną po tych samych (lub prawie tych samych) drogach. Nie jest więc możliwe osobne oddziaływanie konwencjonalnym przesuwnikiem fazy (płytka płaskorównoległa, klin, zwierciadło umieszczone na przesuwniku piezoelektrycznym) na tylko jedną z wiązek. Fakt ten zilustrujemy na przykładzie dwóch schematów interferometrów z rozdwojeniem czoła fali.

4 Na rys. 2 pokazano schemat układu do badania zwierciadeł wklęsłych, np. asferycznych, ze skolimowaną wiązką na wejściu cyklicznego interferometru wspólnej drogi z radialnym rozdwojeniem czoła fali (rozdwojenie radialne ma przewagę nad rozdwojeniem poprzecznym, gdyż otrzymywany wynik jest bliski aktualnemu kształtowi badanego czoła falowego). Na rys. 2 przedstawiono przypadek umieszczenia przesuwnika fazy na wejściu interferometru, ale ten sam układ pracuje również z przesuwnikiem fazy na wyjściu interferometru. Afokalny układ rozdwajający składa się z dwóch obiektywów L 1 i L 2. Wielkość rozdwojenia jest proporcjonalna do stosunku ogniskowych obiektywów i może być zmieniana przez dobór ogniskowych. Rozdwojenie poprzeczne w tym interferometrze uzyskuje się przez wprowadzenie płytki płaskorównoległej w miejsce układu afokalnego. Rys. 2 Interferometr z radialnym rozdwojeniem czoła fali na bazie trójkątnego interferometru Sagnaca ze skolimowaną wiązką wejściową. T powierzchnia badana, PS polaryzacyjny przesuwnik fazy, BS element światłodzielący, PBS polaryzacyjny element światłodzielący, L 1 i L 2 obiektywy układu rozdwajającego, M 1 i M 2 zwierciadła. Warto tutaj nadmienić, że elementy składowe przesuwnika fazy PS oraz pryzmat PBS nie muszę być elementami o dużych gabarytach. Schemat polaryzacyjnego interferometru z poprzecznym rozdwojeniem czoła fali pokazuje rys. 3. Rys. 3 Interferometr polaryzacyjny z obrotowym analizatorem na wyjściu interferometru. Azymut polaryzacji liniowej P zapewnia równość amplitud replik badanego czoła falowego za rozdwajającym pryzmatem dwójłomnym B.

5 Czoło falowe zaburzone przez badany obiekt fazowy jest rozdwajane przez pryzmat dwójłomny (np. pryzmat Wollastona). Interferencja wiązek tworzonych przez pryzmat jest możliwa dzięki liniowej polaryzacji wiązki na wejściu układu i zastosowaniu analizatora na jego wyjściu. Superpozycja dwóch liniowo spolaryzowanych wiązek za pryzmatem prowadzi, w przypadku ogólnym, do polaryzacji eliptycznej (w tym można wyróżnić dwa przypadki ogólne: polaryzacji liniowej dla różnicy fazy równej 0 i π oraz polaryzacji kołowej dla różnicy fazy +/- π i równych amplitud wiązek). Wprowadzenie ćwierćfalówki λ/4 prowadzi do konwersji polaryzacji eliptycznej na polaryzację liniową, jeśli osie ćwierćfalówki pokrywają się z osiami polaryzacji eliptycznej (można udowodnić, że składowe polaryzacji eliptycznej rozłożone na kierunek równoległy i prostopadły do osi elipsy są wzajemnie przesunięte w fazie o π/2). Działanie tego układu można również interpretować w inny sposób: dwie ortogonalne polaryzacje liniowe opuszczające pryzmat dwójłomny, po przejściu przez płytkę falową λ/4 o szybkiej osi pokrywającej się z przekątną kąta prostego wyznaczanego przez kierunki składowych polaryzacji linowych, przekształcają się w ortogonalne polaryzacje kołowe. Dwie przeciwskrętne polaryzacje kołowe tworzą polaryzacje liniową. Obrót linowego analizatora za płytką λ/4 powoduje przesuw prążków na wyjściu układu. Widok stanowiska

6 Wyposażenie Według schematów interferometrów polaryzacyjnych pokazanych na rys Realizacja ćwiczenia Zbudować laboratoryjne układy interferometrów według rysunków 2 i 3. Otrzymać i przeanalizować rozkłady fazy wprowadzane przez przedmioty wskazane przez prowadzącego laboratorium metodą dyskretnej zmiany fazy (DZF) - oprogramowanie Fringe Application.

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 02/08. PIOTR KURZYNOWSKI, Wrocław, PL JAN MASAJADA, Nadolice Wielkie, PL

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 02/08. PIOTR KURZYNOWSKI, Wrocław, PL JAN MASAJADA, Nadolice Wielkie, PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 211200 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 380223 (22) Data zgłoszenia: 17.07.2006 (51) Int.Cl. G01N 21/23 (2006.01)

Bardziej szczegółowo

Polaryzatory/analizatory

Polaryzatory/analizatory Polaryzatory/analizatory Polaryzator eliptyczny element układu optycznego lub układ optyczny, za którym światło jest spolaryzowane eliptycznie i o parametrach ściśle określonych przez polaryzator zazwyczaj

Bardziej szczegółowo

BADANIE INTERFEROMETRU YOUNGA

BADANIE INTERFEROMETRU YOUNGA Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości

Bardziej szczegółowo

INTERFEROMETR WSPÓLNEJ DROGI Z WIĄZKA ODNIESIENIA Z ZASTOSOWANIEM ŚWIATŁODZIELĄCEJ PŁYTKI ROZPRASZAJĄCEJ

INTERFEROMETR WSPÓLNEJ DROGI Z WIĄZKA ODNIESIENIA Z ZASTOSOWANIEM ŚWIATŁODZIELĄCEJ PŁYTKI ROZPRASZAJĄCEJ INTERFEROMETR WSPÓLNEJ DROGI Z WIĄZKA ODNIESIENIA Z ZASTOSOWANIEM ŚWIATŁODZIELĄCEJ PŁYTKI ROZPRASZAJĄCEJ Cel ćwiczenia Celem ćwiczenia jest poznanie interferometru wspólnej drogi wykorzystującego podwójną

Bardziej szczegółowo

n 02 + n 02 ) / (n e2 polaryzator oś optyczna polaryskop polaryzator Rys. 28 Bieg promieni w polaryskopie Savarta.

n 02 + n 02 ) / (n e2 polaryzator oś optyczna polaryskop polaryzator Rys. 28 Bieg promieni w polaryskopie Savarta. Interferometria polaryzacyjna Po zapoznaniu się ze zjawiskiem podwójnego załamania w płytce z materiału anizotropowego moŝemy powrócić do części wykładu dotyczącej interferometrii, w szczególności interferometrii

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 5 Temat: Interferometr Michelsona 7.. Cel i zakres ćwiczenia 7 INTERFEROMETR MICHELSONA Celem ćwiczenia jest zapoznanie się z budową i

Bardziej szczegółowo

BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA

BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA Celem ćwiczenia jest: 1. demonstracja dużej liczby prążków w interferometrze Lloyda z oświetleniem monochromatycznym,

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 9, 08.2.207 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 8 - przypomnienie

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 19, 27.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 18 - przypomnienie

Bardziej szczegółowo

INTERFERENCJA WIELOPROMIENIOWA

INTERFERENCJA WIELOPROMIENIOWA INTERFERENCJA WIELOPROMIENIOWA prof. dr hab. inż. Krzysztof Patorski W tej części wykładu rozważymy przypadek koherentnej superpozycji większej liczby wiązek niż dwie. Najważniejszym interferometrem wielowiązkowym

Bardziej szczegółowo

GWIEZDNE INTERFEROMETRY MICHELSONA I ANDERSONA

GWIEZDNE INTERFEROMETRY MICHELSONA I ANDERSONA GWIEZNE INTERFEROMETRY MICHELSONA I ANERSONA Cel ćwiczenia Celem ćwiczenia jest zestawienie i demonstracja modelu gwiezdnego interferometru Andersona oraz laboratoryjny pomiar wymiaru sztucznej gwiazdy.

Bardziej szczegółowo

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów

Bardziej szczegółowo

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA ZDNIE 11 BDNIE INTERFERENCJI MIKROFL PRZY UŻYCIU INTERFEROMETRU MICHELSON 1. UKŁD DOŚWIDCZLNY nadajnik mikrofal odbiornik mikrofal 2 reflektory płytka półprzepuszczalna prowadnice do ustawienia reflektorów

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 8 Polarymetria

Metody Optyczne w Technice. Wykład 8 Polarymetria Metody Optyczne w Technice Wykład 8 Polarymetria Fala elektromagnetyczna div D div B 0 D E rot rot E H B t D t J B J H E Fala elektromagnetyczna 2 2 E H 2 t 2 E 2 t H 2 v n 1 0 0 c n 0 Fala elektromagnetyczna

Bardziej szczegółowo

Pomiar różnicy dróg optycznych metodą Senarmonta

Pomiar różnicy dróg optycznych metodą Senarmonta Ćwiczenie 7 Pomiar różnicy dróg optycznych metodą Senarmonta Pojęcia podstawowe: Fale własne (wektory własne) ośrodka dwójłomnego; różnica dróg optycznych (różnica faz); kompensatory pośrednie i bezpośrednie;

Bardziej szczegółowo

Badania elementów i zespołów maszyn laboratorium (MMM4035L)

Badania elementów i zespołów maszyn laboratorium (MMM4035L) Badania elementów i zespołów maszyn laboratorium (MMM4035L) Ćwiczenie 23. Zastosowanie elektronicznej interferometrii obrazów plamkowych (ESPI) do badania elementów maszyn. Opracowanie: Ewelina Świątek-Najwer

Bardziej szczegółowo

Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki

Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki LASEROWY POMIAR ODLEGŁOŚCI INTERFEROMETREM MICHELSONA Instrukcja wykonawcza do ćwiczenia laboratoryjnego ćwiczenie

Bardziej szczegółowo

Pomiar drogi koherencji wybranych źródeł światła

Pomiar drogi koherencji wybranych źródeł światła Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego

Bardziej szczegółowo

INTERFEROMETRY DWUWIĄZKOWE prof. dr hab. inż. Krzysztof Patorski

INTERFEROMETRY DWUWIĄZKOWE prof. dr hab. inż. Krzysztof Patorski INTERFEROMETRY DWUWIĄZKOWE prof. dr hab. inż. Krzysztof Patorski Interferometr jest układem optycznym służącym do obserwacji i ilościowej analizy interferencji między dwiema lub większą liczbą wzajemnie

Bardziej szczegółowo

Optyka Ośrodków Anizotropowych. Wykład wstępny

Optyka Ośrodków Anizotropowych. Wykład wstępny Optyka Ośrodków Anizotropowych Wykład wstępny Cel kursu Zapoznanie z podstawami fizycznymi w optyce polaryzacyjnej. Jak zachowuje się fala elektromagnetyczna w ośrodku materialnym? Omówienie zastosowania

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać

Bardziej szczegółowo

+ (z 2 / n e2. (x 2 + y 2 ) / n 02

+ (z 2 / n e2. (x 2 + y 2 ) / n 02 Rys. 4 pokazuje indykatrysy dla kryształu jednoosiowego: dodatniego i ujemnego. Długości półosi są proporcjonalne do wartości współczynników załamania kryształu. Każdy przekrój przechodzący przez oś optyczną

Bardziej szczegółowo

Laboratorium Optyki Falowej

Laboratorium Optyki Falowej Marzec 2019 Laboratorium Optyki Falowej Instrukcja do ćwiczenia pt: Filtracja optyczna Opracował: dr hab. Jan Masajada Tematyka (Zagadnienia, które należy znać przed wykonaniem ćwiczenia): 1. Obraz fourierowski

Bardziej szczegółowo

Wykład FIZYKA II 8. Optyka falowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ Nakładanie się fal nazywamy ogólnie superpozycją. Nakładanie

Bardziej szczegółowo

Laboratorium Informatyki Optycznej ĆWICZENIE 3. Dwuekspozycyjny hologram Fresnela

Laboratorium Informatyki Optycznej ĆWICZENIE 3. Dwuekspozycyjny hologram Fresnela ĆWICZENIE 3 Dwuekspozycyjny hologram Fresnela 1. Wprowadzenie Holografia umożliwia zapis pełnej informacji o obiekcie, zarówno amplitudowej, jak i fazowej. Dzięki temu można m.in. odtwarzać trójwymiarowe

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa Metody Optyczne w Technice Wykład 5 nterferometria laserowa Promieniowanie laserowe Wiązka monochromatyczna Duża koherencja przestrzenna i czasowa Niewielka rozbieżność wiązki Duża moc Największa możliwa

Bardziej szczegółowo

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

Wykład FIZYKA II. 8. Optyka falowa

Wykład FIZYKA II. 8. Optyka falowa Wykład FIZYKA II 8. Optyka falowa Dr hab. inż. Władysław Artur Woźniak Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka.html

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Cel ćwiczenia: Celem ćwiczenia jest pomiar kąta skręcenia płaszczyzny polaryzacji

Bardziej szczegółowo

POLARYZACJA ŚWIATŁA. Uporządkowanie kierunku drgań pola elektrycznego E w poprzecznej fali elektromagnetycznej (E B). światło niespolaryzowane

POLARYZACJA ŚWIATŁA. Uporządkowanie kierunku drgań pola elektrycznego E w poprzecznej fali elektromagnetycznej (E B). światło niespolaryzowane FALE ELEKTROMAGNETYCZNE Polaryzacja światła Sposoby polaryzacji Dwójłomność Skręcanie płaszczyzny polaryzacji Zastosowania praktyczne polaryzacji Efekty fotoelastyczne Stereoskopia Holografia Politechnika

Bardziej szczegółowo

40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI

40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI ZADANIE DOŚWIADCZALNE 2 DWÓJŁOMNOŚĆ MIKI W tym doświadczeniu zmierzysz dwójłomność miki (kryształu szeroko używanego w optycznych elementach polaryzujących). WYPOSAŻENIE Oprócz elementów 1), 2) i 3) powinieneś

Bardziej szczegółowo

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.

Bardziej szczegółowo

PRZEKSZTAŁCANIE WIĄZKI LASEROWEJ PRZEZ UKŁADY OPTYCZNE

PRZEKSZTAŁCANIE WIĄZKI LASEROWEJ PRZEZ UKŁADY OPTYCZNE Podstawy Inżynierii Fotonicznej - Laboratorium Ćwiczenie 5 PRZEKSZTAŁCANIE WIĄZKI LASEROWEJ PRZEZ UKŁADY OPTYCZNE 5.1 Cel ćwiczenia Zapoznanie się z zależnościami opisującymi kształt wiązki laserowej (mod

Bardziej szczegółowo

MODULATOR CIEKŁOKRYSTALICZNY

MODULATOR CIEKŁOKRYSTALICZNY ĆWICZENIE 106 MODULATOR CIEKŁOKRYSTALICZNY 1. Układ pomiarowy 1.1. Zidentyfikuj wszystkie elementy potrzebne do ćwiczenia: modulator SLM, dwa polaryzatory w oprawie (P, A), soczewka S, szary filtr F, kamera

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.2.

Wykład 17: Optyka falowa cz.2. Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie

Bardziej szczegółowo

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła

Wyznaczanie współczynnika załamania światła Ćwiczenie O2 Wyznaczanie współczynnika załamania światła O2.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika załamania światła dla przeźroczystych, płaskorównoległych płytek wykonanych z

Bardziej szczegółowo

POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak

POMIARY OPTYCZNE 1. Wykład 1.  Dr hab. inż. Władysław Artur Woźniak POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło

Bardziej szczegółowo

Pomiar właściwości ośrodka dwójłomnego poprzez wyznaczenie elementów macierzy Müllera-Ścierskiego

Pomiar właściwości ośrodka dwójłomnego poprzez wyznaczenie elementów macierzy Müllera-Ścierskiego Instrukcja robocza do ćwiczenia 8 Pomiar właściwości ośrodka dwójłomnego poprzez wyznaczenie elementów macierzy Müllera-Ścierskiego I. Układ pomiarowy Układ pomiarowy, znany już z ćwiczenia 4, składa się

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.

Bardziej szczegółowo

DWUPASMOWY DZIELNIK WIĄZKI PROMIENIOWANIA OPTYCZNEGO

DWUPASMOWY DZIELNIK WIĄZKI PROMIENIOWANIA OPTYCZNEGO Janusz KUBRAK DWUPASMOWY DZIELNIK WIĄZKI PROMIENIOWANIA OPTYCZNEGO STRESZCZENIE Zaprojektowano i przeprowadzono analizę działania interferencyjnej powłoki typu beamsplitter umożliwiającej pracę dzielnika

Bardziej szczegółowo

RZECZPOSPOLITAPOLSKA(12) OPIS PATENTOWY (19) PL (11) (13)B1 PL B1. Fig.1. (51) Int.Cl.6: G01N 21/23 G01J 4/04

RZECZPOSPOLITAPOLSKA(12) OPIS PATENTOWY (19) PL (11) (13)B1 PL B1. Fig.1. (51) Int.Cl.6: G01N 21/23 G01J 4/04 RZECZPOSPOLITAPOLSKA(12) OPIS PATENTOWY (19) PL (11) 174585 PO LSK A (13)B1 U rząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 304405 (22) Data zgłoszenia: 22.07.1994 (51) Int.Cl.6: G01N

Bardziej szczegółowo

Metody Obliczeniowe Mikrooptyki i Fotoniki

Metody Obliczeniowe Mikrooptyki i Fotoniki Metody Obliczeniowe Mikrooptyki i Fotoniki Kod USOS: 1103-4Fot4 Wykład (30h): R. Kotyński Wtorki 9:15-11:00, s.1.38 lub B4.17(ul. Pasteura 5) Ćwiczenia (45h): Wtorki, w godz. 14.15-16.30, s.1.7 lub B4.17

Bardziej szczegółowo

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny

Bardziej szczegółowo

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Cel ćwiczenia: Zapoznanie się ze zjawiskiem Faradaya. Wyznaczenie stałej Verdeta dla danej próbki. Wyznaczenie wartości ładunku właściwego elektronu

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

ĆWICZENIA LABORATORYJNE Z KONSTRUKCJI METALOWCH. Ć w i c z e n i e H. Interferometria plamkowa w zastosowaniu do pomiaru przemieszczeń

ĆWICZENIA LABORATORYJNE Z KONSTRUKCJI METALOWCH. Ć w i c z e n i e H. Interferometria plamkowa w zastosowaniu do pomiaru przemieszczeń Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE WSEiZ W WARSZAWIE WYDZIAŁ.. LABORATORIUM FIZYCZNE Ćw. nr 8 BADANIE ŚWIATŁA SPOLARYZOWANEGO: SPRAWDZANIE PRAWA MALUSA Warszawa 29 1. Wstęp Wiemy, że fale świetlne stanowią niewielki wycinek widma fal elektromagnetycznych

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

Wykład 16: Optyka falowa

Wykład 16: Optyka falowa Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Zasada Huyghensa Christian Huygens 1678 r. pierwsza falowa

Bardziej szczegółowo

Światłowodowe elementy polaryzacyjne

Światłowodowe elementy polaryzacyjne Światłowodowe elementy polaryzacyjne elementy wykorzystujące własności przenoszenia polaryzacji w światłowodach jednorodnych i dwójłomnych polaryzatory izolatory optyczne depolaryzatory kompensatory i

Bardziej szczegółowo

między pierwszą a drugą falą własną wprowadzana przez obiekt, a często przedstawia się inaczej poprzez tzw. różnicę dróg R (2) (gdzie

między pierwszą a drugą falą własną wprowadzana przez obiekt, a często przedstawia się inaczej poprzez tzw. różnicę dróg R (2) (gdzie 1 Ćwiczenie 1 Rozróżnianie izoklin, izochrom i obszarów osobliwych w świetle białym i monochromatycznym. Ocena różnicy dróg optycznych za pomocą barw z użyciem płytek falowych. Oznaczanie azymutu fal własnych

Bardziej szczegółowo

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 5 Badanie zjawisk optycznych przy użyciu zestawu Laser Kit Cel ćwiczenia: Zapoznanie studentów ze zjawiskami optycznymi. Badane elementy: Zestaw ćwiczeniowy Laser

Bardziej szczegółowo

Rejestracja i rekonstrukcja fal optycznych. Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie.

Rejestracja i rekonstrukcja fal optycznych. Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie. HOLOGRAFIA prof dr hab inŝ Krzysztof Patorski Krzysztof Rejestracja i rekonstrukcja fal optycznych Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie a) Laser b) odniesienia

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Drgania i fale II rok Fizyk BC

Drgania i fale II rok Fizyk BC 00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem

Bardziej szczegółowo

Rys. 1 Geometria układu.

Rys. 1 Geometria układu. Ćwiczenie 9 Hologram Fresnela Wprowadzenie teoretyczne Holografia umożliwia zapis pełnej informacji o obiekcie optycznym, zarówno amplitudowej, jak i fazowej. Dzięki temu można m.in. odtwarzać trójwymiarowe

Bardziej szczegółowo

Wykład III. Interferencja fal świetlnych i zasada Huygensa-Fresnela

Wykład III. Interferencja fal świetlnych i zasada Huygensa-Fresnela Wykład III Interferencja fal świetlnych i zasada Huygensa-Fresnela Interferencja fal płaskich Na kliszy fotograficznej, leżącej na płaszczyźnie z=0 rejestrujemy interferencję dwóch fal płaskich, o tej

Bardziej szczegółowo

FACULTY OF ADVANCED TECHNOLOGIES AND CHEMISTRY. Wprowadzenie Podstawowe prawa Przetwarzanie sygnału obróbka optyczna obróbka elektroniczna

FACULTY OF ADVANCED TECHNOLOGIES AND CHEMISTRY. Wprowadzenie Podstawowe prawa Przetwarzanie sygnału obróbka optyczna obróbka elektroniczna Interferometry światłowodowe Wprowadzenie Podstawowe prawa Przetwarzanie sygnału obróbka optyczna obróbka elektroniczna Wprowadzenie Układy te stanowią nową klasę czujników, gdzie podstawowy mechanizm

Bardziej szczegółowo

WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA

WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA WŁASNOŚCI FAL ELEKTROMAGNETYCZNYCH: INTERFERENCJA, DYFRAKCJA, POLARYZACJA 1. Interferencja fal z dwóch źródeł 2. Fale koherentne i niekoherentne 3. Interferencja fal z wielu źródeł 4. Zasada Huygensa 5.

Bardziej szczegółowo

INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe.

INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe. INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe. MTiSP pomiary częstotliwości i przesunięcia fazowego MTiSP 003 Autor: dr inż. Piotr Wyciślok Strona 1 / 8 Cel Celem ćwiczenia jest wykorzystanie

Bardziej szczegółowo

Laboratorium techniki laserowej. Ćwiczenie 3. Pomiar drgao przy pomocy interferometru Michelsona

Laboratorium techniki laserowej. Ćwiczenie 3. Pomiar drgao przy pomocy interferometru Michelsona Laboratorium techniki laserowej Ćwiczenie 3. Pomiar drgao przy pomocy interferometru Michelsona Katedra Optoelektroniki i Systemów Elektronicznych, WET, Politechnika Gdaoska Gdańsk 006 1. Wstęp Celem ćwiczenia

Bardziej szczegółowo

Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13)

Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Celem ćwiczenia jest: obserwacja zjawiska skręcenia płaszczyzny polaryzacji światła w roztworach cukru, obserwacja zależności kąta skręcenia

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego.

Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Ćwiczenie 6 Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Interferometr Macha-Zehndera Interferometr Macha-Zehndera jest często wykorzystywany

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

Laboratorium Informatyki Optycznej ĆWICZENIE 5. Sprzęganie fazy

Laboratorium Informatyki Optycznej ĆWICZENIE 5. Sprzęganie fazy ĆWICZENIE 5 Sprzęganie fazy 1. Wprowadzenie Ćwiczenie polega na praktycznym wykorzystaniu zjawiska sprzęgania fazy. Efekt sprzężenia fazy realizowany będzie w sposób holograficzny. Podstawowym zadaniem

Bardziej szczegółowo

Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton

Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton Natura światła W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton W swojej pracy naukowej najpierw zajmował się optyką. Pierwsze sukcesy odniósł właśnie w optyce, konstruując

Bardziej szczegółowo

Fala EM w izotropowym ośrodku absorbującym

Fala EM w izotropowym ośrodku absorbującym Fala EM w izotropowym ośrodku absorbującym Fala EM powoduje generację zmienne pole elektryczne E Zmienne co do kierunku i natężenia, Pole E Nie wywołuje w ośrodku prądu elektrycznego Powoduje ruch elektronów

Bardziej szczegółowo

Laboratorium Informatyki Optycznej ĆWICZENIE 2. Koherentne korelatory optyczne i hologram Fouriera

Laboratorium Informatyki Optycznej ĆWICZENIE 2. Koherentne korelatory optyczne i hologram Fouriera ĆWICZENIE 2 Koherentne korelatory optyczne i hologram Fouriera 1. Wprowadzenie Historycznie jednym z ważniejszych zastosowań korelatorów optycznych było rozpoznawanie obrazów, pozwalały np. na analizę

Bardziej szczegółowo

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla wszystkich rodzajów fal, we wszystkich ośrodkach, w których

Bardziej szczegółowo

WYZNACZANIE PROMIENIA KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA

WYZNACZANIE PROMIENIA KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA Ćwiczenie 81 A. ubica WYZNACZANIE PROMIENIA RZYWIZNY SOCZEWI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA Cel ćwiczenia: poznanie prążków interferencyjnych równej grubości, wykorzystanie tego

Bardziej szczegółowo

Ćwiczenie 12/13. Komputerowy hologram Fouriera. Wprowadzenie teoretyczne

Ćwiczenie 12/13. Komputerowy hologram Fouriera. Wprowadzenie teoretyczne Ćwiczenie 12/13 Komputerowy hologram Fouriera. Wprowadzenie teoretyczne W klasycznej holografii w wyniku interferencji dwóch wiązek: wiązki światła zmodyfikowanej przez pewien przedmiot i spójnej z nią

Bardziej szczegółowo

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki

Bardziej szczegółowo

GŁÓWNE CECHY ŚWIATŁA LASEROWEGO

GŁÓWNE CECHY ŚWIATŁA LASEROWEGO GŁÓWNE CECHY ŚWIATŁA LASEROWEGO Światło może być rozumiane jako: Strumień fotonów o energii E Fala elektromagnetyczna. = hν i pędzie p h = = hν c Najprostszym przypadkiem fali elektromagnetycznej jest

Bardziej szczegółowo

WSTĘP DO OPTYKI FOURIEROWSKIEJ

WSTĘP DO OPTYKI FOURIEROWSKIEJ 1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne

Bardziej szczegółowo

CIENKIE WARSTWY prof. dr hab. inż. Krzysztof Patorski

CIENKIE WARSTWY prof. dr hab. inż. Krzysztof Patorski CIENKIE WARSTWY prof. dr hab. inż. Krzysztof Patorski Nakładając na pewne podłoże (np. powierzchnię soczewki) kilka warstw dielektrycznych (przez naparowanie / napylenie) o odpowiednio dobranych współczynnikach

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

III. Opis falowy. /~bezet

III. Opis falowy.  /~bezet Światłowody III. Opis falowy BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet Równanie falowe w próżni Teoria falowa Równanie Helmholtza Równanie bezdyspersyjne fali płaskiej, rozchodzącej

Bardziej szczegółowo

Synteza i analiza dowolnego stanu polaryzacji światła

Synteza i analiza dowolnego stanu polaryzacji światła 1 Ćwiczenie 3 Synteza i analiza dowolnego stanu polaryzacji światła Pojęcia podstawowe: Światło spolaryzowane; metody opisu stanu polaryzacji światła; parametry, opisujące stan polaryzacji: kąt azymutu,

Bardziej szczegółowo

UMO-2011/01/B/ST7/06234

UMO-2011/01/B/ST7/06234 Załącznik nr 9 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

Wykład 16: Optyka falowa

Wykład 16: Optyka falowa Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza

Bardziej szczegółowo

2. Propagacja światła w ośrodkach dwójłomnych

2. Propagacja światła w ośrodkach dwójłomnych 2. Propagacja światła w ośrodkach dwójłomnych Dotychczas rozwaŝano jednorodne, transmisyjne ośrodki optyczne, które moŝna scharakteryzować stałą dielektryczną ε (zaleŝną od długości fali), n = ε. Monochromatyczna

Bardziej szczegółowo

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa) 37. Straty na histerezę. Sens fizyczny. Energia dostarczona do cewki ferromagnetykiem jest znacznie większa od energii otrzymanej. Energia ta jest tworzona w ferromagnetyku opisanym pętlą histerezy, stąd

Bardziej szczegółowo

POMIARY OPTYCZNE 1. Wykład 5 Interferencyjne pomiary współczynnika załamania. Dr hab. inż. Władysław Artur Woźniak

POMIARY OPTYCZNE 1. Wykład 5 Interferencyjne pomiary współczynnika załamania. Dr hab. inż. Władysław Artur Woźniak POMIARY OPTYCZNE 1 Wykład 5 Interferencyjne pomiary współczynnika załamania. Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 18/11 bud. A-1 http://www.if.pwr.wroc.pl/~wozniak/

Bardziej szczegółowo

ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM

ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu jest model matematyczny procesu formowania obrazu przez pojedynczy układ optyczny w oświetleniu

Bardziej szczegółowo

PL B1. Aberracyjny czujnik optyczny odległości w procesach technologicznych oraz sposób pomiaru odległości w procesach technologicznych

PL B1. Aberracyjny czujnik optyczny odległości w procesach technologicznych oraz sposób pomiaru odległości w procesach technologicznych RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 229959 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 421970 (22) Data zgłoszenia: 21.06.2017 (51) Int.Cl. G01C 3/00 (2006.01)

Bardziej szczegółowo

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne ĆWICZENIE 4 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO Wprowadzenie teoretyczne Rys. Promień przechodzący przez pryzmat ulega dwukrotnemu załamaniu na jego powierzchniach bocznych i odchyleniu o kąt δ. Jeżeli

Bardziej szczegółowo

SPRAWDZANIE PRAWA MALUSA

SPRAWDZANIE PRAWA MALUSA Ćwiczenie O-0 SPRWDZNI PRW MLUS I. Cel ćwiczenia: wyznaczenie natężenia światła I przechodzącego przez układ dwóch polaryzatorów w funkcji kąta θ między płaszczyznami polaryzacji tych polaryzatorów: I

Bardziej szczegółowo

OPTYKA FALOWA - INTERFERENCJA INTERFEROMETRIA

OPTYKA FALOWA - INTERFERENCJA INTERFEROMETRIA OPTYKA FALOWA - INTERFERENCJA INTERFEROMETRIA Wprowadzenie prof. dr hab. inż. Krzysztof Patorski W przypadku nakładania się w przestrzeni dwóch lub większej liczby zaburzeń (wiązek) świetlnych obowiązuje

Bardziej szczegółowo

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące:

Rozważania rozpoczniemy od fal elektromagnetycznych w próżni. Dla próżni równania Maxwella w tzw. postaci różniczkowej są następujące: Rozważania rozpoczniemy od fal elektromagnetycznych w próżni Dla próżni równania Maxwella w tzw postaci różniczkowej są następujące:, gdzie E oznacza pole elektryczne, B indukcję pola magnetycznego a i

Bardziej szczegółowo

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)

4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2)185 4.3 Wyznaczanie prędkości dźwięku w powietrzu metodą fali biegnącej(f2) Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu

Bardziej szczegółowo

Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej

Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej 1. Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wstęp Pomiar profilu wiązki

Bardziej szczegółowo

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d.

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d. Nazwisko Data Nr na liście Imię Wydział Dzień tyg Godzina Ćwiczenie 373 Wyznaczanie stężenia roztworu cukru za pomocą polarymetru Stężenie roztworu I d [g/dm 3 ] Rodzaj cieczy Położenie analizatora [w

Bardziej szczegółowo

Fotonika. Plan: Wykład 3: Polaryzacja światła

Fotonika. Plan: Wykład 3: Polaryzacja światła Fotonika Wykład 3: Polaryzacja światła Plan: Równania Maxwella w ośrodku optycznie liniowym Równania Maxwella dla fal monochromatycznych Polaryzacja światła Fala płaska spolaryzowana Polaryzacje liniowe,

Bardziej szczegółowo

Polaryzacja chromatyczna

Polaryzacja chromatyczna FOTON 11, Lato 013 5 Polaryzacja chromatyczna Jerzy Ginter Uniwersytet Warszawski Zjawisko Zwykle nie zdajemy sobie sprawy, że bardzo wiele przezroczystych ciał w naszym otoczeniu jest zbudowanych z substancji

Bardziej szczegółowo