-materiały reklamowe- PROGRAM WYCENA NIERUCHOMOŚCI W PODEJŚCIU PORÓWNAWCZYM METODAMI NUMERYCZNYMI

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "-materiały reklamowe- PROGRAM WYCENA NIERUCHOMOŚCI W PODEJŚCIU PORÓWNAWCZYM METODAMI NUMERYCZNYMI"

Transkrypt

1 -materiały reklamowe- PROGRAM WYCENA NIERUCHOMOŚCI W PODEJŚCIU PORÓWNAWCZYM METODAMI NUMERYCZNYMI

2 ADRESACI APLIKACJI. To nie jest aplikacja dla wszystkich. Ta aplikacja jest kierowana do AMBITNYCH RZECZOZNAWCÓW, którzy mając rzetelną informację prowadzą proces wyceny nieruchomości w oparciu o przesłanki naukowe i wiedzę.

3 JEDYNA TAKA APLIKACJA W POLSCE!!! Aplikacja łączy w sobie prostotę obsługi, rzetelną wiedzę w oparciu o najnowocześniejsze przesłanki naukowe Trend wyliczany jest 3 metodami Wagi cech rynkowych liczymy 3 metodami Są obliczone podstawowe statystyki i przedziały ufności oraz dopuszczalne błędy.

4 WYBÓR METODY SZACOWANIA Możemy wybrać metodę szacowania przyciskająć odpowiedni przycisk

5 MAMY 3 METODY DO WYBORU 1. Metoda największej zależności (MNZ) 2. Metoda regresji wielorakiej (MRW) 3. Metoda najmniejszych kwadratów (MNK)

6 KAŻDĄ NIERUCHOMOŚĆ MOŻEMY OPISAĆ STOSUJĄC.AŻ 21 CECH RYNKOWYCH! 15 cech rynkowych skokowych (wybierając po 15 ocen opisujących te cechy ) 3 cechy rynkowe ciągłe procentowe 3 cechy rynkowe ciągłe wartościowe RAZEM: 21 cech cech rynkowych!!!

7 DEKLARUJEMY CECHY RYNKOWE I ICH OCENY

8 PRZYGOTOWUJEMY BAZĘ PORÓWNAWCZĄ.

9 DO WYCENY Z 21 CECH RYNKOWYCH WYBIERAMY TYLKO TE, KTÓRE NAS INTERESUJĄ.

10 WSZYSTKIE METODY - TREND OBLICZYMY 3 SPOSOBAMI Metodą najmniejszych kwadratów Metodą analizy szeregów czasowych Metodą ceteris paribus

11 METODA NAJMNIEJSZYCH KWADRATÓW

12 METODA ANALIZY SZEREGÓW CZASOWYCH

13 METODA CETERIS PARIBUS

14 MOŻEMY WYKREŚLIĆ ŚRENIĄ W/W METOD ORAZ PORÓWNANIE TYCH METOD

15 OSTATECZNIE MOŻEMY ZAPROPONOWAĆ WŁASNY TREND I PODAĆ PODSTAWOWE STATYSTYKI. L.p. Parametr Wartość 1 Trend roczny metodą najmniejszych kwadratów (MNK) 7,95% 2 Trend roczny metodą szeregów czasowych (SzCz) 0,07% 3 Trend roczny metodą ceteris pertibus (CP) 0,82% 4 Trend roczny - średnia metod: MNK; SzCz; CP 2,95% 5 Roczny trend ustalony przez Rzeczoznawcę -5,00% 6 Data wyceny (aktualizacji trendem) 24 maj 13 7 Aktualizacja trendem rocznym [%/rok]: Ocena eksp. -5,00% Statystyki dotyczące trendu L.p. Parametr Wartość 1 Współczynnik determinacji r 2 0,011 2 Poziom istotności α 5,0% 3 Odchylenie standardowe populacji [zł/m2] 288,587 4 Przedziały ufności dla średniego trendu rocznego ±[%/rok] 3,58% 5 Średni błąd procentowy MAPE [%] - Met. MNK 9,22% 6 Średni błąd procentowy MAPE [%] - Met. SzCz 9,21% 7 Średni błąd procentowy MAPE [%] - Met. CP 9,21% 8 Średni błąd procentowy MAPE [%] - średnia 3metod 9,21% 9 Średni błąd procentowy MAPE [%] - trendu własnego 9,27%

16 MNZ - WAGI LICZYMY 3 METODAMI. Metodą korelacji liniowej Metodą najmniejszych kwadratów Metodą ceteris paribus

17 METODA KORELACJI LINIOWEJ

18 METODA NAJMNIEJSZYCH KWADRATÓW

19 METODA CETERIS PARIBUS

20 MOŻEMY WYKREŚLIĆ ŚREDNIE WAGI Z W/W 3 METOD ORAZ OBEJRZEĆ WYKRES ZBIORCZY.

21 OSTATECZNIE MOŻEMY ZAPROPONOWAĆ WŁASNE WARTOŚCI WAG ORAZ WYDRUKOWAĆ PODSTAWOWE STATYSTYKI.. Parametr / waga cechy Lokalizacja Stan techniczny budynku Powierzchnia Standard Funkcjonalność Wagi - metoda korelacji liniowej (MK) 3,11% 15,43% 0,97% 62,16% 18,33% Wagi - metoda najmniejszych kwadratów (MNK) 7,62% 28,61% 3,82% 40,27% 19,68% Wagi - metoda ceteris partibus (CP) 17,24% 10,07% 17,54% 37,56% 17,59% Wagi - średnia metod: MK, MNK, CP 9,32% 18,04% 7,44% 46,66% 18,53% Wagi ustalone przez Rzeczoznawcę Poziom ufności (istotności) α 5,00% wpisać w [%] Przedział ufności wag - metoda MK 3,11±3,98 [%] 15,43±6,65 [%] 0,97±2,14 [%] 62,16±12,35 [%] 18,33±9,21 [%] Przedział ufności wag - metoda MNK 7,62±9,76 [%] 28,61±12,34 [%] 3,82±8,45 [%] 40,27±8 [%] 19,68±9,89 [%] Przedział ufności wag - metoda CP 17,24±22,09 [%] 10,07±4,34 [%] 17,54±38,78 [%] 37,56±7,46 [%] 17,59±8,84 [%] Przedział ufności wag - średnia 3 metod 9,32±11,94 [%] 18,04±7,78 [%] 7,44±16,45 [%] 46,66±9,27 [%] 18,53±9,31 [%] Przedział ufności wag - metoda ekspercka 0±0 [%] 0±0 [%] 0±0 [%] 0±0 [%] 0±0 [%]

22 NASTĘPNIE PRZESYŁAMY DANE DO PROGRAMU I WYBIERAMY METODĘ OBLICZEŃ Dane przesyłamy wciskając klawisz PRZEŚLIJ DANE DO PROGRAMU

23 MNZ OTRZYMUJEMY WYNIKI NP. WYKRES SKUMULOWANY I STATYSTKI

24 MNZ- OTRZYMUJEMY BAZĘ PRZESŁANĄ DO PROGRAMU

25 MNZ OTRZYMUJEMY WYKRESY TRENDU CENOWEGO I WAG.

26 MNZ OTRZYMUJEMY ODSTATECZNY WYNIK SZACOWANIA

27 PODOBNIE JEST GDY WYCENIAMY INNYMI METODAMI, NP. METODA REGRESJI WIELORAKIEJ.

28 MRW TREND CENOWY

29 MRW - WYNIK

30 MNK - WAGI

31 MNK - WYNIK

32 OBLICZENIA PROWADZONE SĄ W OPARCIU O NAJNOWOCZEŚNIEJSZĄ WIEDZĘ. Do każdej zakupionej aplikacji pełny opis stosowanych metod.

33 ORAZ INSTRUKCJA OBSŁUGI APLIKACJI NAPISANA W TAKIEJ FORMIE, ŻE NAWET OSOBA MAŁO WPRAWNA W EXCELU SOBIE PORADZI.

34 PROWADZĄC PROCES WYCENY MAMY GOTOWE NARZĘDZIE DO PODJĘCIA POPRAWNYCH DECYZJI W OPARCIU O PODSTAWY NAUKOWE Parametry wykresu skumulowanego L.p Parametr Wartość 1 Minimalna jedn.cena aktualizowana Cmin 1 773,12 2 Maksymalna jedn. cena aktualizowana C max 2 804,14 3 Średnia jedn. cena aktualizowana Cśr (μ) 2 315,34 4 Mediana jedn.cen aktualizowanych M 2 295,08 5 Dominanta jedn. cen aktualizowanych D 2 176,00 6 Odchylenie standardowe jedn.cen aktualizowanych σ 262,87 7 Skośność A s [% ] 19,89% 8 Współ. asymetrii dominanty A sd =[(μ-d)/σ] [% ] 53,01% 9 Współ. asymetrii mediany A sm =[(μ-m)/σ] [% ] 7,71% 10 Liczba przedziałów klasowych 6 11 Rozpiętość przedziału klasowego 207,00

35 GDY BAZA JEST DUŻA I CHCEMY NASZE DANE SKUPIĆ WOKÓŁ ŚREDNIEJ Z ZADANYM PRZEDZIAŁEM UFNOŚCI MOŻEMY STOSOWAĆ KOREKCJĘ GAUSSA Wystarczy wówczas wcinąć ten przycisk

36 PO WYKONANIU OBLICZEŃ 3 METODAMI MOŻEMY JE PORÓWNAĆ. Wystarczy wcisnąć ten przycisk

37 JAK KUPIĆ APLIKACJĘ? Dokonać przedpłaty brutto na konto: Wysłać do naszej firmy na adres mailowy potwierdzenie w PDF złożonej dyspozycji bankowej +podać wersję Excela zainstalowaną u Państwa; Nasza firma po otrzymaniu powyższego wysyła program + hasło dostępu do Zamawiającego mailem; Nasza firma wysyła umowę licencyjną + rachunek w oryginale na podany adres Zamawiającego pocztą; Nie wolno zapomnieć o podaniu Nazwy Zamawiającego, adresu i telefonów Zamawiającego.

Program wycena masowa -OPARTA O METODĘ NAJWIĘKSZEJ ZALEŻNOŚCI PROF. Z. ADAMCZEWSKIEGO-

Program wycena masowa -OPARTA O METODĘ NAJWIĘKSZEJ ZALEŻNOŚCI PROF. Z. ADAMCZEWSKIEGO- Program wycena masowa -OPARTA O METODĘ NAJWIĘKSZEJ ZALEŻNOŚCI PROF. Z. ADAMCZEWSKIEGO- Programem tym możemy wycenić 200 nieruchomości naraz stosując jednolitość i obiektywność porówań. Tworzymy bazę nieruchomości

Bardziej szczegółowo

AMBITNYCH RZECZOZNAWCÓW

AMBITNYCH RZECZOZNAWCÓW ADRESACI APLIKACJI. TO NIE JEST APLIKACJA DLA WSZYSTKICH. TA APLIKACJA JEST KIEROWANA DO AMBITNYCH RZECZOZNAWCÓW, KTÓRZY MAJĄC RZETELNĄ INFORMACJĘ PROWADZĄ PROCES WYCENY NIERUCHOMOŚCI W OPARCIU O PRZESŁANKI

Bardziej szczegółowo

AMBITNYCH RZECZOZNAWCÓW

AMBITNYCH RZECZOZNAWCÓW ADRESACI APLIKACJI. TO NIE JEST APLIKACJA DLA WSZYSTKICH. TA APLIKACJA JEST KIEROWANA DO AMBITNYCH RZECZOZNAWCÓW, KTÓRZY MAJĄC RZETELNĄ INFORMACJĘ PROWADZĄ PROCES WYCENY NIERUCHOMOŚCI W OPARCIU O PRZESŁANKI

Bardziej szczegółowo

Wycena nieruchomości w podejściu porównawczym - complex. Materiały reklamowe ZAWAM-Marek Zawadzki

Wycena nieruchomości w podejściu porównawczym - complex. Materiały reklamowe ZAWAM-Marek Zawadzki Wycena nieruchomości w podejściu porównawczym - complex Materiały reklamowe ZAWAM-Marek Zawadzki Mimo skomplikowania metody szacowania nieruchomości program jest banalny w swojej obsłudze. Na początku

Bardziej szczegółowo

Wycena nieruchomości za pomocą wyboru wielokryterialnego w warunkach niepewności rozmytej oraz klasycznie: metodą pp i kcś

Wycena nieruchomości za pomocą wyboru wielokryterialnego w warunkach niepewności rozmytej oraz klasycznie: metodą pp i kcś Wycena nieruchomości za pomocą wyboru wielokryterialnego w warunkach niepewności rozmytej oraz klasycznie: metodą pp i kcś Materiały reklamowe ZAWAM-Marek Zawadzki Wybór wielokryterialny jako jadna z metod

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

Analiza rynku nieruchomości gruntowych w gminie Koszyce, powiat proszowicki, woj. małopolskie czerwiec 2013

Analiza rynku nieruchomości gruntowych w gminie Koszyce, powiat proszowicki, woj. małopolskie czerwiec 2013 Analiza rynku nieruchomości gruntowych w gminie Koszyce, powiat proszowicki, woj. małopolskie czerwiec 2013 W gminie Koszyce w ostatnich latach [od lipca 2010 roku] odnotowano 118 transakcje gruntami [w

Bardziej szczegółowo

INFORMATYKA W CHEMII Dr Piotr Szczepański

INFORMATYKA W CHEMII Dr Piotr Szczepański INFORMATYKA W CHEMII Dr Piotr Szczepański Katedra Chemii Fizycznej i Fizykochemii Polimerów WPROWADZENIE DO STATYSTYCZNEJ OCENY WYNIKÓW DOŚWIADCZEŃ 1. BŁĄD I STATYSTYKA błąd systematyczny, błąd przypadkowy,

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

4. Średnia i autoregresja zmiennej prognozowanej

4. Średnia i autoregresja zmiennej prognozowanej 4. Średnia i autoregresja zmiennej prognozowanej 1. Średnia w próbie uczącej Własności: y = y = 1 N y = y t = 1, 2, T s = s = 1 N 1 y y R = 0 v = s 1 +, 2. Przykład. Miesięczna sprzedaż żelazek (szt.)

Bardziej szczegółowo

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817

Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Analiza Danych Sprawozdanie regresja Marek Lewandowski Inf 59817 Zadanie 1: wiek 7 8 9 1 11 11,5 12 13 14 14 15 16 17 18 18,5 19 wzrost 12 122 125 131 135 14 142 145 15 1 154 159 162 164 168 17 Wykres

Bardziej szczegółowo

Analiza rynku, wybrane elementy przydatne. majątkowego

Analiza rynku, wybrane elementy przydatne. majątkowego 2010-20112011 Analiza rynku, wybrane elementy przydatne w czynnościach rzeczoznawcy majątkowego Rynek lokalny rynek miasta i gminy Łódź na prawach powiatu. Łódź to miasto liczące ok 745 tysięcy mieszkańców

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych

Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych PROJEKT: Analiza kluczowych parametrów turbin wiatrowych Projekt jest wykonywany z wykorzystaniem pakietu statystycznego STATISTICA. Praca odbywa się w grupach 2-3 osobowych. Aby zaliczyć projekt, należy

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej cechy. Średnia arytmetyczna suma wartości zmiennej wszystkich

Bardziej szczegółowo

Staże Ośrodka RENOWATOR

Staże Ośrodka RENOWATOR Staże Ośrodka RENOWATOR Badanie zależności ceny nieruchomości od położenia i innych cech Analiza Beata Kalinowska-Rybka W listopadzie 26r zbierałam informacje dotyczące nieruchomości, o następującej postaci:

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Analiza Statystyczna

Analiza Statystyczna Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza

Bardziej szczegółowo

Polskie prawo nakazuje stosowanie metod ekonometrycznych w wycenie konsekwencje art. 157 ugn.

Polskie prawo nakazuje stosowanie metod ekonometrycznych w wycenie konsekwencje art. 157 ugn. Krzysztof Głębicki, Lucyna Michalec Polskie prawo nakazuje stosowanie metod ekonometrycznych w wycenie konsekwencje art. 157 ugn. Rozdział I Dlaczego w wycenie nie należy stosować metody regresji? Do napisania

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Estymacja parametrów rozkładu cechy

Estymacja parametrów rozkładu cechy Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział

Bardziej szczegółowo

Analiza zależności cech ilościowych regresja liniowa (Wykład 13)

Analiza zależności cech ilościowych regresja liniowa (Wykład 13) Analiza zależności cech ilościowych regresja liniowa (Wykład 13) dr Mariusz Grządziel semestr letni 2012 Przykład wprowadzajacy W zbiorze danych homedata (z pakietu R-owskiego UsingR) można znaleźć ceny

Bardziej szczegółowo

ANALIZA RYNKU NIERUCHOMOŚCI PRZY ZASTOSOWANIU PROGRAMU GRETL

ANALIZA RYNKU NIERUCHOMOŚCI PRZY ZASTOSOWANIU PROGRAMU GRETL ANALIZA RYNKU NIERUCHOMOŚCI PRZY ZASTOSOWANIU PROGRAMU GRETL Joanna B. Waluk-Pacholska Jak przy pomocy ogólnie dostępnego oprogramowania przeprowadzić analizę rynku nieruchomości i w jaki sposób określić

Bardziej szczegółowo

Metody Statystyczne. Metody Statystyczne.

Metody Statystyczne. Metody Statystyczne. gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014 WydziałPrawa, Administracji i Stosunków Miedzynarodowych

Bardziej szczegółowo

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012

Bardziej szczegółowo

Analiza metod wyceny nieruchomości w podejściu porównawczym w aspekcie zabezpieczenia wierzytelności kredytowych

Analiza metod wyceny nieruchomości w podejściu porównawczym w aspekcie zabezpieczenia wierzytelności kredytowych RYNEK FINANSOWANIA NIERUCHOMOŚCI zarządzanie ryzykiem wierzytelności hipotecznych Analiza metod wyceny nieruchomości w podejściu porównawczym w aspekcie zabezpieczenia wierzytelności kredytowych 1. Wprowadzenie

Bardziej szczegółowo

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy

Wykład 1. Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Wykład Podstawowe pojęcia Metody opisowe w analizie rozkładu cechy Zbiorowość statystyczna - zbiór elementów lub wyników jakiegoś procesu powiązanych ze sobą logicznie (tzn. posiadających wspólne cechy

Bardziej szczegółowo

czerwiec 2013 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90

czerwiec 2013 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90 Uwaga: Przy rozwiązywaniu zadań, jeśli to konieczne, należy przyjąć poziom istotności 0,1 i współczynnik ufności 0,90 czerwiec 2013 Zadanie 1 Poniższe tabele przestawiają dane dotyczące umieralności dzieci

Bardziej szczegółowo

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,

Bardziej szczegółowo

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia

Bardziej szczegółowo

NOTA INTERPETACYJNA ZASTOSOWANIE PODEJŚCIA PORÓWNAWCZEGO W WYCENIE NIERUCHOMOŚCI

NOTA INTERPETACYJNA ZASTOSOWANIE PODEJŚCIA PORÓWNAWCZEGO W WYCENIE NIERUCHOMOŚCI POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) NOTA INTERPETACYJNA ZASTOSOWANIE PODEJŚCIA PORÓWNAWCZEGO W WYCENIE NIERUCHOMOŚCI 1. WPROWADZENIE 1.1. Celem niniejszej noty jest przedstawienie uzgodnionych w środowisku

Bardziej szczegółowo

Pozyskiwanie wiedzy z danych

Pozyskiwanie wiedzy z danych Pozyskiwanie wiedzy z danych dr Agnieszka Goroncy Wydział Matematyki i Informatyki UMK PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Pozyskiwanie wiedzy

Bardziej szczegółowo

Wykład 5: Statystyki opisowe (część 2)

Wykład 5: Statystyki opisowe (część 2) Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Sterowanie jakością badań i analiza statystyczna w laboratorium

Sterowanie jakością badań i analiza statystyczna w laboratorium Sterowanie jakością badań i analiza statystyczna w laboratorium CS-17 SJ CS-17 SJ to program wspomagający sterowanie jakością badań i walidację metod badawczych. Może działać niezależnie od innych składników

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15 VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 01/01 Wydział Prawa, Administracji i Stosunków Miedzynarodowych Kierunek

Bardziej szczegółowo

Zawartość. Zawartość

Zawartość. Zawartość Opr. dr inż. Grzegorz Biesok. Wer. 2.05 2011 Zawartość Zawartość 1. Rozkład normalny... 3 2. Rozkład normalny standardowy... 5 3. Obliczanie prawdopodobieństw dla zmiennych o rozkładzie norm. z parametrami

Bardziej szczegółowo

KRAKÓW PODGÓRZE [OBSZAR WSCHODNI] ANALIZA LOKALNEGO RYNKU NIERUCHOMOŚCI GRUNTOWYCH PRZEZNACZONYCH POD ZABUDOWĘ PRZEMYSŁOWO USŁUGOWĄ

KRAKÓW PODGÓRZE [OBSZAR WSCHODNI] ANALIZA LOKALNEGO RYNKU NIERUCHOMOŚCI GRUNTOWYCH PRZEZNACZONYCH POD ZABUDOWĘ PRZEMYSŁOWO USŁUGOWĄ 2013 Listopad KRAKÓW PODGÓRZE [OBSZAR WSCHODNI] ANALIZA LOKALNEGO RYNKU NIERUCHOMOŚCI GRUNTOWYCH PRZEZNACZONYCH POD ZABUDOWĘ PRZEMYSŁOWO USŁUGOWĄ I. KRAKOWSKI RYNEK NIERUCHOMOŚCI GRUNTOWYCH POD ZABUDOWĘ

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność

Bardziej szczegółowo

POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW)

POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) NOTA INTERPETACYJNA NR 1 NI 1 ZASTOSOWANIE PODEJŚCIA PORÓWNAWCZEGO W WYCENIE NIERUCHOMOŚCI 1. WPROWADZENIE...2 2. PRZEDMIOT I ZAKRES STOSOWANIA NOTY...2 3. ZAŁOśENIA

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

ŁÓDZKI RYNEK NIERUCHOMOŚCI

ŁÓDZKI RYNEK NIERUCHOMOŚCI Baza Danych o Rynku Nieruchomości pod patronatem Łódzkiego Stowarzyszenia Rzeczoznawców Majątkowych ŁÓDZKI RYNEK NIERUCHOMOŚCI 2011 2012 I. NIERUCHOMOŚCI LOKALOWE MIESZKALNE W ŁODZI II. NIERUCHOMOŚCI GRUNTOWE

Bardziej szczegółowo

Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy

Elektrotechnika II [ Laboratorium Grupa 1 ] 2016/2017 Zimowy. [ Laboratorium Grupa 2 ] 2016/2017 Zimowy Elektrotechnika II [ Laboratorium Grupa ] 206/207 Zimowy Lp Numer indeksu Pkt Kol Suma Popr Ocena Data Uwagi 97574 6 7 Db + 2 9758 ++0,9 5 7,9 Db + 3 99555 0,9+0,9 2,8 Dst + 4 97595 0,8++ 0 2,8 Dst + 5

Bardziej szczegółowo

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26

Rozkład normalny. Marcin Zajenkowski. Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Marcin Zajenkowski Marcin Zajenkowski () Rozkład normalny 1 / 26 Rozkład normalny Krzywa normalna, krzywa Gaussa, rozkład normalny Rozkłady liczebności wielu pomiarów fizycznych, biologicznych

Bardziej szczegółowo

ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI

ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI Korelacja 1. Współczynnik korelacji 2. Współczynnik korelacji liniowej definicja 3. Estymacja współczynnika korelacji 4. Testy istotności współczynnika korelacji

Bardziej szczegółowo

ANALIZA SPRZEDAŻY: - rozproszenia

ANALIZA SPRZEDAŻY: - rozproszenia KOŁO NAUKOWE CONTROLLINGU UNIWERSYTET ZIELONOGÓRSKI ANALIZA SPRZEDAŻY: - rozproszenia - koncentracji - sezonowości Spis treści Wstęp... 3 Analiza rozproszenia sprzedaży... 4 Analiza koncentracji sprzedaży...

Bardziej szczegółowo

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Paweł Cibis pawel@cibis.pl 23 lutego 2007 1 Regresja liniowa 2 wzory funkcje 3 Korelacja liniowa

Bardziej szczegółowo

Symulacyjne metody wyceny opcji amerykańskich

Symulacyjne metody wyceny opcji amerykańskich Metody wyceny Piotr Małecki promotor: dr hab. Rafał Weron Instytut Matematyki i Informatyki Politechniki Wrocławskiej Wrocław, 0 lipca 009 Metody wyceny Drzewko S 0 S t S t S 3 t S t St St 3 S t St St

Bardziej szczegółowo

Inteligentna analiza danych

Inteligentna analiza danych Numer indeksu 150946 Michał Moroz Imię i nazwisko Numer indeksu 150875 Grzegorz Graczyk Imię i nazwisko kierunek: Informatyka rok akademicki: 2010/2011 Inteligentna analiza danych Ćwiczenie I Wskaźniki

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.

Bardziej szczegółowo

RZECZOZNAWCA, Aleksandra Radziejowska. Katedra Geomechaniki, Budownictwa i Geotechniki. A1 312

RZECZOZNAWCA, Aleksandra Radziejowska. Katedra Geomechaniki, Budownictwa i Geotechniki. A1 312 RZECZOZNAWCA, operat szacunkowy wybrana metoda obliczania Aleksandra Radziejowska Katedra Geomechaniki, Budownictwa i Geotechniki aradziej@agh.edu.pl, A1 312 n.h.m. Operat szacunkowy DOCHODOWE MIESZANE

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2011/2012 Wykład 2 Statystyka Do tej pory było: Wiadomości praktyczne o przedmiocie Podstawowe

Bardziej szczegółowo

OPERAT SZACUNKOWY NR 9

OPERAT SZACUNKOWY NR 9 PRAKTYKA ZAWODOWA W ZAKRESIE WYCENY NIERUCHOMOŚCI OPERAT SZACUNKOWY NR 9 NIERUCHOMOŚĆ GRUNTOWA POŁOŻONA W DĘBICY, WOJEWÓDZTWO PODKARPACKIE Pieczęć rzeczoznawcy Autor operatu:... Kraków, 5 kwietnia 009

Bardziej szczegółowo

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34

Statystyka. Wykład 9. Magdalena Alama-Bućko. 24 kwietnia Magdalena Alama-Bućko Statystyka 24 kwietnia / 34 Statystyka Wykład 9 Magdalena Alama-Bućko 24 kwietnia 2017 Magdalena Alama-Bućko Statystyka 24 kwietnia 2017 1 / 34 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

Skrypt 29. Statystyka. Opracowanie L2

Skrypt 29. Statystyka. Opracowanie L2 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 29 Statystyka 1. Przypomnienie

Bardziej szczegółowo

NOTA INTERPETACYJNA ZASTOSOWANIE PODEJŚCIA PORÓWNAWCZEGO W WYCENIE NIERUCHOMOŚCI

NOTA INTERPETACYJNA ZASTOSOWANIE PODEJŚCIA PORÓWNAWCZEGO W WYCENIE NIERUCHOMOŚCI POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) NOTA INTERPETACYJNA ZASTOSOWANIE PODEJŚCIA PORÓWNAWCZEGO W WYCENIE NIERUCHOMOŚCI 1. WPROWADZENIE...2 2. PRZEDMIOT I ZAKRES STOSOWANIA NOTY...2 3. ZAŁOŻENIA OGÓLNE

Bardziej szczegółowo

FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS

FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Folia Univ. Agric. Stetin. 007, Oeconomica 54 (47), 73 80 Mateusz GOC PROGNOZOWANIE ROZKŁADÓW LICZBY BEZROBOTNYCH WEDŁUG MIAST I POWIATÓW FORECASTING THE DISTRIBUTION

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Statystyka opisowa i ekonomiczna Rok akademicki: 2013/2014 Kod: ZIE-1-205-n Punkty ECTS: 6 Wydział: Zarządzania Kierunek: Informatyka i Ekonometria Specjalność: - Poziom studiów: Studia I

Bardziej szczegółowo

ANALIZA STAWEK CZYSZNU LOKALI UŻYTKOWYCH W POZNANIU W II POŁOWIE 2008R.

ANALIZA STAWEK CZYSZNU LOKALI UŻYTKOWYCH W POZNANIU W II POŁOWIE 2008R. ANALIZA STAWEK CZYSZNU LOKALI UŻYTKOWYCH W POZNANIU W II POŁOWIE 2008R. Badanie stawek czynszów lokali użytkowych uzyskiwanych w obrocie wolnorynkowym przeprowadzono na podstawie zebranych danych ofertowych.

Bardziej szczegółowo

Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna.

Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna. Podstawy Podstawowe funkcje statystyki: informacyjna, analityczna, prognostyczna. Funkcja informacyjna umożliwia pełny i obiektywny obraz badanych zjawisk Funkcja analityczna umożliwia określenie czynników

Bardziej szczegółowo

STATYSTYKA wykłady. L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 217) I. (08.X)

STATYSTYKA wykłady. L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 217) I. (08.X) STATYSTYKA wykłady L.Gruszczyński Elementy statystyki dla socjologów Dr. Pactwa pon. i wtorek 09:30 11:00 (pok. 17) I. (08.X) 1. Statystyka jest to nauka zajmująca się metodami ilościowymi badania prawidłowości

Bardziej szczegółowo

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu

Bardziej szczegółowo

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane

Bardziej szczegółowo

MIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy

MIARY KLASYCZNE Miary opisujące rozkład badanej cechy w zbiorowości, które obliczamy na podstawie wszystkich zaobserwowanych wartości cechy MIARY POŁOŻENIA Opisują średni lub typowy poziom wartości cechy. Określają tą wartość cechy, wokół której skupiają się wszystkie pozostałe wartości badanej cechy. Wśród nich można wyróżnić miary tendencji

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom

Bardziej szczegółowo

Miary statystyczne w badaniach pedagogicznych

Miary statystyczne w badaniach pedagogicznych Miary statystyczne w badaniach pedagogicznych Szeregi statystyczne Szczegółowy - gdzie materiał uporządkowany jest rosnąco lub malejąco Rozdzielczy - gdzie poszczególnym wariantom zmiennej przyporządkowane

Bardziej szczegółowo

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF 120 I. Ogólne informacje o przedmiocie Cel przedmiotu: Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod statystycznych.

Bardziej szczegółowo

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

Analiza statystyczna w przekroju ekologiczno-turystycznym powiatów województwa podkarpackiego. Część II analiza rejestrowanego ruchu turystycznego

Analiza statystyczna w przekroju ekologiczno-turystycznym powiatów województwa podkarpackiego. Część II analiza rejestrowanego ruchu turystycznego Wiesław Wagner, Jan Krupa, Jerzy Słowik Wyższa Szkoła Informatyki i Zarządzania w Rzeszowie Katedra Turystyki i Rekreacji Analiza statystyczna w przekroju ekologiczno-turystycznym powiatów województwa

Bardziej szczegółowo

Zajęcia 1. Statystyki opisowe

Zajęcia 1. Statystyki opisowe Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,

Bardziej szczegółowo

ANALIZA ŁÓDZKIEGO RYNKU

ANALIZA ŁÓDZKIEGO RYNKU Stowarzyszenia Baza Danych o rynku Nieruchomości pod patronatem Łódzkiego Stowarzyszenia Rzeczoznawców Majątkowych ANALIZA ŁÓDZKIEGO RYNKU NIERUCHOMOŚCI 2014-2015 CZĘŚĆ NR 1 I. RYNEK NIERUCHOMOŚCI LOKALOWYCH

Bardziej szczegółowo

Edward Sawiłow Analiza dokładności określenia jednostkowej wartości nieruchomości metodą korygowania ceny średniej

Edward Sawiłow Analiza dokładności określenia jednostkowej wartości nieruchomości metodą korygowania ceny średniej Edward Sawiłow Analiza dokładności określenia jednostkowej wartości nieruchomości metodą korygowania ceny średniej Acta Scientiarum Polonorum. Administratio Locorum 5/1/2, 63-71 2006 .J jm rot ł? J2 %

Bardziej szczegółowo

Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice

Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice Księgarnia PWN: George A. Ferguson, Yoshio Takane - Analiza statystyczna w psychologii i pedagogice Przedmowa do wydania polskiego Przedmowa CZĘŚĆ I. PODSTAWY STATYSTYKI Rozdział 1 Podstawowe pojęcia statystyki

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

OPCJE DOSTAWY DOSTĘPNE W SERWISIE LOJALNI24.PL

OPCJE DOSTAWY DOSTĘPNE W SERWISIE LOJALNI24.PL OPCJE DOSTAWY DOSTĘPNE W SERWISIE LOJALNI24.PL 1. MOŻLIWOŚCI DOSTAWY Wystawiając ofertę w Serwisie Lojalni24.pl do dyspozycji masz trzy różne sposoby dostawy Towarów i Usług: Odbiór osobisty (Bon Towarowy

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

WYKŁAD 5 TEORIA ESTYMACJI II

WYKŁAD 5 TEORIA ESTYMACJI II WYKŁAD 5 TEORIA ESTYMACJI II Teoria estymacji (wyznaczanie przedziałów ufności, błąd badania statystycznego, poziom ufności, minimalna liczba pomiarów). PRÓBA Próba powinna być reprezentacyjna tj. jak

Bardziej szczegółowo

EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE

EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE EKONOMETRIA STOSOWANA PRZYKŁADOWE ZADANIA EGZAMINACYJNE ZADANIE 1 Oszacowano zależność między luką popytowa a stopą inflacji dla gospodarki niemieckiej. Wyniki estymacji są następujące: Estymacja KMNK,

Bardziej szczegółowo

Typowe błędy w analizie rynku nieruchomości przy uŝyciu metod statystycznych

Typowe błędy w analizie rynku nieruchomości przy uŝyciu metod statystycznych Typowe błędy w analizie rynku nieruchomości przy uŝyciu metod statystycznych Sebastian Kokot XXI Krajowa Konferencja Rzeczoznawców Majątkowych, Międzyzdroje 2012 Rzetelnie wykonana analiza rynku nieruchomości

Bardziej szczegółowo

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)

Bardziej szczegółowo

Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi

Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska D syst D śr m 1 3 5 2 4 6 śr j D 1

Bardziej szczegółowo

ANALIZA ŁÓDZKIEGO RYNKU

ANALIZA ŁÓDZKIEGO RYNKU Stowarzyszenie Baza Danych o Rynku Nieruchomości pod patronatem Łódzkiego Stowarzyszenia Rzeczoznawców Majątkowych ANALIZA ŁÓDZKIEGO RYNKU NIERUCHOMOŚCI 2013-2014 CZĘŚĆ NR 1 1. RYNEK NIERUCHOMOŚCI LOKALOWYCH

Bardziej szczegółowo

Prognoza sprawozdania finansowego Bilans

Prognoza sprawozdania finansowego Bilans Prognoza sprawozdania go Bilans 31.12.24 31.12.25 31.12.26 Wartości niematerialne i prawne Rzeczowe aktywa trwałe Długoterminowe Zapasy Należności Inwestycje 594 3474 3528 954 52119 54 12 759 693 2259

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

7.4 Automatyczne stawianie prognoz

7.4 Automatyczne stawianie prognoz szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu

Bardziej szczegółowo

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji, współczynnik korelacji wielorakiej. Paweł Cibis

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji, współczynnik korelacji wielorakiej. Paweł Cibis Regresja liniowa, współczynnik zmienności, współczynnik korelacji, współczynnik korelacji wielorakiej Paweł Cibis pcibis@o2.pl 9 marca 2006 1 Regresja liniowa 2 wzory funkcje 3 Korelacja liniowa wzory

Bardziej szczegółowo

1. Eliminuje się ze zbioru potencjalnych zmiennych te zmienne dla których korelacja ze zmienną objaśnianą jest mniejsza od krytycznej:

1. Eliminuje się ze zbioru potencjalnych zmiennych te zmienne dla których korelacja ze zmienną objaśnianą jest mniejsza od krytycznej: Metoda analizy macierzy współczynników korelacji Idea metody sprowadza się do wyboru takich zmiennych objaśniających, które są silnie skorelowane ze zmienną objaśnianą i równocześnie słabo skorelowane

Bardziej szczegółowo

Stosowana Analiza Regresji

Stosowana Analiza Regresji prostej Stosowana Wykład I 5 Października 2011 1 / 29 prostej Przykład Dane trees - wyniki pomiarów objętości (Volume), średnicy (Girth) i wysokości (Height) pni drzew. Interesuje nas zależność (o ile

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k: Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/201 WydziałPsychologii i Nauk Humanistycznych Kierunek studiów:

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS

WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS Nazwa przedmiotu: Statystyka opisowa Profil 1 : ogólnoakademicki Cel przedmiotu: Zapoznanie studentów

Bardziej szczegółowo

KILKA UWAG DO ANALZY ROZKŁADU PRAWDOPODOBIEŃSTWA INFORMACJI RYNKOWYCH **

KILKA UWAG DO ANALZY ROZKŁADU PRAWDOPODOBIEŃSTWA INFORMACJI RYNKOWYCH ** GEODEZJA TOM 6 ZESZYT 2 2000 332.852:519.2 Józef Czaja *, Edward Preweda * KILKA UWAG DO ANALZY ROZKŁADU PRAWDOPODOBIEŃSTWA INFORMACJI RYNKOWYCH ** 1. Studium pojęć W ostatnim okresie środowisko rzeczoznawców

Bardziej szczegółowo