Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki. ĆWICZENIE Nr 8 (3h) Implementacja pamięci RAM w FPGA.
|
|
- Katarzyna Grzelak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 8 (3h) Implementacja pamięci RAM w FPGA. Instrukcja pomocnicza do laboratorium z przedmiotu Synteza układów cyfrowych ES2C studiów stacjonarnych II stopnia kierunku: Elektrotechnika Opracował: dr inż. Walenty Owieczko dr inż. Marian Gilewski Białystok 2013
2 1. Cel ćwiczenia. Celem ćwiczenia jest implementacja w strukturach programowalnych lub obsługa zewnętrznych pamięci RAM. Ogólny schemat modułu pamięci RAM przedstawiono rysunku 1a. Rys. 1. Moduł pamięci RAM o organizacji 32 komórek 8 bitowych. Zawiera on 32 słowa 8 bitowe, adresowane 5 bitową szyną adresową (Address ) oraz 8 bitową szynę danych (Data) i wejściowy sygnał sterujący (Write). Rozważymy dwa różne sposoby implementacji pamięci: wykorzystując dedykowane bloki pamięci w układzie FPGA, używając zewnętrznego układu pamięci. Układ Cyclone II 2C35 FPGA zamontowany na płycie DE2 zawiera dedykowane zasoby pamięciowe, zwane blokami M4K. Każdy taki blok zawiera pamięć 4096 bitową, która może być konfigurowalna w bloki o różnej organizacji. Stałym parametrem jest współczynnik kształtu, określony iloczynem liczby słów (komórek) i długością słowa, wyrażony w bitach. Przykładowo, blok M4K może być organizowany w struktury: 4k x 1, 2k x 2, 1k x 4 oraz 512 x 8. W ćwiczeniu będziemy użytkować blok 512 x 8, wykorzystując pierwsze 32 słowa pamięci. Istnieją dwie ważne cechy M4K o których należałoby wspomnieć. Po pierwsze, zawiera on rejestry, które mogą zsynchronizować wszystkie sygnały wejściowe i wyjściowe z sygnałem zegarowym. Po drugie M4K posiada oddzielne wejściowe i wyjściowe szyny danych. Wymagania synchronizacji M4K dotyczą portów wejściowych, portu wyjściowego lub wszystkich jednocześnie. Wymagania te będziemy implementować modyfikując moduł RAM 32 x 8 pokazany na rysunku 1b. Zawiera on rejestry: szyny adresowej, wejściowej szyny danych, sygnału sterującego zapisem i nie buforowanej wyjściowej szyny danych.
3 2. Część pierwsza. Stosowanie w systemie Quartus II struktur logicznych takich jak: sumatory, rejestry, liczniki i pamięci może odbywać się z zastosowaniem biblioteki elementów parametryzowalnych LPM. W przypadku syntezy pamięci RAM w wydzielonych blokach pamięci FPGA postępujemy podobnie jak w poprzednim ćwiczeniu używając modułu MegaWizard. Przy czym istnieje możliwość syntezy pamięci RAM: 1 portowej, 2 portowej, 3 portowej lub typu FIFO. W ćwiczeniu ograniczymy się do badania pamięci jednoportowej. 1. Utwórz nowy projekt w systemie Quartus II przypisując odpowiedni chip Cyclone II. 2. Za pomocą MegaWizard wybierz element RAM: 1 PORT. Kolejne menu służy do zadawania podstawowych parametrów pamięci: - długości słowa danych, - liczby słów pamięci głębokości pamięci, - miejsce lokalizacji w struktutrze FPGA (LCs, M4K, Auto), - sposób synchronizacji operacji zapisu i odczytu.
4 Kolejny krok jest podobny jak w przypadku syntezy pamięci ROM
5 Dość istotne ustawienie znajduje się na kolejnym ekranie konfiguracyjnym. Dotyczą one zachowania pamięci po starcie układu FPGA. Istnieje możliwość wskazania pliku konfigurującego wartość początkową pamięci. Pozostałe okna podsumowujące proces syntezy są podobne jak w przypadku pamięci ROM. 3. Na schemacie dołącz odpowiednie porty, układ skompiluj, zasymuluj, zaprogramuj i przetestuj. układ. Obejrzyj w raporcie kompilacji użycie 256 bitów w jednym z bloków 3. Część druga. Zamiast bezpośredniego konkretyzacji modułu LPM, możemy implementować pamięć poprzez specyfikację jej struktury w kodzie VHDL. Jest możliwe definiowanie pamięci jako wielowymiarowej macierzy. Macierz 32 x 8, zawierająca 32 słowa 8 bitowe deklarowana jest za pomocą instrukcji: TYPE mem IS ARRAY(0 TO 31) OF STD LOGIC VECTOR(7 DOWNTO 0); SIGNAL memory array : mem; W układzie Cyclone II FPGA taka pamięć może być implementowana poprzez zastosowanie zarówno przerzutników elementów logicznych jak i bardziej efektywnie z zastosowanie bloków M4K. Dwie drogi prowadzą do stosowania bloków M4K. Jedną z nich było użycie elementu parametryzowalnego w części pierwszej. Drugą jest stosowanie właściwego stylu kodowania w VHDL, z którego kompilator mógłby wnioskować, że powinien być użyty blok pamięci. Help programu Quartus II pokazuje jak to można zrobić na wybranych przykładach (Help for Inferred memory ). Wykonaj następujące kroki:
6 1. Utwórz nowy projekt. 2. Napisz kod programu zawierający niezbędne funkcje, pozwalające na implemetację RAM, dodaj niezbędne elementy opisane w części Podłącz piny, przełączniki i wyświetlacze. 4. Przetestuj układ jak poprzednio. 5. Skomentuj różnice jakie zaobserwowałeś w stosunku do części Część trzecia. Płyta DE2 zawiera SRAM chip IS61LV25616AL-10, który jest statyczną RAM zawierającą 256k 16 bitowych słów. SRAM zawiera 18 bitową szynę adresową A 17-0 i 16 bitową dwukierunkową magistralę danych I/O Posiada również kilka wejściowych sygnałów sterujących:,,, i, opisanych w tabeli 1: Nazwa Znaczenie Chip enable zezwolenie dostępu, wymagane 0 w czasie pracy RAM Output enable zezwolenie odczytu, wymagane 0 podczas cyklu odczytu Write enable zezwolenie zapisu, wymagane 0 podczas cyklu zapisu Upper byte żądanie starszego bajtu, 0 przy zapisie i odczycie Lower byte - żądanie młodszego bajtu, 0 przy zapisie i odczycie Tab. 1. Sygnały sterujące SRAM. Opis operacji IS61LV25616AL opisano w danych katalogowych, dołączonych do pakietu DE2 na płycie CD. Dane katalogowe można również znaleźć za pomocą wyszukiwarki internetowej. Dane katalogowe opisują szereg operacji pamięci wraz obszerną listą ich charakterystyk czasowych. Na potrzeby niniejszego ćwiczenia należy zapewnić stan niski na wejściach,, i oraz kontrolować odczyt i zapis do pamięci sygnałem. Uproszczoną charakterystykę czasową odpowiadającą temu trybowi pokazano na rysunku 4. Część a pokazuje cykl odczytu pamięci, który rozpoczyna się gdy sygnał na szynie adresowej jest stabilny, zaś sygnał nie jest aktywny (jest równy 1). Pamięć wystawia stabilne dane na szynie danych I/O 15-0 po upływie czasu dostępu szyny adresowej (address access delay) t AA. Cykl odczytu kończy zmiana sygnału na szynie adresowej, stabilne dane wyjściowe pozostają jeszcze przez czas podtrzymywania (output hold time) t OHA. Rysunek poniżej przedstawia charakterystyki czasowe cyklu zapisu do pamięci. Cykl zapisu rozpoczyna się wystawieniem niskiego sygnału na linii i kończy się gdy sygnał ten wraca do poziomu wysokiego. Stabilny sygnał adresowy powinien w tym czasie utrzymywać się przez czas ustawiania (address setup time) t AW. Stabilne dane do zapisu na szynie danych powinny utrzymywać się przez czas ustawiania danych (data setup time) t SD, zanim sygnał powróci do stanu wysokiego.
7 Tabela 2 zawiera minimalne i maksymalne wartości parametrów czasowych z rysunku 4 pamięci SRAM. Wartość Parametr min maks t AA - 10 ns t OHA 3 ns - t AW 8 ns - t SD 6 ns - t HA - - t SA - - t HD - - Tab. 2. Parametry czasowe SRAM. Zrealizuj pamięć z pierwszej części wykorzystując zewnętrzną pamięć SRAM. Zachowuj ostrożność w implementacji poprawnej dwukierunkowej szyny danych. 1. Utwórz nowy projekt. Utwórz stosowny plik VHDL, umożliwiający ładowanie i odczyt pamięci. Zastosuj te same przełączniki, diody LED i wyświetlacze jak w częściach 2 i 3 oraz nazwy pinów podane w tabeli 3 do obsługi pamięci IS61LV25616AL. Zauważ, że nie będą wykorzystane wszystkie linie szyny adresowej oraz szyny danych IS61LV25616AL podczas organizacji pamięci 32 x 8. Niewykorzystane piny należy spolaryzować niskim poziomem.
8 Nazwa portu SRAM Nazwy pinówde2 A 17-0 SRAM_ADDR 17-0 I/O 15-0 SRAM_DQ 15-0 SRAM_CE_N SRAM_OE_N SRAM_WE_N SRAM_UB_N SRAM_LB_N Tab. 3. Nazwy pinów SRAM w DE2. 2. Skompiluj układ i załaduj FPGA. 3. Przetestuj układ zapisując i odczytując wartości wybranych, różnych komórek pamięci. 5. Część czwarta. Blok pamięci z poprzedniej części posiada tę samą szynę adresową dla operacji odczytu I zapisu. W tej części utwórz inny typ pamięci zawierający dwie szyny adresowe: jedną dla operacji odczytu i drugą dla operacji zapisu czyli dokonaj syntezy pamięci dwuportowej. Wykonaj następujące kroki: 1. Utwórz nowy projekt. Użyj ponownie MegaWizard Plug-in Manager do konkretyzacji RAM. 2. Dołącz wytworzony komponent do projektu. W celu obejrzenia zawartości RAM dodaj do projektu możliwość wyświetlania poszczególnych bajtów na wyświetlaczach HEX1 i HEX0. Przewiń adresy pamięci w celu wyświetlenia bajtów danych z 1 sekundowymi interwałami czasowymi. Adresy przeglądanych komórek wyświetl na HEX3 i HEX2. Użyj 50 MHz zegar, CLOCK_50 oraz KEY 0 jako wejścia zerującego. Użyj do obsługi szyny adresowej oraz szyny danych tych samych przełączników, diod LED i wyświetlaczy siedmiosegmentowych jak w pierwszej części ćwiczenia. Upewnij się, iż wejścia przełączników są zsynchronizowane z sygnałem zegarowym. 3. Przetestuj swój układ oraz zweryfikuj zawartość początkową pamięci. Upewnij się, iż możesz niezależnie zapisywać dane pod dowolny adres używając przełączników.. Literatura: 1. Barski M., Jędruch W.: Układy cyfrowe, podstawy projektowania i opisu w języku VHDL, Wydawnictwo Politechniki Gdańskiej, IEEE-SA Standars Board: IEEE Standard VHDL Language reference manual, ieeexplore.ieee.org/iel5/7180/19335/ pdf, USA, Łuba T.: Synteza układów cyfrowych, WKiŁ, Warszawa, Mano M.M., Kime Ch.R.: Podstawy projektowania układów logicznych i komputerów, NT, Warszawa Skahill K.: Język VHDL Projektowanie programowalnych układów logicznych, WNT, Warszawa, 2001.
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki. ĆWICZENIE Nr 4 (3h) Przerzutniki, zatrzaski i rejestry w VHDL
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 4 (3h) Przerzutniki, zatrzaski i rejestry w VHDL Instrukcja pomocnicza do laboratorium z przedmiotu Synteza układów
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki. ĆWICZENIE Nr 8 (3h) Implementacja pamięci ROM w FPGA
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 8 (3h) Implementacja pamięci ROM w FPGA Instrukcja pomocnicza do laboratorium z przedmiotu Programowalne Struktury
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 3 (4h) Konwersja i wyświetlania informacji binarnej w VHDL Instrukcja do zajęć laboratoryjnych z przedmiotu Synteza
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 2 (3h) Przełączniki, wyświetlacze, multipleksery - implementacja i obsługa w VHDL Instrukcja pomocnicza do laboratorium
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 7 (2h) Obsługa urządzenia peryferyjnego z użyciem pamięci w VHDL. Instrukcja do zajęć laboratoryjnych z przedmiotu
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 10 (3h) Implementacja interfejsu SPI w strukturze programowalnej Instrukcja pomocnicza do laboratorium z przedmiotu
Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: SYNTEZA UKŁADÓW CYFROWYCH ES2D100005
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: SYNTEZA UKŁADÓW CYFROWYCH ES2D100005 Ćwiczenie Nr 9 Procesor złożony Opracował:
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 9 (3h) Projekt struktury hierarchicznej układu cyfrowego w FPGA. Instrukcja pomocnicza do laboratorium z przedmiotu
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki. Instrukcje do zajęć laboratoryjnych. Laboratorium z przedmiotu:
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcje do zajęć laboratoryjnych Laboratorium z przedmiotu: Programowalne Układy Cyfrowe (studia stacjonarne II stopnia,
Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: SYNTEZA UKŁADÓW CYFROWYCH ES2D100005
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: SYNTEZA UKŁADÓW CYFROWYCH ES2D100005 Ćwiczenie Nr 8 Implementacja prostego
LABORATORIUM TECHNIKA CYFROWA. Pamięci. Rev.1.35
LABORATORIUM TECHNIKA CYFROWA Pamięci Rev.1.35 1. Cel ćwiczenia Praktyczna weryfikacja wiedzy teoretycznej z projektowania modułów sterowania oraz kontroli pamięci 2. Kolokwium Kolokwium wstępne sprawdzające
Projekt prostego procesora
Projekt prostego procesora Opracowany przez Rafała Walkowiaka dla zajęć z PTC 2012/2013 w oparciu o Laboratory Exercise 9 Altera Corporation Rysunek 1 przedstawia schemat układu cyfrowego stanowiącego
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 1 (3h) Wprowadzenie do obsługi platformy projektowej Quartus II Instrukcja pomocnicza do laboratorium z przedmiotu
Systemy Czasu Rzeczywistego FPGA
01. Systemy Czasu Rzeczywistego FPGA 1 Systemy Czasu Rzeczywistego FPGA laboratorium: 05 autor: mgr inż. Mateusz Baran 01. Systemy Czasu Rzeczywistego FPGA 2 1 Spis treści FPGA... 1 1 Spis treści... 2
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki. Automaty stanów
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 6 (2h) Automaty stanów Instrukcja do zajęć laboratoryjnych z przedmiotu Synteza układów cyfrowych studia niestacjonarne,
Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja. do ćwiczeń laboratoryjnych z przedmiotu: SYSTEMY CYFROWE 1.
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: SYSTEMY CYFROWE 1 PAMIĘCI SZEREGOWE EEPROM Ćwiczenie 3 Opracował: dr inŝ.
4. Karta modułu Slave
sygnały na magistralę. Można wyróżnić trzy typy układów scalonych takie jak bramki o otwartym kolektorze wyjściowym, bramki trójstanowe i bramki o przeciwsobnym wzmacniaczu wyjściowym. Obciążalność prądową
Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: PROGRAMOWALNE STRUKTURY LOGICZNE
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: PROGRAMOWALNE STRUKTURY LOGICZNE ES1C420 300 Ćwiczenie Nr 1 SYSTEM CAD
Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: TECHNIKA CYFROWA 2 TS1C300 020
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: TECHNIKA CYFROWA 2 TS1C300 020 Ćwiczenie Nr 12 PROJEKTOWANIE WYBRANYCH
Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: PROGRAMOWALNE STRUKTURY LOGICZNE
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: PROGRAMOWALNE STRUKTURY LOGICZNE ES1C420 300 Ćwiczenie Nr 8 KONFIGUROWALNE
Systemy Czasu Rzeczywistego FPGA
01. Systemy Czasu Rzeczywistego FPGA 1 Systemy Czasu Rzeczywistego FPGA laboratorium: 03 autor: mgr inż. Mateusz Baran 01. Systemy Czasu Rzeczywistego FPGA 2 1 Spis treści FPGA... 1 1 Spis treści... 2
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki. ĆWICZENIE Nr 1 (3h) Wprowadzenie do systemu Quartus II
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki ĆWICZENIE Nr 1 (3h) Wprowadzenie do systemu Quartus II Instrukcja pomocnicza do laboratorium z przedmiotu Synteza układów cyfrowych
WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego LABORATORIUM UKŁADÓW PROGRAMOWALNYCH I SPECJALIZOWANYCH
WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego LABORATORIUM UKŁADÓW PROGRAMOWALNYCH I SPECJALIZOWANYCH SPRAWOZDANIE Temat: Projekt notesu elektronicznego w języku VHDL przy użyciu układów firmy
LABORATORIUM ELEKTRONIKA Projektowanie koderów, transkoderów i dekoderów w języku VHDL
LABORATORIUM ELEKTRONIKA Projektowanie koderów, transkoderów i dekoderów w języku VHDL 1. Cel ćwiczenia W ćwiczeniu student projektuje i implementuje w strukturze układu FPGA (Field Programmable Gate Array)
Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: PROGRAMOWALNE STRUKTURY LOGICZNE
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: PROGRAMOWALNE STRUKTURY LOGICZNE ES1C420 300 Ćwiczenie Nr 9 REALIZACJA
Projektowanie Systemów Wbudowanych
Projektowanie Systemów Wbudowanych Podstawowe informacje o płycie DE2 Autorzy: mgr inż. Dominik Bąk i mgr inż. Leszek Ciopiński 1. Płyta DE2 Rysunek 1. Widok płyty DE2 z zaznaczonymi jej komponentami.
Programowanie Układów Logicznych kod kursu: ETD6203 W dr inż. Daniel Kopiec. Pamięć w układach programowalnych
Programowanie Układów Logicznych kod kursu: ETD623 Pamięć w układach programowalnych W6 6.4.26 dr inż. Daniel Kopiec Plan wykładu Pamięć w układach programowalnych Zasada działania, podział pamięci Miara
Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: TECHNIKA CYFROWA 2 TS1C300 020
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: TEHNIKA YFOWA 2 T1300 020 Ćwiczenie Nr 6 EALIZAJA FUNKJI EJETOWYH W TUKTUAH
Projektowanie Urządzeń Cyfrowych
Projektowanie Urządzeń Cyfrowych Laboratorium 2 Przykład prostego ALU Opracował: mgr inż. Leszek Ciopiński Wstęp: Magistrale: Program MAX+plus II umożliwia tworzenie magistral. Magistrale są to grupy przewodów
Lista zadań nr 1. Zagadnienia stosowanie sieci Petriego (ang. Petri net) jako narzędzia do modelowania algorytmów sterowania procesami
Warsztaty Koła Naukowego SMART dr inż. Grzegorz Bazydło G.Bazydlo@iee.uz.zgora.pl, staff.uz.zgora.pl/gbazydlo Lista zadań nr 1 Zagadnienia stosowanie sieci Petriego (ang. Petri net) jako narzędzia do modelowania
Technika Mikroprocesorowa
Technika Mikroprocesorowa Dariusz Makowski Katedra Mikroelektroniki i Technik Informatycznych tel. 631 2648 dmakow@dmcs.pl http://neo.dmcs.p.lodz.pl/tm 1 System mikroprocesorowy? (1) Magistrala adresowa
Wyświetlacz alfanumeryczny LCD zbudowany na sterowniku HD44780
Dane techniczne : Wyświetlacz alfanumeryczny LCD zbudowany na sterowniku HD44780 a) wielkość bufora znaków (DD RAM): 80 znaków (80 bajtów) b) możliwość sterowania (czyli podawania kodów znaków) za pomocą
Systemy uruchomieniowe
Systemy uruchomieniowe Przemysław ZAKRZEWSKI Systemy uruchomieniowe (1) 1 Środki wspomagające uruchamianie systemów mikroprocesorowych Symulator mikroprocesora Analizator stanów logicznych Systemy uruchomieniowe:
dokument DOK 02-05-12 wersja 1.0 www.arskam.com
ARS3-RA v.1.0 mikro kod sterownika 8 Linii I/O ze zdalną transmisją kanałem radiowym lub poprzez port UART. Kod przeznaczony dla sprzętu opartego o projekt referencyjny DOK 01-05-12. Opis programowania
Spis treści 1. Wstęp 2. Ćwiczenia laboratoryjne LPM
Spis treści 1. Wstęp... 9 2. Ćwiczenia laboratoryjne... 12 2.1. Środowisko projektowania Quartus II dla układów FPGA Altera... 12 2.1.1. Cel ćwiczenia... 12 2.1.2. Wprowadzenie... 12 2.1.3. Przebieg ćwiczenia...
Altera Quartus II. Opis niektórych komponentów dostarczanych razem ze środowiskiem. Opracował: mgr inż. Leszek Ciopiński
Altera Quartus II Opis niektórych komponentów dostarczanych razem ze środowiskiem Opracował: mgr inż. Leszek Ciopiński Spis treści Opis wybranych zagadnień obsługi środowiska Altera Quartus II:...1 Magistrale:...
Siła (w) pamięci on-chip Implementacje pamięci w układach Cyclone IV firmy Altera
PODZESPOŁY Siła (w) pamięci on-chip Implementacje pamięci w układach Cyclone IV firmy Altera Dodatkowe materiały na CD i FTP Jedną ze sztandarowych cech współczesnych układów FPGA jest możliwość implementacji
Organizacja pamięci VRAM monitora znakowego. 1. Tryb pracy automatycznej
Struktura stanowiska laboratoryjnego Na rysunku 1.1 pokazano strukturę stanowiska laboratoryjnego Z80 z interfejsem częstościomierza- czasomierz PFL 21/22. Rys.1.1. Struktura stanowiska. Interfejs częstościomierza
Instrukcja do ćwiczenia : Matryca komutacyjna
Instrukcja do ćwiczenia : Matryca komutacyjna 1. Wstęp Każdy kanał w systemach ze zwielokrotnieniem czasowym jest jednocześnie określany przez swoją współrzędną czasową T i współrzędną przestrzenną S.
Układy sekwencyjne. Podstawowe informacje o układach cyfrowych i przerzutnikach (rodzaje, sposoby wyzwalania).
Ćw. 10 Układy sekwencyjne 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną układy rejestrów
Organizacja typowego mikroprocesora
Organizacja typowego mikroprocesora 1 Architektura procesora 8086 2 Architektura współczesnego procesora 3 Schemat blokowy procesora AVR Mega o architekturze harwardzkiej Wszystkie mikroprocesory zawierają
1.2 Schemat blokowy oraz opis sygnałów wejściowych i wyjściowych
Dodatek A Wyświetlacz LCD. Przeznaczenie i ogólna charakterystyka Wyświetlacz ciekłokrystaliczny HY-62F4 zastosowany w ćwiczeniu jest wyświetlaczem matrycowym zawierającym moduł kontrolera i układ wykonawczy
WPROWADZENIE Mikrosterownik mikrokontrolery
WPROWADZENIE Mikrosterownik (cyfrowy) jest to moduł elektroniczny zawierający wszystkie środki niezbędne do realizacji wymaganych procedur sterowania przy pomocy metod komputerowych. Platformy budowy mikrosterowników:
Laboratorium z podstaw techniki cyfrowej Studia inżynierskie niestacjonarne/stacjonarne, II rok III semestr, 2016/2017. W ramach laboratorium używamy:
Laboratorium z podstaw techniki cyfrowej Studia inżynierskie niestacjonarne/stacjonarne, II rok III semestr, 2016/2017 W ramach laboratorium używamy: - oprogramowanie: QUARTUS 13.0 sp1 firmy Altera i -
Wydział Elektryczny. Katedra Automatyki i Elektroniki. Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: PROGRAMOWALNE STRUKTURY LOGICZNE
Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: PROGRAMOWALNE STRUKTURY LOGICZNE ES1C420 300 Ćwiczenie Nr 2 KOMPILACJA
Projektowanie z użyciem procesora programowego Nios II
Projektowanie z użyciem procesora programowego Nios II WSTĘP Celem ćwiczenia jest nauczenie projektowania układów cyfrowych z użyciem wbudowanych procesorów programowych typu Nios II dla układów FPGA firmy
Ćwiczenie 01 - Strona nr 1 ĆWICZENIE 01
ĆWICZENIE 01 Ćwiczenie 01 - Strona nr 1 Polecenie: Bez użycia narzędzi elektronicznych oraz informatycznych, wykonaj konwersje liczb z jednego systemu liczbowego (BIN, OCT, DEC, HEX) do drugiego systemu
Technika mikroprocesorowa. W. Daca, Politechnika Szczecińska, Wydział Elektryczny, 2007/08
Pamięci Układy pamięci kontaktują się z otoczeniem poprzez szynę danych, szynę owa i szynę sterującą. Szerokość szyny danych określa liczbę bitów zapamiętywanych do pamięci lub czytanych z pamięci w trakcie
Modelowanie liczników w języku Verilog i ich implementacja w strukturze FPGA
Modelowanie liczników w języku Verilog i ich implementacja w strukturze FPGA Licznik binarny Licznik binarny jest najprostszym i najpojemniejszym licznikiem. Kod 4 bitowego synchronicznego licznika binarnego
Architektura komputerów. Układy wejścia-wyjścia komputera
Architektura komputerów Układy wejścia-wyjścia komputera Wspópraca komputera z urządzeniami zewnętrznymi Integracja urządzeń w systemach: sprzętowa - interfejs programowa - protokół sterujący Interfejs
Karta katalogowa JAZZ OPLC JZ20-R31
Karta katalogowa JAZZ OPLC JZ20-R31 W tym dokumencie znajduje się specyfikacja Unitronics Jazz Micro-OPLC JZ20-R31. Dodatkowe informacje znajdują się na płycie instalacyjnej CD Unitronics i w bibliotece
Sterownik kompaktowy Theben PHARAO II
Wydział Elektroniki Politechniki Wrocławskiej Laboratorium Automatyki Budynkowej Sterownik kompaktowy Theben PHARAO II 1. Wstęp Pherao II jest niewielkim sterownikiem kompaktowym, który charakteryzuje
Scalone układy programowalne FPGA.
Scalone układy programowalne FPGA. (jd) Jacek Długopolski Katedra Informatyki AGH (v1.2) 1. Cel ćwiczenia Celem ćwiczenia jest zdobycie podstawowych wiadomości i umiejętności korzystania z oprogramowania
Systemy Czasu Rzeczywistego FPGA
01. Systemy Czasu Rzeczywistego FPGA 1 Systemy Czasu Rzeczywistego FPGA laboratorium: 04 autor: mgr inż. Mateusz Baran 01. Systemy Czasu Rzeczywistego FPGA 2 1 Spis treści FPGA... 1 1 Spis treści... 2
CompactPCI. PCI Industrial Computers Manufacturers Group (PICMG)
PCI Industrial Computers Manufacturers Group (PICMG) nowy standard; nowa jakość komputerów realizujących krytyczne zadania w systemach pracujących w trudnych warunkach; Baza specyfikacji: format kaset
Systemy Czasu Rzeczywistego FPGA
01. Systemy Czasu Rzeczywistego FPGA 1 Systemy Czasu Rzeczywistego FPGA laboratorium: 06 autor: mgr inż. Mateusz Baran 01. Systemy Czasu Rzeczywistego FPGA 2 1 Spis treści FPGA... 1 1 Spis treści... 2
Instytut Teleinformatyki
Instytut Teleinformatyki Wydział Fizyki, Matematyki i Informatyki Politechnika Krakowska Mikroprocesory i Mikrokontrolery Dostęp do portów mikrokontrolera ATmega32 język C laboratorium: 10 autorzy: dr
Projektowania Układów Elektronicznych CAD Laboratorium
Projektowania Układów Elektronicznych CAD Laboratorium ĆWICZENIE NR 3 Temat: Symulacja układów cyfrowych. Ćwiczenie demonstruje podstawowe zasady analizy układów cyfrowych przy wykorzystaniu programu PSpice.
Bezpieczeństwo informacji oparte o kryptografię kwantową
WYŻSZA SZKOŁA BIZNESU W DĄBROWIE GÓRNICZEJ WYDZIAŁ ZARZĄDZANIA INFORMATYKI I NAUK SPOŁECZNYCH Instrukcja do laboratorium z przedmiotu: Bezpieczeństwo informacji oparte o kryptografię kwantową Instrukcja
1. Poznanie właściwości i zasady działania rejestrów przesuwnych. 2. Poznanie właściwości i zasady działania liczników pierścieniowych.
Ćwiczenie 9 Rejestry przesuwne i liczniki pierścieniowe. Cel. Poznanie właściwości i zasady działania rejestrów przesuwnych.. Poznanie właściwości i zasady działania liczników pierścieniowych. Wprowadzenie.
2. Architektura mikrokontrolerów PIC16F8x... 13
Spis treści 3 Spis treœci 1. Informacje wstępne... 9 2. Architektura mikrokontrolerów PIC16F8x... 13 2.1. Budowa wewnętrzna mikrokontrolerów PIC16F8x... 14 2.2. Napięcie zasilania... 17 2.3. Generator
ĆWICZENIE 7. Wprowadzenie do funkcji specjalnych sterownika LOGO!
ćwiczenie nr 7 str.1/1 ĆWICZENIE 7 Wprowadzenie do funkcji specjalnych sterownika LOGO! 1. CEL ĆWICZENIA: zapoznanie się z zaawansowanymi możliwościami mikroprocesorowych sterowników programowalnych na
Lista zadań nr 5. Ścieżka projektowa Realizacja każdego z zadań odbywać się będzie zgodnie z poniższą ścieżką projektową (rys.
Sterowanie procesami dyskretnymi laboratorium dr inż. Grzegorz Bazydło G.Bazydlo@iee.uz.zgora.pl, staff.uz.zgora.pl/gbazydlo Lista zadań nr 5 Zagadnienia stosowanie skończonych automatów stanów (ang. Finite
Ćwiczenie Digital Works 003 Układy sekwencyjne i kombinacyjne
TECHNIKA MIKROPROCESOROWA 3EB KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII WWW.KEIASPE.AGH.EDU.PL AKADEMIA GÓRNICZO-HUTNICZA WWW.AGH.EDU.PL Temat: Narzędzia: Digital Works pakiet
Który z podzespołów komputera przy wyłączonym zasilaniu przechowuje program rozpoczynający ładowanie systemu operacyjnego? A. CPU B. RAM C. ROM D.
1 WERSJA X Zadanie 1 Który z podzespołów komputera przy wyłączonym zasilaniu przechowuje program rozpoczynający ładowanie systemu operacyjnego? A. CPU B. RAM C. ROM D. I/O Zadanie 2 Na podstawie nazw sygnałów
Parametryzacja przetworników analogowocyfrowych
Parametryzacja przetworników analogowocyfrowych wersja: 05.2015 1. Cel ćwiczenia Celem ćwiczenia jest zaprezentowanie istoty działania przetworników analogowo-cyfrowych (ADC analog-to-digital converter),
LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW
POLITECHNIKA POZNAŃSKA FILIA W PILE LABORATORIUM ELEKTRONIKI I TEORII OBWODÓW numer ćwiczenia: data wykonania ćwiczenia: data oddania sprawozdania: OCENA: 6 21.11.2002 28.11.2002 tytuł ćwiczenia: wykonawcy:
Laboratorium przedmiotu Technika Cyfrowa
Laboratorium przedmiotu Technika Cyfrowa ćw.3 i 4: Asynchroniczne i synchroniczne automaty sekwencyjne 1. Implementacja asynchronicznych i synchronicznych maszyn stanu w języku VERILOG: Maszyny stanu w
Układy programowalne. Wykład z ptc część 5
Układy programowalne Wykład z ptc część 5 Pamięci ROM Pamięci stałe typu ROM (Read only memory) umożliwiają jedynie odczytanie informacji zawartej w strukturze pamięci. Działanie: Y= X j *cs gdzie j=linia(a).
Układy Cyfrowe projekt. Korekcja jasności obrazów w 24-bitowym formacie BMP z użyciem funkcji gamma. Opis głównych modułów sprzętowych
Michał Leśniewski Tomasz Władziński Układy Cyfrowe projekt Korekcja jasności obrazów w 24-bitowym formacie BMP z użyciem funkcji gamma Opis głównych modułów sprzętowych Realizacja funkcji gamma entity
Ćwiczenie D2 Przerzutniki. Wydział Fizyki UW
Wydział Fizyki UW Pracownia fizyczna i elektroniczna (w tym komputerowa) dla Inżynierii Nanostruktur (1100-1INZ27) oraz Energetyki i Chemii Jądrowej (1100-1ENFIZELEK2) Ćwiczenie 2 Przerzutniki Streszczenie
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej. Instrukcja do zajęć laboratoryjnych z przedmiotu:
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Architektura i Programowanie Procesorów Sygnałowych Kod:
Elementy cyfrowe i układy logiczne
Elementy cyfrowe i układy logiczne Wykład 5 Legenda Procedura projektowania Podział układów VLSI 2 1 Procedura projektowania Specyfikacja Napisz, jeśli jeszcze nie istnieje, specyfikację układu. Opracowanie
System mikroprocesorowy i peryferia. Dariusz Chaberski
System mikroprocesorowy i peryferia Dariusz Chaberski System mikroprocesorowy mikroprocesor pamięć kontroler przerwań układy wejścia wyjścia kontroler DMA 2 Pamięć rodzaje (podział ze względu na sposób
3.2. Zegar/kalendarz z pamięcią statyczną RAM 256 x 8
3.2. Zegar/kalendarz z pamięcią statyczną RAM 256 x 8 Układ PCF 8583 jest pobierającą małą moc, 2048 bitową statyczną pamięcią CMOS RAM o organizacji 256 x 8 bitów. Adresy i dane są przesyłane szeregowo
PROTOTYPOWANIE UKŁADÓW ELEKTRONICZNYCH Programowalne układy logiczne FPGA Maciej Rosół, Katedra Automatyki AGH, e-mail: mr@ia.agh.edu.
DATA: Ćwiczenie nr 4 PROTOTYPOWANIE UKŁADÓW ELEKTRONICZNYCH Programowalne układy logiczne FPGA Maciej Rosół, Katedra Automatyki AGH, e-mail: mr@ia.agh.edu.pl 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie
JAZZ OPLC JZ20-R31/JZ20-J-R31
Karta katalogowa JAZZ OPLC JZ20-R31/JZ20-J-R31 W dokumencie znajduje się specyfikacja Unitronics Jazz Micro-OPLC JZ20-R31/JZ20-J- R31. Dodatkowe informacje znajdują się na płycie instalacyjnej CD Unitronics
IIPW_SML3_680 (Z80) przewodnik do ćwiczeń laboratoryjnych
IIPW_SML3_680 (Z80) przewodnik do ćwiczeń laboratoryjnych wrzesieo 2010 UWAGA: Moduł jest zasilany napięciem do 3.3V i nie może współpracowad z wyjściami układów zasilanych z wyższych napięd. Do pracy
JAZZ OPLC JZ20-R10 i JZ20-R16
Karta katalogowa JAZZ OPLC i W dokumencie znajduje się specyfikacja Unitronics Jazz Micro-OPLC oraz. Dodatkowe informacje znajdują się na płycie instalacyjnej CD Unitronics i w bibliotece technicznej na
Ćw. 7: Układy sekwencyjne
Ćw. 7: Układy sekwencyjne Wstęp Celem ćwiczenia jest zapoznanie się z sekwencyjnymi, cyfrowymi blokami funkcjonalnymi. W ćwiczeniu w oparciu o poznane przerzutniki zbudowane zostaną następujące układy
Liczniki, rejestry lab. 08 Mikrokontrolery WSTĘP
Liczniki, rejestry lab. 08 PODSTAWY TECHNIKI CYFROWEJ I MIKROPROCESOROWEJ EIP KATEDRA ENERGOELEKTRONIKI I AUTOMATYKI SYSTEMÓW PRZETWARZANIA ENERGII WWW.KEIASPE.AGH.EDU.PL AKADEMIA GÓRNICZO-HUTNICZA WWW.AGH.EDU.PL
Opis układów wykorzystanych w aplikacji
Opis układów wykorzystanych w aplikacji Układ 74LS164 jest rejestrem przesuwnym służącym do zamiany informacji szeregowej na równoległą. Układ, którego symbol logiczny pokazuje rysunek 1, posiada dwa wejścia
mgr inż. Maciej Rudek opracował: dr inż. Daniel Kopiec
Programowanie Układów Logicznych kod kursu: ETD623 Pamięć w układach programowalnych W6 4.4.28 mgr inż. Maciej Rudek opracował: dr inż. Daniel Kopiec Plan wykładu Powtórka wiadomości Pamięć w układach
Programowany układ czasowy
Programowany układ czasowy Zbuduj na płycie testowej ze Spartanem-3A prosty ośmiobitowy układ czasowy pracujący w trzech trybach. Zademonstruj jego działanie na ekranie oscyloskopu. Projekt z Języków Opisu
Układy FPGA w przykładach, część 2
Układy FPGA w przykładach, część 2 W drugiej części artykułu zajmiemy się omówieniem wyposażenia (po mikrokontrolerowemu : peryferiów) układów FPGA z rodziny Spartan 3, co ułatwi ich wykorzystywanie w
Opis przedmiotu zamówienia CZĘŚĆ 1
Opis przedmiotu zamówienia CZĘŚĆ 1 Stanowiska do badań algorytmów sterowania interfejsów energoelektronicznych zasobników energii bazujących na układach programowalnych FPGA. Stanowiska laboratoryjne mają
Pracownia Transmisji Danych, Instytut Fizyki UMK, Toruń. Instrukcja do ćwiczenia nr 10. Transmisja szeregowa sieciami energetycznymi
Pracownia Transmisji Danych, Instytut Fizyki UMK, Toruń Instrukcja do ćwiczenia nr 10 Transmisja szeregowa sieciami energetycznymi I. Cel ćwiczenia poznanie praktycznego wykorzystania standardu RS232C
Bramki logiczne Instrukcja do ćwiczeń laboratoryjnych
Bramki logiczne Instrukcja do ćwiczeń laboratoryjnych. WSTĘP Celem ćwiczenia jest zapoznanie się z podstawowymi sposobami projektowania układów cyfrowych o zadanej funkcji logicznej, na przykładzie budowy
Sposoby projektowania systemów w cyfrowych
Sposoby projektowania systemów w cyfrowych Top-down Idea całości projektu Dekompozycja na mniejsze bloki Projekt i rafinacja podbloków Łączenie bloków w całość PRZYKŁAD (sumator kaskadowy) zdefiniowanie
Cwiczenie nr 1 Pierwszy program w języku C na mikrokontroler AVR
Cwiczenie nr 1 Pierwszy program w języku C na mikrokontroler AVR Zadanie polega na napisaniu pierwszego programu w języku C, jego poprawnej kompilacji i wgraniu na mikrokontroler. W tym celu należy zapoznać
Pamięci półprzewodnikowe w oparciu o książkę : Nowoczesne pamięci. Ptc 2013/2014 13.12.2013
Pamięci półprzewodnikowe w oparciu o książkę : Nowoczesne pamięci półprzewodnikowe, Betty Prince, WNT Ptc 2013/2014 13.12.2013 Pamięci statyczne i dynamiczne Pamięci statyczne SRAM przechowywanie informacji
(57) Tester dynamiczny współpracujący z jednej strony (13) B1 (12) OPIS PATENTOWY (19) PL (11) PL B1. (54) Tester dynamiczny
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 166151 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 2 9 0 5 8 3 (22) Data zgłoszenia: 06.06.1991 (51) IntCl5: G01R 31/28
Karta katalogowa JAZZ OPLC. Modele JZ20-T10/JZ20-J-T10 i JZ20-T18/JZ20-J-T18
Karta katalogowa JAZZ OPLC Modele JZ20-T10/JZ20-J-T10 i JZ20-T18/JZ20-J-T18 W dokumencie znajduje się specyfikacja Unitronics Jazz Micro-OPLC JZ20-T10/JZ20-J-T10 oraz JZ20-T18/JZ20-J-T18. Dodatkowe informacje
Pamięci półprzewodnikowe na podstawie książki: Nowoczesne pamięci
Pamięci półprzewodnikowe na podstawie książki: Nowoczesne pamięci półprzewodnikowe, Betty Prince, WNT 16.12.2017 Półprzewodnikowe pamięci statyczne Pamięci statyczne - SRAM przechowywanie informacji w
Elektrotechnika II Stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
PROJEKT I OPTYMALIZACJA STRUKTURY LOGICZNEJ DYDAKTYCZNEGO SYSTEMU MIKROPROCESOROWEGO DLA LABORATORIUM PROJEKTOWANIA ZINTEGROWANEGO
II Konferencja Naukowa KNWS'05 "Informatyka- sztuka czy rzemios o" 15-18 czerwca 2005, Z otniki Luba skie PROJEKT I OPTYMALIZACJA STRUKTURY LOGICZNEJ DYDAKTYCZNEGO SYSTEMU MIKROPROCESOROWEGO DLA LABORATORIUM
Politechnika Śląska w Gliwicach
Politechnika Śląska w Gliwicach Wydział Automatyki, Elektroniki i Informatyki LABORATORIUM PRZEDMIOTU SYSTEMY MIKROPROCESOROWE ĆWICZENIE 1 Układy wejścia i wyjścia mikrokontrolera ATXMega128A1 1 1 Cel
Programowalne Układy Cyfrowe Laboratorium
Zdjęcie opracowanej na potrzeby prowadzenia laboratorium płytki przedstawiono na Rys.1. i oznaczono na nim najważniejsze elementy: 1) Zasilacz i programator. 2) Układ logiki programowalnej firmy XILINX
Temat: Pamięci. Programowalne struktury logiczne.
Temat: Pamięci. Programowalne struktury logiczne. 1. Pamięci są układami służącymi do przechowywania informacji w postaci ciągu słów bitowych. Wykonuje się jako układy o bardzo dużym stopniu scalenia w
Karta katalogowa JAZZ OPLC. Modele JZ20-R10/JZ20-J-R10 i JZ20-R16/JZ20-J-R16
Karta katalogowa JAZZ OPLC Modele JZ20-R10/JZ20-J-R10 i JZ20-R16/JZ20-J-R16 W dokumencie znajduje się specyfikacja Unitronics Jazz Micro-OPLC JZ20-R10/JZ20-J-R10 oraz JZ20-R16/JZ20-J-R16. Dodatkowe informacje