Pomiar różnicy dróg optycznych metodą Senarmonta

Wielkość: px
Rozpocząć pokaz od strony:

Download "Pomiar różnicy dróg optycznych metodą Senarmonta"

Transkrypt

1 Ćwiczenie 7 Pomiar różnicy dróg optycznych metodą Senarmonta Pojęcia podstawowe: Fale własne (wektory własne) ośrodka dwójłomnego; różnica dróg optycznych (różnica faz); kompensatory pośrednie i bezpośrednie; sfera Poincare; 1. Wstęp Aby opisać właściwości, a ściślej: działanie ośrodka dwójłomnego na falę świetlną, która się przez niego propaguje, musimy znać podstawowe parametry tego ośrodka. W stosowanym szeroko w optyce polaryzacyjnej formalizmie wektorów (fal) własnych takimi parametrami są: kąt azymutu i kąt eliptyczności pierwszego (i drugiego) wektora własnego, współczynniki transmisji obu fal własnych oraz różnica dróg optycznych (różnica faz), wprowadzana między tymi falami. Kąty azymutu wektorów własnych łatwo znaleźć np. w krzyżu polaryzacyjnym (maksymalne wygaszenie!) i jedyną trudność stanowi ewentualne rozróżnienie, który z kątów odpowiada akurat pierwszemu wektorowi własnemu. Wyznaczanie tego kąta w opisany powyżej sposób stanowi zresztą najczęściej jeden z elementów justowania układu pomiarowego i dlatego powinien być już znany studentom naszego Laboratorium. Pomiar kąta eliptyczności nie jest już taki prosty, ale w wielu pomiarach wiemy a priori, że badana próbka jest ośrodkiem liniowym (np. kwarc cięty tak, aby jego os optyczna leżała w płaszczyźnie cięcia). Określenie współczynników transmisji również nie zawsze stanowi problem, jako że większość badanych ośrodków ma znikomy dichroizm a więc oba współczynniki transmisji są takie same a ich wartość ma wpływ tylko na bezwzględną wartość natężenia światła opuszczającego badany ośrodek, czyli stanowi czynnik normujący. Najważniejszą chyba wielkością, którą chcemy zmierzyć pozostaje więc różnica dróg optycznych (różnica faz) pomiędzy falami własnymi po ich przejściu przez ośrodek dwójłomny. Liczną klasę urządzeń, służących do pomiaru tej wielkości, stanowią kompensatory, czyli przyrządy, w których nieznaną różnicę dróg optycznych kompensuje się (wyrównuje, od łacińskiego: compensare = (równo)ważyć ) w różny sposób. Kompensatory bezpośrednie czynią to poprzez umieszczenie w wiązce światła, 1

2 opuszczającego badany ośrodek, elementu, wprowadzającego znaną (kontrolowaną) różnicę dróg optycznych tak, aby parametry wiązki powróciły do takiego stanu, jakie miała przed przejściem przez ośrodek. Przypomina to metody kompensacyjne stosowane na przykład w pomiarze oporu elektrycznego (mostek Wheatstone`a). Kompensatory pośrednie w swoim działaniu bazują na fakcie, że dana różnica dróg optycznych wprowadzana prze badany obiekt powoduje, że światło po przejściu przez ten obiekt zmienia swój stan polaryzacji w określony sposób. W pewnych konfiguracjach ta zmiana stanu polaryzacji może być łatwo mierzona bądź kompensowana. Przykładem kompensatora pośredniego azymutalnego (czyli takiego, w którym mierzona różnica dróg optycznych jest zamieniona na zmianę kąta azymutu stanu polaryzacji światła po przejściu przez ośrodek) jest właśnie przyrząd, użyty w niniejszym ćwiczeniu - kompensator Senarmonta [1]. Metoda Senarmonta stosowana jest do pomiaru różnicy dróg optycznych w ośrodkach liniowych. Wymaga ona wstępnej znajomości kąta azymutu pierwszego wektora własnego badanego ośrodka, który możemy wyznaczyć na przykład stosując metodę oceny barwy w polaryskopie liniowym (opisaną w ćwiczeniu 1). Kompensator ten wymaga światła monochromatycznego dlatego, że łatwiej wtedy znaleźć minimum natężenia światła za analizatorem a także ze względu na użyty element, płytkę ćwierćfalową, która wprowadza różnicę dróg optycznych równą dokładnie 90 dla określonej długości fali (zarówno badany ośrodek jak i płytka ćwierćfalowa są zazwyczaj dyspersyjne). Istnieją dwa stosowane układy kompensatora Senarmonta, prosty i odwrócony, a ich schematy i zasadę działania opiszemy poniżej. A) Kompensator Senarmonta prosty Schemat układu przedstawia Rys.1 (prawa część rysunku). Ustawiamy standartowy układ krzyża polaryzacyjnego: dwa liniowe polaryzatory, jeden zwany dalej polaryzatorem P a drugi analizatorem A, pod kątami azymutu odpowiednio 90 i 0. Pomiędzy nie wprowadzamy badany obiekt Ob w postaci płytki płasko-równoległej i ustawiamy go początkowo pod takim kątem, aby dawał pełne wygaszenie a następnie obracamy o kąt 45 przeciwnie do ruchu wskazówek zegara, ustawiając kąt azymutu jego pierwszego wektora własnego na c Wstawiamy do układu płytkę ćwierćfalową C pod kątem azymutu 90. W przypadku niemonochromatycznego źródła światła przed lub za analizatorem umieszczamy filtr monochromatyczny F. Zasadę działania układu przeanalizujemy, posługując się graficzną interpretacją w postaci sfery Poincare (Rys.1). 2

3 Rys.1 Schemat układu kompensatora Senarmonta prostego (objaśnienie symboli w tekście) i zasada jego działania objaśniona na sferze Poincare Polaryzator ustawiony pod kątem azymutu 90 wytwarza światło spolaryzowane liniowo, reprezentowane na sferze przez punkt P na równiku sfery. Badany obiekt dwójłomny, reprezentowany przez punkt Ob, przekształca stan polaryzacji na stan, reprezentowany przez punkt B. Zauważmy, że ze względu na to, iż mierzony obiekt jest liniowo dwójłomny i jest ustawiony pod kątem azymutu 45, punkt Ob leży na równiku i w odległości kątowej 90 na sferze (pamiętajmy, że na sferze odmierzamy podwojone kąty azymutu bądź eliptyczności). Tylko takie położenie punktu Ob sprawia, że różnica faz wprowadzana przez obiekt dwójłomny powoduje zmianę eliptyczności światła za próbką, bez zmiany kąta azymutu punkt B leży na tym samym południku na sferze, co wyjściowy stan P, a odległość między punktami P i B wynosi: PB 2 (1) gdzie oznacza kąt eliptyczności światła za próbką. Liniowa płytka ćwierćfalowa C, umieszczona pod tym samym kątem azymutu, co polaryzator, transformuje z kolei stan polaryzacji światła ze stanu, reprezentowanego przez punkt B (eliptycznego) do stanu, reprezentowanego przez punkt D. Opóźnienie fazowe, wnoszone przez płytkę ćwierćfalową musi być dokładnie równe 90 ponieważ tylko wtedy światło opuszczające tę płytkę będzie spolaryzowane liniowo (punkt D leży na równiku sfery Poincare kąt pomiędzy południkiem, na którym leży łuk PB i równikiem, na którym leży łuk PD, jest przecież równy p 3

4 90). Zauważmy, że ze względu na równość łuków PB i PD, światło padające na analizator ma kąt azymutu dany równaniem: 2 2 (2) czyli różnica faz może być zmierzona poprzez pomiar kąta azymutu światła, padającego na analizator. Zauważmy, że w przypadku braku płytki dwójłomnej, na analizator padało światło liniowo spolaryzowane o kącie azymutu p 90 (takie było za polaryzatorem a płytka ćwierćfalowa, ze względu na ustawienie jej pod tym samym kątem azymutu, co polaryzator, nie zmieniła tego stanu). Powodowało to, że przy wyjściowym ustawieniu analizatora A pod kątem azymutu 0 (skrzyżowany z polaryzatorem) obserwowaliśmy za analizatorem minimum natężenia światła (dla polaryzatorów idealnych jest ono równe 0). Po wstawieniu badanego obiektu dwójłomnego obraz uległ rozjaśnieniu (por. wzór polaryskopowy) i dopiero obrócenie analizatora o kąt azymutu równy spowoduje ponowne wygaszenie. W ten sposób, obrotem analizatora, skompensowaliśmy różnicę kątów azymutu światła przez i za próbką (i płytką ćwierćfalową), wynikłą z wprowadzanej różnicy faz nam obliczyć szukaną wielkość. B) Kompensator Senarmonta odwrócony. Wzór (2) pozwala Schemat zmodyfikowanego układu, spotykanego często w mikroskopach polaryzacyjnych, przedstawia Rys.2 (prawa część rysunku). Rys.2 Schemat układu kompensatora Senarmonta odwróconego (objaśnienie symboli w tekście) i zasada jego działania objaśniona na sferze Poincare 4

5 Jak widać na powyższym schemacie, główna różnica w ustawieniu elementów polega na zamianie miejscami badanego obiektu dwójłomnego Ob i płytki ćwierćfalowej C. Nie zmieniono natomiast kątów azymutu poszczególnych elementów co oznacza, że identyczny będzie sposób justowania układu. Ważną różnicą jest natomiast fakt, że tym razem w celu kompensacji zmian natężenia na wyjściu układu, obracamy polaryzatorem P, a nie analizatorem A. Zasadę działania tego układu przeanalizujemy również posługując się graficzną interpretacją w postaci sfery Poincare (Rys.2) Ze względu na podobieństwo obu układów, analiza będzie nieco bardziej uproszczona. Załóżmy, że wygaszenie za analizatorem otrzymamy dla polaryzatora P ustawionego pod kątem azymutu p 90, czyli obróconego od początkowego ustawienia o kąt. Stan polaryzacji światła za obróconym polaryzatorem ilustruje punkt B na równiku sfery. Ćwierćfalówka C transformuje ten punkt do D, który reprezentuje stan polaryzacji eliptycznej, o kącie azymutu ćwierćfalówki (czyli 90) i kącie eliptyczności równym kątowi (ze względu na równość łuków PB i PD). Jeśli różnica faz, wprowadzana przez badaną płytkę jest równa dokładnie: 2 2 (3) to światło za próbką będzie znowu spolaryzowane liniowo o kącie azymutu równym 90, czyli za analizatorem nastąpi maksymalne wygaszenie. W ten sposób znowu, tyle że przez obrót polaryzatora, skompensowaliśmy zmianę polaryzacji, wprowadzoną przez próbkę i ćwierćfalówkę i możemy obliczyć różnicę faz. Problemy, związane z interpretacją wyników i justowaniem próbki Uważny Czytelnik zauważy na pewno, że podajemy różnicę faz w mierze kątowej (kąt odczytujemy ze skali polaryzatora bądź analizatora w stopniach), podczas gdy zwykle podaje się ją (jako różnicę dróg optycznych) w mierze liniowej (nanometry, mikrometry). Jeżeli znamy długość fali możemy policzyć ze wzoru:, przepuszczaną przez filtr F, to różnicę dróg optycznych R 2 R (4) gdzie kąt podajemy w stopniach. Ponieważ kąt mierzymy w zakresie od 0 do 180, możemy zmierzyć szukaną różnicę faz tylko w zakresie od 0 do 360 a dokładniej: wynik pomiaru, czyli kąt obrotu (analizatora bądź polaryzatora), pozwala nam stwierdzić, że różnica faz, wprowadzana przez badany obiekt jest równa: 5

6 formułą: 2 k 360 (5) gdzie k 0,1,2,... W kategoriach różnicy dróg optycznych możemy to wyrazić 2 R k 360 czyli: za pomocą kompensatora Senarmonta możemy zmierzyć różnicę dróg optycznych z dokładnością do krotności długości fali. Aby rozstrzygnąć, z którym rzędem mamy do czynienia, musimy użyć pomocniczego pomiaru, na przykład za pomocą klina Wollastona. Podczas opisu sposobu justowania badanego obiektu w układzie kompensatora zwróciliśmy uwagę na konieczność znajomości położenia pierwszego wektora własnego próbki. Tylko wtedy będzie miała sens uwaga o obrocie próbki przeciwnie do ruchu wskazówek zegara i tylko wtedy dobrze zinterpretujemy wynik pomiaru. Podczas wstępnej orientacji próbki szukaliśmy położenia, w którym nastąpi wygaszenie światła w krzyżu polaryzacyjnym z próbką wewnątrz. Jak wiadomo, wygaszenie to następuje dokładnie w dwóch orientacjach mierzonego obiektu: gdy pierwszy bądź drugi wektor własny będzie miał azymut 0. Musimy użyć dodatkowej płytki, na przykład ćwierćfalówki, którą za chwilę wstawimy do układu, aby jednoznacznie zinterpretować położenie pierwszego wektora własnego (opis postępowania w Ćwiczeniu 1). Jeśli nie zwrócimy uwagi na właściwą orientację próbki, możemy mylnie ustawić ją początkowo w położeniu wygaszenia, spowodowanego ustawieniem drugiego wektora własnego próbki pod kątem azymutu 0 i wtedy obrót próbki w kierunku przeciwnym do ruchu wskazówek zegara spowoduje faktyczny obrót pierwszego wektora własnego w kierunku zgodnym z kierunkiem ruchu tychże wskazówek! Spowoduje to ostatecznie odczytanie pewnego kąta kompensacji (obrót analizatora bądź polaryzatora), który związany będzie z różnicą faz, wprowadzaną przez próbkę, wzorem: (7) (pozostaje w mocy uwaga o niejednoznaczności, por. wzór 5). Zdecydowanie więc należy zweryfikować wyniki otrzymanych pomiarów na przykład metodą oceny barwy bądź poprzez użycie dodatkowego elementu (ćwierćfalówki lub jednofalówki) o znanej orientacji pierwszego wektora własnego (por. opis Ćwiczenia 1). Innym sposobem weryfikacji (albo też pomocą w odpowiednim wyjustowaniu układu) może być użycie klina Wollastona (i tu znowu odsyłamy do opisu Ćwiczenia 1). (6) 6

7 2. Przebieg pomiarów Ustawiamy układ krzyża polaryzacyjnego: polaryzator pod kątem azymutu 90, analizator pod kątem azymutu 0. Wprowadzamy do wewnątrz krzyża badaną próbkę i obracamy ją do uzyskania maksymalnego wygaszenia. Obracamy próbkę o 45 stopni w dowolnym kierunku i obserwujemy jej barwę. Za pomocą dodatkowego klina Wollastona oceniamy rząd przesunięcia fazowego. Wprowadzamy płytkę ćwierćfalową za próbką ( za oznacza kolejność w kierunku biegu światła opisujemy układ kompensatora prostego) i ustawiamy ją tak, aby kąt azymutu jej pierwszego wektora własnego był równy 45. Jeśli barwa światła obserwowanego uległa podwyższeniu (por. tabela barwna do Ćwiczenia 1) to znak, że próbka została zorientowana prawidłowo jeśli nie, to obracamy ją o 90. Przekręcamy ćwierćfalówkę na właściwy azymut (90) i włączamy filtr F. Przystępujemy do właściwego pomiaru, czyli obracamy analizatorem w kierunku rosnących kątów i szukamy położenia pełnego wygaszenia. Następnie dokonujemy pomiaru w układzie odwróconego kompensatora Senarmonta przestawiając tylko płytkę ćwierćfalową, bo próbkę mamy już właściwie wyjustowaną. Powtarzamy pomiary dla innych próbek. 3. Opracowanie wyników Dla każdej próbki podajemy wyznaczoną orientację jej pierwszego wektora własnego (względem oprawy; należałoby wykonać orientacyjny szkic umieszczenia próbek na stanowisku i ich wyglądu). Podajemy następnie jej barwę w układzie polaryskopu skrzyżowanego (jako orientacyjną ocenę różnicy dróg optycznych) oraz rząd przesunięcia prążka w klinie Wollastona. Podajemy zmierzony kilkakrotnie kąt wygaszenia w obu układach kompensatora, a następnie średnie z obu układów i ostateczny wynik średnią wartość kąta ze wszystkich pomiarów. Obliczamy różnicę faz i różnicę dróg optycznych R. Przeprowadzamy analizę niepewności pomiarowych (na podstawie odchyleń od wartości średnich i wielkości działki elementarnej przyrządu). Wyniki możemy porównać z tymi, które otrzymaliśmy podczas wykonywania Ćwiczenia 1 (jeśli mierzyliśmy te same próbki, rzecz jasna). Literatura [1] F. Ratajczyk, Dwójłomność i polaryzacja optyczna, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław

między pierwszą a drugą falą własną wprowadzana przez obiekt, a często przedstawia się inaczej poprzez tzw. różnicę dróg R (2) (gdzie

między pierwszą a drugą falą własną wprowadzana przez obiekt, a często przedstawia się inaczej poprzez tzw. różnicę dróg R (2) (gdzie 1 Ćwiczenie 1 Rozróżnianie izoklin, izochrom i obszarów osobliwych w świetle białym i monochromatycznym. Ocena różnicy dróg optycznych za pomocą barw z użyciem płytek falowych. Oznaczanie azymutu fal własnych

Bardziej szczegółowo

Synteza i analiza dowolnego stanu polaryzacji światła

Synteza i analiza dowolnego stanu polaryzacji światła 1 Ćwiczenie 3 Synteza i analiza dowolnego stanu polaryzacji światła Pojęcia podstawowe: Światło spolaryzowane; metody opisu stanu polaryzacji światła; parametry, opisujące stan polaryzacji: kąt azymutu,

Bardziej szczegółowo

Pomiar właściwości ośrodka dwójłomnego poprzez wyznaczenie elementów macierzy Müllera-Ścierskiego

Pomiar właściwości ośrodka dwójłomnego poprzez wyznaczenie elementów macierzy Müllera-Ścierskiego Instrukcja robocza do ćwiczenia 8 Pomiar właściwości ośrodka dwójłomnego poprzez wyznaczenie elementów macierzy Müllera-Ścierskiego I. Układ pomiarowy Układ pomiarowy, znany już z ćwiczenia 4, składa się

Bardziej szczegółowo

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 02/08. PIOTR KURZYNOWSKI, Wrocław, PL JAN MASAJADA, Nadolice Wielkie, PL

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 02/08. PIOTR KURZYNOWSKI, Wrocław, PL JAN MASAJADA, Nadolice Wielkie, PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 211200 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 380223 (22) Data zgłoszenia: 17.07.2006 (51) Int.Cl. G01N 21/23 (2006.01)

Bardziej szczegółowo

Polaryzatory/analizatory

Polaryzatory/analizatory Polaryzatory/analizatory Polaryzator eliptyczny element układu optycznego lub układ optyczny, za którym światło jest spolaryzowane eliptycznie i o parametrach ściśle określonych przez polaryzator zazwyczaj

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła

Wyznaczanie współczynnika załamania światła Ćwiczenie O2 Wyznaczanie współczynnika załamania światła O2.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika załamania światła dla przeźroczystych, płaskorównoległych płytek wykonanych z

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

Pomiar przesunięcia fazowego dwójłomnych płytek liniowych metodą kompensacji bezpośredniej za pomocą przesuwnika ciekłokrystalicznego LCM

Pomiar przesunięcia fazowego dwójłomnych płytek liniowych metodą kompensacji bezpośredniej za pomocą przesuwnika ciekłokrystalicznego LCM Instrukcja robocza do ćwiczenia 6 Pomiar przesunięcia fazowego dwójłomnych płytek liniowych metodą kompensacji bezpośredniej za pomocą przesuwnika ciekłokrystalicznego LCM I. Układ pomiarowy Ćwiczenie

Bardziej szczegółowo

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT

Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 9, 08.2.207 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 8 - przypomnienie

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 19, 27.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 18 - przypomnienie

Bardziej szczegółowo

Optyka Ośrodków Anizotropowych. Wykład wstępny

Optyka Ośrodków Anizotropowych. Wykład wstępny Optyka Ośrodków Anizotropowych Wykład wstępny Cel kursu Zapoznanie z podstawami fizycznymi w optyce polaryzacyjnej. Jak zachowuje się fala elektromagnetyczna w ośrodku materialnym? Omówienie zastosowania

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 8 Polarymetria

Metody Optyczne w Technice. Wykład 8 Polarymetria Metody Optyczne w Technice Wykład 8 Polarymetria Fala elektromagnetyczna div D div B 0 D E rot rot E H B t D t J B J H E Fala elektromagnetyczna 2 2 E H 2 t 2 E 2 t H 2 v n 1 0 0 c n 0 Fala elektromagnetyczna

Bardziej szczegółowo

WYZNACZANIE PROMIENIA KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA

WYZNACZANIE PROMIENIA KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA Ćwiczenie 81 A. ubica WYZNACZANIE PROMIENIA RZYWIZNY SOCZEWI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA Cel ćwiczenia: poznanie prążków interferencyjnych równej grubości, wykorzystanie tego

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 1 Badanie efektu Faraday a w monokryształach o strukturze granatu Cel ćwiczenia: Celem ćwiczenia jest pomiar kąta skręcenia płaszczyzny polaryzacji

Bardziej szczegółowo

40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI

40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI ZADANIE DOŚWIADCZALNE 2 DWÓJŁOMNOŚĆ MIKI W tym doświadczeniu zmierzysz dwójłomność miki (kryształu szeroko używanego w optycznych elementach polaryzujących). WYPOSAŻENIE Oprócz elementów 1), 2) i 3) powinieneś

Bardziej szczegółowo

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny

Bardziej szczegółowo

Pomiar dyspersji materiałów za pomocą spektrometru

Pomiar dyspersji materiałów za pomocą spektrometru Ćwiczenie nr 9 Pomiar dyspersji materiałów za pomocą spektrometru I. Zestaw przyrządów 1. Spektrometr 2. Lampy spektralne: helowa i rtęciowa 3. Pryzmaty szklane, których własności mierzymy II. Cel ćwiczenia

Bardziej szczegółowo

Polaryzacyjne metody zmiany fazy w interferometrii dwuwiązkowej

Polaryzacyjne metody zmiany fazy w interferometrii dwuwiązkowej Polaryzacyjne metody zmiany fazy w interferometrii dwuwiązkowej Cel ćwiczenia: Celem ćwiczenia jest demonstracja i ilościowa analiza wybranych metod dyskretnej i ciągłej zmiany fazy w interferometrach

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale

Bardziej szczegółowo

BADANIE INTERFEROMETRU YOUNGA

BADANIE INTERFEROMETRU YOUNGA Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości

Bardziej szczegółowo

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA ZDNIE 11 BDNIE INTERFERENCJI MIKROFL PRZY UŻYCIU INTERFEROMETRU MICHELSON 1. UKŁD DOŚWIDCZLNY nadajnik mikrofal odbiornik mikrofal 2 reflektory płytka półprzepuszczalna prowadnice do ustawienia reflektorów

Bardziej szczegółowo

Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13)

Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Skręcenie płaszczyzny polaryzacji światła w cieczach (PF13) Celem ćwiczenia jest: obserwacja zjawiska skręcenia płaszczyzny polaryzacji światła w roztworach cukru, obserwacja zależności kąta skręcenia

Bardziej szczegółowo

Ćwiczenie Nr 6 Skręcenie płaszczyzny polaryzacji

Ćwiczenie Nr 6 Skręcenie płaszczyzny polaryzacji Instytut Fizyki, Uniwersytet Śląski Chorzów 2018 r. Ćwiczenie Nr 6 Skręcenie płaszczyzny polaryzacji Zagadnienia: polaryzacja światła, metody otrzymywania światła spolaryzowanego, budowa polarymetru, zjawisko

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz

Bardziej szczegółowo

ĆWICZENIE NR 79 POMIARY MIKROSKOPOWE. I. Cel ćwiczenia: Zapoznanie się z budową mikroskopu i jego podstawowymi możliwościami pomiarowymi.

ĆWICZENIE NR 79 POMIARY MIKROSKOPOWE. I. Cel ćwiczenia: Zapoznanie się z budową mikroskopu i jego podstawowymi możliwościami pomiarowymi. ĆWICZENIE NR 79 POMIARY MIKROSKOPOWE I. Zestaw przyrządów: 1. Mikroskop z wymiennymi obiektywami i okularami.. Oświetlacz mikroskopowy z zasilaczem. 3. Skala mikrometryczna. 4. Skala milimetrowa na statywie.

Bardziej szczegółowo

Pomiar dyspersji materiałów za pomocą spektrometru

Pomiar dyspersji materiałów za pomocą spektrometru Ćwiczenie nr 9 Pomiar dyspersji materiałów za pomocą spektrometru I. Zestaw przyrządów 1. Spektrometr 2. Lampy spektralne: helowa i rtęciowa 3. Pryzmaty szklane, których własności mierzymy II. Cel ćwiczenia

Bardziej szczegółowo

POMIARY METODAMI POŚREDNIMI NA MIKROSKOPIE WAR- SZTATOWYM. OBLICZANIE NIEPEWNOŚCI TYCH POMIARÓW

POMIARY METODAMI POŚREDNIMI NA MIKROSKOPIE WAR- SZTATOWYM. OBLICZANIE NIEPEWNOŚCI TYCH POMIARÓW Józef Zawada Instrukcja do ćwiczenia nr P12 Temat ćwiczenia: POMIARY METODAMI POŚREDNIMI NA MIKROSKOPIE WAR- SZTATOWYM. OBLICZANIE NIEPEWNOŚCI TYCH POMIARÓW Cel ćwiczenia Celem niniejszego ćwiczenia jest

Bardziej szczegółowo

I PRACOWNIA FIZYCZNA, UMK TORUŃ

I PRACOWNIA FIZYCZNA, UMK TORUŃ I PRACOWNIA FIZYCZNA, UMK TORUŃ Instrukcja do ćwiczenia nr 59 WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA W SZKLE METODĄ KĄTA NAJMNIEJSZEGO ODCHYLENIA Instrukcje wykonali: G. Maciejewski, I. Gorczyńska

Bardziej szczegółowo

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące

Bardziej szczegółowo

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ. Instrukcja wykonawcza ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Instrukcja wykonawcza 1. Wykaz przyrządów Polarymetr Lampa sodowa Solenoid Źródło napięcia stałego o wydajności prądowej min. 5A Amperomierz prądu stałego

Bardziej szczegółowo

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK. Instrukcja wykonawcza ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Instrukcja wykonawcza 1. Wykaz przyrządów Ława optyczna z podziałką, oświetlacz z zasilaczem i płytka z wyciętym wzorkiem, ekran Komplet soczewek z oprawkami

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. ĆWICZENIE Nr 1. Optyczne badania kryształów

POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. ĆWICZENIE Nr 1. Optyczne badania kryształów OLITECHNIK ŁÓDZK INSTYTUT FIZYKI LBORTORIUM FIZYKI KRYSZTŁÓW STŁYCH ĆWICZENIE Nr 1 Optyczne badania kryształów Cel ćwiczenia Celem ćwiczenia jest poznanie przyrządów i metod do badań optycznych oraz cech

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw 1) Instrukcja wykonawcza

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw 1) Instrukcja wykonawcza ĆWICZENIE 76A WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU CZĘŚĆ (A-zestaw ) Instrukcja wykonawcza. Wykaz przyrządów Spektrometr (goniometr) Lampy spektralne Pryzmaty. Cel ćwiczenia

Bardziej szczegółowo

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne ĆWICZENIE 4 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO Wprowadzenie teoretyczne Rys. Promień przechodzący przez pryzmat ulega dwukrotnemu załamaniu na jego powierzchniach bocznych i odchyleniu o kąt δ. Jeżeli

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE

LASERY I ICH ZASTOSOWANIE W MEDYCYNIE LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą

Bardziej szczegółowo

(12) OPIS PATENTOWY (19) PL (11) 175051

(12) OPIS PATENTOWY (19) PL (11) 175051 RZECZPO SPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 175051 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 307033 (22) Data zgłoszenia: 31.01.1995 (51) Int.Cl.6: A61B 3/107

Bardziej szczegółowo

Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej

Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej 1. Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wstęp Pomiar profilu wiązki

Bardziej szczegółowo

Wyznaczanie zależności współczynnika załamania światła od długości fali światła

Wyznaczanie zależności współczynnika załamania światła od długości fali światła Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać

Bardziej szczegółowo

MODULATOR CIEKŁOKRYSTALICZNY

MODULATOR CIEKŁOKRYSTALICZNY ĆWICZENIE 106 MODULATOR CIEKŁOKRYSTALICZNY 1. Układ pomiarowy 1.1. Zidentyfikuj wszystkie elementy potrzebne do ćwiczenia: modulator SLM, dwa polaryzatory w oprawie (P, A), soczewka S, szary filtr F, kamera

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

Ćwiczenie Nr 455. Temat: Efekt Faradaya. I. Literatura. Problemy teoretyczne

Ćwiczenie Nr 455. Temat: Efekt Faradaya. I. Literatura. Problemy teoretyczne Ćwiczenie Nr 455 Temat: Efekt Faradaya I. Literatura. Ćwiczenia laboratoryjne z fizyki Część II Irena Kruk, Janusz Typek, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin. Ćwiczenia laboratoryjne

Bardziej szczegółowo

Wyznaczenie długości fali świetlnej metodą pierścieni Newtona

Wyznaczenie długości fali świetlnej metodą pierścieni Newtona Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 23 III 2009 Nr. ćwiczenia: 412 Temat ćwiczenia: Wyznaczenie długości fali świetlnej metodą pierścieni Newtona Nr.

Bardziej szczegółowo

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego Ćwiczenie O5 Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego O5.1. Cel ćwiczenia Celem ćwiczenia jest wykorzystanie zjawiska dyfrakcji i interferencji światła do wyznaczenia rozmiarów

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Cel ćwiczenia: 1. Zapoznanie z budową i zasadą działania mikroskopu optycznego. 2. Wyznaczenie współczynnika załamania

Bardziej szczegółowo

Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki

Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki LASEROWY POMIAR ODLEGŁOŚCI INTERFEROMETREM MICHELSONA Instrukcja wykonawcza do ćwiczenia laboratoryjnego ćwiczenie

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

4.Wprowadzenie do zagadnienia elastooptyki

4.Wprowadzenie do zagadnienia elastooptyki 4.Wprowadzenie do zagadnienia elastooptyki Definicja Dwójłomnością nazywamy zjawisko rozproszenia świtała na dwa promienie światła spolaryzowanego liniowo, występujące w ciałach anizotropowych. Jednak

Bardziej szczegółowo

Efekt Faradaya. Materiały przeznaczone dla studentów Inżynierii Materiałowej w Instytucie Fizyki Uniwersytetu Jagiellońskiego

Efekt Faradaya. Materiały przeznaczone dla studentów Inżynierii Materiałowej w Instytucie Fizyki Uniwersytetu Jagiellońskiego Efekt Faradaya Materiały przeznaczone dla studentów Inżynierii Materiałowej w Instytucie Fizyki Uniwersytetu Jagiellońskiego 1 Cel ćwiczenia Ćwiczenie jest eksperymentem z dziedziny optyki nieliniowej

Bardziej szczegółowo

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ

BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ ĆWICZENIE 89 BADANIE WYMUSZONEJ AKTYWNOŚCI OPTYCZNEJ Cel ćwiczenia: Zapoznanie się ze zjawiskiem Faradaya. Wyznaczenie stałej Verdeta dla danej próbki. Wyznaczenie wartości ładunku właściwego elektronu

Bardziej szczegółowo

( Wersja A ) WYZNACZANIE PROMIENI KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA.

( Wersja A ) WYZNACZANIE PROMIENI KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA. 0.X.203 ĆWICZENIE NR 8 ( Wersja A ) WYZNACZANIE PROMIENI KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA. I. Zestaw przyrządów:. Mikroskop. 2. Płytki szklane płaskorównoległe.

Bardziej szczegółowo

Wyznaczanie długości fali świetlnej metodą pierścieni Newtona

Wyznaczanie długości fali świetlnej metodą pierścieni Newtona Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 26 V 2009 Nr. ćwiczenia: 412 Temat ćwiczenia: Wyznaczanie długości fali świetlnej metodą pierścieni Newtona

Bardziej szczegółowo

Sposób wykonania ćwiczenia. Płytka płasko-równoległa. Rys. 1. Wyznaczanie współczynnika załamania materiału płytki : A,B,C,D punkty wbicia szpilek ; s

Sposób wykonania ćwiczenia. Płytka płasko-równoległa. Rys. 1. Wyznaczanie współczynnika załamania materiału płytki : A,B,C,D punkty wbicia szpilek ; s WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Cel ćwiczenia: 1. Zapoznanie z budową i zasadą działania mikroskopu optycznego.. Wyznaczenie współczynnika załamania światła

Bardziej szczegółowo

Badanie właściwości optycznych roztworów.

Badanie właściwości optycznych roztworów. ĆWICZENIE 4 (2018), STRONA 1/6 Badanie właściwości optycznych roztworów. Cel ćwiczenia - wyznaczenie skręcalności właściwej sacharozy w roztworach wodnych oraz badanie współczynnika załamania światła Teoria

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr inż. Łukasz Amanowicz Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne 3 TEMAT ĆWICZENIA: Badanie składu pyłu za pomocą mikroskopu

Bardziej szczegółowo

POMIARY POŚREDNIE POZNAŃ III.2017

POMIARY POŚREDNIE POZNAŃ III.2017 Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul. Jana Pawła II 24 60-965 POZNAŃ (budynek Centrum Mechatroniki, Biomechaniki i Nanoinżynierii) www.zmisp.mt.put.poznan.pl

Bardziej szczegółowo

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU.

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU. 0.X.00 ĆWICZENIE NR 76 A (zestaw ) WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU. I. Zestaw przyrządów:. Spektrometr (goniometr), Lampy spektralne 3. Pryzmaty II. Cel ćwiczenia: Zapoznanie

Bardziej szczegółowo

Instytut Fizyki Politechniki Wrocławskiej. Laboratorium Fizyki Cienkich Warstw. Ćwiczenie 5. Wyznaczanie stałych optycznych cienkich warstw metodą

Instytut Fizyki Politechniki Wrocławskiej. Laboratorium Fizyki Cienkich Warstw. Ćwiczenie 5. Wyznaczanie stałych optycznych cienkich warstw metodą Instytut Fizyki Politechniki Wrocławskiej Laboratorium Fizyki Cienkich Warstw Ćwiczenie 5 Wyznaczanie stałych optycznych cienkich warstw metodą elipsometryczną Opracowanie: Krystyna Żukowska Wrocław, 2006

Bardziej szczegółowo

Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela.

Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. Badanie przy użyciu stolika optycznego lub ławy optycznej praw odbicia i załamania światła. Wyznaczanie ogniskowej soczewki metodą Bessela. I LO im. Stefana Żeromskiego w Lęborku 20 luty 2012 Stolik optyczny

Bardziej szczegółowo

RZECZPOSPOLITAPOLSKA(12) OPIS PATENTOWY (19) PL (11) (13)B1 PL B1. Fig.1. (51) Int.Cl.6: G01N 21/23 G01J 4/04

RZECZPOSPOLITAPOLSKA(12) OPIS PATENTOWY (19) PL (11) (13)B1 PL B1. Fig.1. (51) Int.Cl.6: G01N 21/23 G01J 4/04 RZECZPOSPOLITAPOLSKA(12) OPIS PATENTOWY (19) PL (11) 174585 PO LSK A (13)B1 U rząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 304405 (22) Data zgłoszenia: 22.07.1994 (51) Int.Cl.6: G01N

Bardziej szczegółowo

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ ĆWICZEIE 8 WYZACZAIE DŁUGOŚCI FALI ŚWIETLEJ ZA POMOCĄ SIATKI DYFRAKCYJEJ Opis teoretyczny do ćwiczenia zamieszczony jest na stronie www.wtc.wat.edu.pl w dziale DYDAKTYKA FIZYKA ĆWICZEIA LABORATORYJE. Opis

Bardziej szczegółowo

POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji POMIARY KĄTÓW I STOŻKÓW

POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji POMIARY KĄTÓW I STOŻKÓW POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji TEMAT: Ćwiczenie nr 4 POMIARY KĄTÓW I STOŻKÓW ZADANIA DO WYKONANIA:. zmierzyć 3 wskazane kąty zadanego przedmiotu

Bardziej szczegółowo

POMIAR NATURALNEJ AKTYWNOŚCI OPTYCZNEJ

POMIAR NATURALNEJ AKTYWNOŚCI OPTYCZNEJ ĆWICZENIE 88 POMIAR NATURALNEJ AKTYWNOŚCI OPTYCZNEJ Cel ćwiczenia: Badanie zjawiska skręcenia płaszczyzny polaryzacji światła w cieczach i kryształach optycznie czynnych. Zagadnienia: polaryzacja światła,

Bardziej szczegółowo

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK

POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK ĆWICZENIE 77 POMIAR ODLEGŁOŚCI OGNISKOWYCH SOCZEWEK Cel ćwiczenia: 1. Poznanie zasad optyki geometrycznej, zasad powstawania i konstrukcji obrazów w soczewkach cienkich. 2. Wyznaczanie odległości ogniskowych

Bardziej szczegółowo

Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła.

Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. . Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła. Rozwiązywanie zadań wykorzystujących poznane prawa I LO im. Stefana Żeromskiego w Lęborku 27 luty 2012 Dyfrakcja światła laserowego

Bardziej szczegółowo

Ćw. 18: Pomiary wielkości nieelektrycznych II

Ćw. 18: Pomiary wielkości nieelektrycznych II Wydział: EAIiE Kierunek: Imię i nazwisko (e mail): Rok:. (2010/2011) Grupa: Zespół: Data wykonania: Zaliczenie: Podpis prowadzącego: Uwagi: LABORATORIUM METROLOGII Ćw. 18: Pomiary wielkości nieelektrycznych

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA W PRZEZROCZYSTYM MATERIALE METODĄ KĄTA NAJMNIEJSZEGO ODCHYLENIA

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA W PRZEZROCZYSTYM MATERIALE METODĄ KĄTA NAJMNIEJSZEGO ODCHYLENIA I PRACOWNIA FIZYCZNA, INSTYTUT FIZYKI UMK, TORUŃ Instrukcja do ćwiczenia nr 59 WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA W PRZEZROCZYSTYM MATERIALE METODĄ KĄTA NAJMNIEJSZEGO ODCHYLENIA. Cel ćwiczenia

Bardziej szczegółowo

POMIARY POŚREDNIE. Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska

POMIARY POŚREDNIE. Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul. Jana Pawła II 2 60-965 POZNAŃ (budynek Centrum Mechatroniki, Biomechaniki i Nanoinżynierii) www.zmisp.mt.put.poznan.pl

Bardziej szczegółowo

Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego

Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 19 V 2009 Nr. ćwiczenia: 413 Temat ćwiczenia: Wyznaczanie długości fali świetlnej za pomocą spektrometru

Bardziej szczegółowo

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej

Bardziej szczegółowo

BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI

BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI ĆWICZENIE 43 BADANIE MIKROSKOPU. POMIARY MAŁYCH DŁUGOŚCI Układ optyczny mikroskopu składa się z obiektywu i okularu rozmieszczonych na końcach rury zwanej tubusem. Przedmiot ustawia się w odległości większej

Bardziej szczegółowo

BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA

BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA Celem ćwiczenia jest: 1. demonstracja dużej liczby prążków w interferometrze Lloyda z oświetleniem monochromatycznym,

Bardziej szczegółowo

Notacja Denavita-Hartenberga

Notacja Denavita-Hartenberga Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć

Bardziej szczegółowo

Wyznaczanie wartości współczynnika załamania

Wyznaczanie wartości współczynnika załamania Grzegorz F. Wojewoda Zespół Szkół Ogólnokształcących nr 1 Bydgoszcz Wyznaczanie wartości współczynnika załamania Jest dobrze! Nareszcie można sprawdzić doświadczalnie wartości współczynników załamania

Bardziej szczegółowo

Ć W I C Z E N I E N R O-6

Ć W I C Z E N I E N R O-6 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-6 WYZNACZANIE DŁUGOŚCI FAL PODSTAWOWYCH BARW W WIDMIE ŚWIATŁA BIAŁEGO

Bardziej szczegółowo

9. Własności ośrodków dyspersyjnych. Pomiar dyspersji materiałów za pomocą spektrometru

9. Własności ośrodków dyspersyjnych. Pomiar dyspersji materiałów za pomocą spektrometru II Pracownia Fizyczna 9. Własności ośrodków dyspersyjnych. Pomiar dyspersji materiałów za pomocą spektrometru I. Zestaw przyrządów 1. Spektrometr 2. Lampa spektralna rtęciowa z zasilaczem 3. Pryzmaty szklane,

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

WYZNACZANIE KĄTA BREWSTERA 72

WYZNACZANIE KĄTA BREWSTERA 72 WYZNACZANIE KĄTA BREWSTERA 72 I. ZAGADNIENIA TEORETYCZNE Polaryzacja światła. Zjawisko polaryzacji światła przy odbiciu od powierzchni dielektrycznej kąt Brewstera. Prawa odbicia i załamania światła na

Bardziej szczegółowo

Instrukcja obsługi linijki koincydencyjnej do pomiaru odległości między prążkami dyfrakcyjnymi

Instrukcja obsługi linijki koincydencyjnej do pomiaru odległości między prążkami dyfrakcyjnymi POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA INŻYNIERII MATERIAŁOWEJ Laboratorium Inżynierii Materiałowej Instrukcja obsługi linijki koincydencyjnej do pomiaru odległości między prążkami dyfrakcyjnymi

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: MATEMATYKA Z ELEMENTAMI FIZYKI Kod przedmiotu: ISO73; INO73 Ćwiczenie Nr Wyznaczanie współczynnika

Bardziej szczegółowo

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody

Bardziej szczegółowo

Instrukcja do ćwiczenia Optyczny żyroskop światłowodowy (Indywidualna pracownia wstępna)

Instrukcja do ćwiczenia Optyczny żyroskop światłowodowy (Indywidualna pracownia wstępna) Instrukcja do ćwiczenia Optyczny żyroskop światłowodowy (Indywidualna pracownia wstępna) 1 Schemat żyroskopu Wiązki biegnące w przeciwną stronę Nawinięty światłowód optyczny Źródło światła Fotodioda Polaryzator

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment

Bardziej szczegółowo

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d.

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d. Nazwisko Data Nr na liście Imię Wydział Dzień tyg Godzina Ćwiczenie 373 Wyznaczanie stężenia roztworu cukru za pomocą polarymetru Stężenie roztworu I d [g/dm 3 ] Rodzaj cieczy Położenie analizatora [w

Bardziej szczegółowo

Stanowisko do pomiaru fotoprzewodnictwa

Stanowisko do pomiaru fotoprzewodnictwa Stanowisko do pomiaru fotoprzewodnictwa Kraków 2008 Układ pomiarowy. Pomiar czułości widmowej fotodetektorów polega na pomiarze fotoprądu w funkcji długości padającego na detektor promieniowania. Stanowisko

Bardziej szczegółowo

ANALIZA SPEKTRALNA I POMIARY SPEKTROFOTOMETRYCZNE. Instrukcja wykonawcza

ANALIZA SPEKTRALNA I POMIARY SPEKTROFOTOMETRYCZNE. Instrukcja wykonawcza ĆWICZENIE 72A ANALIZA SPEKTRALNA I POMIARY SPEKTROFOTOMETRYCZNE 1. Wykaz przyrządów Spektroskop Lampy spektralne Spektrofotometr SPEKOL Filtry optyczne Suwmiarka Instrukcja wykonawcza 2. Cel ćwiczenia

Bardziej szczegółowo

NIEZBĘDNY SPRZĘT LABORATORYJNY

NIEZBĘDNY SPRZĘT LABORATORYJNY Ćwiczenie 5 Temat: Pomiar napięcia i prądu stałego. Cel ćwiczenia Poznanie zasady pomiaru napięcia stałego. Zapoznanie się z działaniem modułu KL-22001. Obsługa przyrządów pomiarowych. Przestrzeganie przepisów

Bardziej szczegółowo

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka).

Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Optyka geometryczna Optyka stanowi dział fizyki, który zajmuje się światłem (także promieniowaniem niewidzialnym dla ludzkiego oka). Założeniem optyki geometrycznej jest, że światło rozchodzi się jako

Bardziej szczegółowo

Ćwiczenie 74. Zagadnienia kontrolne. 2. Sposoby otrzymywania światła spolaryzowanego liniowo. Inne rodzaje polaryzacji fali świetlnej.

Ćwiczenie 74. Zagadnienia kontrolne. 2. Sposoby otrzymywania światła spolaryzowanego liniowo. Inne rodzaje polaryzacji fali świetlnej. PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Polarymetr Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia 74 Data oddania Data zaliczenia OCENA Ćwiczenie 74 Cel ćwiczenia:

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 51: Współczynnik załamania światła dla ciał stałych

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 51: Współczynnik załamania światła dla ciał stałych Nazwisko i imię: Zespół: Data: Ćwiczenie nr 5: Współczynnik załamania światła dla ciał stałych Cel ćwiczenia: Wyznaczenie współczynnika załamania światła dla szkła i pleksiglasu metodą pomiaru grubości

Bardziej szczegółowo

LABORATORIUM OPTYKI GEOMETRYCZNEJ

LABORATORIUM OPTYKI GEOMETRYCZNEJ LABORATORIUM OPTYKI GEOMETRYCZNEJ MIKROSKOP 1. Cel dwiczenia Zapoznanie się z budową i podstawową obsługo mikroskopu biologicznego. 2. Zakres wymaganych zagadnieo: Budowa mikroskopu. Powstawanie obrazu

Bardziej szczegółowo

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,

Bardziej szczegółowo

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek

Bardziej szczegółowo

Ćwiczenie 14. Sprawdzanie przyrządów analogowych i cyfrowych. Program ćwiczenia:

Ćwiczenie 14. Sprawdzanie przyrządów analogowych i cyfrowych. Program ćwiczenia: Ćwiczenie 14 Sprawdzanie przyrządów analogowych i cyfrowych Program ćwiczenia: 1. Sprawdzenie błędów podstawowych woltomierza analogowego 2. Sprawdzenie błędów podstawowych amperomierza analogowego 3.

Bardziej szczegółowo