METODY MONTE CARLO W INŻYNIERII FINANSOWEJ

Wielkość: px
Rozpocząć pokaz od strony:

Download "METODY MONTE CARLO W INŻYNIERII FINANSOWEJ"

Transkrypt

1 Tomasz Rolski Instytut Matematyczny Uniwersytet Wrocławski METODY MONTE CARLO W INŻYNIERII FINANSOWEJ Walim,

2 Plan wykładu: Coś o generatorach, Statystyczne opracowanie wyników, Coś o redukcji wariancji, Problemy matematyki finansowej, Symulacja ruchu Browna, Symulacja geometrycznego ruchu Browna, Użycie metody warst. Slide 2/??

3 Rysunek 1: Kostka z Eurandom Ogólny schemat generowania liczb losowych: Slide 3/??

4 (S,s 0,f,U,g), gdzie S jest skończoną przestrzenią stanów, s 0 S jest wartościa początkową rekurencji s i+1 = f(s i ), gdzie f : S S, natomiast U skończoną przestrzenią wartości oraz g : S U. Wtedy mówimy, że (S,s 0,f,U,g) jest generatorem liczb losowych (GLL). Slide 4/??

5 Example[Metoda kongruencji liniowej] Najprostszym przykładem GLL jest ciąg U n zadany przez X n /M, gdzie Należy wybrać X n+1 = (ax n +c) mod M. (1) M, moduł; 0 < M a, mnożnik; 0 a < M c, krok 0 c < M X 0, wartość początkowa; 0 X 0 < M. Aby otrzymać ciąg z przedziału (0,1) musimy teraz wybrać U n = X n /M. Ciąg (X n ) ma okres nie dłuższy niż M. Slide 5/??

6 Example Java X i+1 = ( X i +11) mod 2 48 U i = (2 27 X 2i / X 2i+1 /2 21 )/2 53. VB X i = ( X i ) mod 2 24 U i = X i /2 24. Excel U i = (0.9821U i ) mod 1. Slide 6/??

7 MATLAB rand randn randperm(n) W dalszym ciągu przez (U 1,U 2,... ędziemy oznaczali ciąg iid o rozkładzie jednostajnym U(0,1). Slide 7/??

8 Dobroć generatorów. Na przykładzie generatorów w MATLABIE. Generujemy U 1,... i niech X n odległość pomiędzy wielkościami mniejszymi niż δ. (X n ) jest ciągiem iid rozkładzie geometrycznym. rand( state,0); n = 5*10^7; delta =.01; runs = diff(find(rand(n,1)<delta))-1; y = histc(runs, 0:100)./ length(runs); plot(0:100,(1-delta).^(0:100).*delta, k--, 0:100,y, b- ); title( Distribution of run lengths ) xlabel( Run Length ); ylabel( Relative Frequency ); legend({ Expected (Geometric) Distribution Actual Distribution }) Slide 8/??

9 Dla metody state możemy zaobserwować tajemniczą odchyłkę przy k = 27; patrz rys x 10 3 Distribution of run lengths 10 Expected (Geometric) Distribution Actual Distribution 9 Relative Frequency Run Length Rysunek 2: Histogram pojawiania się małych wielkości; generator state, n = , δ = 0.01 Slide 9/??

10 10 x 10 3 Distribution of run lengths 9 Expected (Geometric) Distribution Actual Distribution 8 Relative Frequency Run Length Rysunek 3: Histogram pojawiania się małych wielkości; generator twister, n = , δ = 0.01 Slide 10/??

11 Dla kontrastu symulacja jeśli zamiast odstępów pomiędzy liczbami mniejszymi od δ = 0.01 rozważamy odstępy pomiędzy liczbami większymi od δ = x 10 3 Distribution of run lengths 10 Expected (Geometric) Distribution Actual Distribution 9 Relative Frequency Run Length Rysunek 4: Histogram pojawiania się dużych wielkości; generator state, n = , δ = 0.01 Slide 11/??

12 Testowanie generatorów testy równomierności sprawdzający czy wygenerowane liczby są równomiernie rozmieszczone między zerem a jedynką, test serii podobnie jak równomierności tylko dla kolejnych t-rek, test odstępów notujemy odstępy pomiędzy liczbami losowymi, które nie należą do [a, b], gdzie 0 a < b 1, i sprawdzamy zgodność z rozkładem geometrycznym. Slide 12/??

13 Zgodność z rozkładem jednostajnym; test λ Kołmogorowa Generujemy liczby U 1,...,U n, i definiujemy odpowiadającą im dystrybunatę empiryczną ˆF n (t) = 1 n n 1(U i t), 0 t 1. i=1 Pamiętając, że naszą hipotezą jest rozkład jednostajny U(0,1), tj. F(t) = t dla t (0,1), naszą statystyką testową jest D n = sup ˆF n (t) t. 0 t 1 Twierdzenia Gliwienko Cantelli: D n 0. Natomiast unormowane zmienne nd n K(t). Mamy λ 0.1 = 1.224, λ 0.05 = oraz λ 0.01 = 1.628, gdzie 1 K(λ α ) = α. Slide 13/??

14 Algorytm dla D n. U (1),...,U (n) - statystyka porządkowa. D + n D n ( i = max 1 i n = max 1 i n ) n U (i), ( U (i) i 1 n ). Wtedy D n = max(d + n,d n). Slide 14/??

15 Generowanie losowej permutacji ciągu 1,..., N ALGORYTM 1. podstaw t = N oraz A[i] = i dla i = 1,..., N ; 2. generuj liczbȩ losow a u pomiȩdzy 0 i 1; 3. podstaw k = 1 + tu ; zamień A[k] z A[t]; 4. podstaw t = t - 1; jeśli t > 1, to powrót do kroku 2; w przeciwnym razie stop i A[1],..., A[N ] podaj a losow a permutacjȩ. Złożoność algorytmu jest O(N ). Slide 15/??

16 Feller, t.1; rozdz. 3. Gracz A i B. Rzuty symetryczn a monet a. w n-tym rzucie wygrywa A jeśli 1 = orzeł, w przeciwnym razie -1= reszka wygrywa B S n wygrana A po n rzutach Pytania: Jak wygl adaj a oscylacje S n (n = 0,1,...,N) S 0 = 0. Demonstracja w MATLABIE - plik rand_walk_simple.m Jakie jest prawdopodobieństwo P(α,β), że przy N rzutach bȩdziemy nad kresk a w przedziale pomiȩdzy 100α% a 100β% procent czasu? L + N łączny czas prowadzenia przez A Slide 16/??

17 Rysunek 5: Histogram dla L ; R = , 25 klas Slide 17/??

18 Przykładowa symulacja prostego symetrycznego błądzenia przypadkowego. M PLIK dem2-1.m N=100; xi=2*floor(2*rand(1,n))-1; A=triu(ones(N)); y=xi*a; for i=2:n+1 s(i)=y(i-1); end s(1)=0; x=1:n+1; plot(x,s) Slide 18/??

19 Analiza statystyczna wyników. Chcemy obliczyć wartość I o której wiemy, że można przedstawić w postaci I = EY dla pewnej liczby losowej Y, takiej, że EY 2 <. Niech Y 1,...,Y n będą niezależnymi replikacjami liczby losowej Y i będziemy rozważać estymatory Ŷ n = 1 n n Y j. j=1 Slide 19/??

20 Estymator În jest nieobiążony t.j. EŶ n = I, mocno zgodny to znaczy z prawdopodobieństwem 1 zachodzi zbieżność dla n Ŷ n I, co pociąga ważną dla nas słabą zgodność, to znaczy, że dla każdego b > 0 mamy P( Ŷn I > b) 0. Slide 20/??

21 Zauważmy, że Ŷ n Y b oznacza, że błąd bezwzględny nie przekracza b. Dla każdego b i liczby 0 < α < 1 istnieje n 0, t.ż. P(Ŷn b I Ŷn +b) 1 α, n n 0. A więc z prawdopodobieństwem większym niż 1 α szukana wielkość I należy do przedziału losowego [Ŷn b,ŷn +b] i dlatego α nazywa się poziomem istotności. Z CTG n P j=1 Y j EY 1 x Φ(x), σ Y n gdzie σ Y = VarY 1. Niech z 1 α/2 będzie α/2 kwantylem rozkładu normalnego. Slide 21/??

22 Stąd lim P( z 1 α/2 < n n j=1 Y j EY 1 σ Y n z 1 α/2 ) = 1 α. A więc, po pewnych przekształceniach P(Ŷ n z 1 α/2 σ Y n I Ŷ n +z 1 α/2 σ Y n ) 1 α, skąd mamy fundamentalny związek wiążący n,α,σy 2 : σ Y b = z 1 α/2. (2) n W teorii Monte Carlo α = 0.05 skąd z tablic możemy odczytać, że z = Slide 22/??

23 Metody obniżania wariancji. 1. metoda warstw, 2. metoda zmiennych antytetycznych, 3. metoda wspólnych liczb losowych, 4. metoda zmiennych kontrolnych, 5. warunkowa metoda MC, 6. metoda losowania istotnościowego. Slide 23/??

24 Metoda zmiennych antytetycznych Rozpatrzmy teraz n zmiennych losowych Y 1,Y 2,...,Y n, przy czym n jest parzyste. Ponadto zakładamy, że pary (Y 2i 1,Y 2i ) i, i = 1,...,n/2 są niezależne o jednakowym rozkładzie, zmienne losowe (Y j ) n j=1 brzegowy co Y. mają ten sam rozkład Niech n j=1 Ŷ = Y j n będzie naszym estymatorem. Będziemy porównywać ten estymator z zgrubnym estymatorem Ŷ CMC = 1 n n j=1 Y j gdzie Y 1,Y 2,... są niezależnymi replikacjami Y. Dlatego estymatora wariancja jest VarY/n. Zauważmy, że jeśli będziemy rozpatrywać Slide 24/??

25 estymator to jego wariancja Ŷ = n j=1 Y j n Var(Ŷ ) n = Var(Y 1+Y 2 2 ) n/2 = 1 2n (2Var(Y)+2cov(Y 1,Y 2 )) = 1 2n (2Var(Y)+2Var(Y 1)Corr(Y 1,Y 2 )) = 1 n Var(Y)(1+Corr(Y 1,Y 2 )). A więc Corr(Y 1,Y 2 )) powinno być ujemne. W praktyce aby to osiągnąć stsuje sie zmienne antytetyczne. Przykładem pary takich zmiennych jest F 1 (U),F 1 (1 U), gdzie F jest dystrybunatą Y. Slide 25/??

26 Przykład symulacji antytetycznej Mamy N zadań do wykonania. czasy zadan... Mamy do dyspozycji c = 2 serwerów. Możemy te zadania wykonać na dwa sposoby: według najdłuższego zadania (Longest Processing Time First - LPTF), lub najkrótszego zadania (Shortest Processing Time First - SPTF). Decyzje podejmuje się w momentach zakończenia poszczególnych zadań. Celem jest policzenie EC SPTF, EC LPTF, gdzie C jest czasem do zakończenia ostatniego zadania. Slide 26/??

27 Na przykład, niech N = 5 i c = 2 oraz zadania są wielkości 3,1,2,4,5. wg SPTF: zaczynamy z zadaniami wielkości 1 i 2 i po jednej jednostce czasu resztowe wielkości tych zadań są 3,0,1,4,5 a więc mamy teraz zadanie z N = 4 i c = 2. Postępując tak dalej widzimy, że C SPTF = 9. wg. LPTF zaczynamy z zadaniami wielkości 4 i 5 i po 4-ch jednostkach czasu resztowe wielkości tych zadań są 3,1,2,0,1 a więc mamy teraz zadanie z N = 4 i c = 2. Postępując tak dalej widzimy, że C LPTF = 8. Inne FIFO, ALT Slide 27/??

28 Czasy zadań są logu 1, logu 2,..., log(u N ), natomiast w symulacji antytetycznej log(1 U 1 ), log(1 U 1 ), logu 2, log(1 U 2 ),... W tablicy 1 podajemy wyniki dla C, dla N = 10 zadań, z m = 1000 replikacjami; s jest odchyleniem standardowym Var(C), oraz b jest połową długości przedziału ufności na poziomie α = 0.05 (czyli można rzec błąd). dyscyplina I s b FCFS SPTF LPTF FCFSanthy SPTFanthy LPTFanthy Tablica 1: SzacowanieC przy użyciu CMC i anthy; N = 10, liczba replikacji m = Slide 28/??

29 Dla porównania w tablicy poniżej są wyniki z m = replikacjami. Wszystkie symulacje są robione na tych samych liczbach pseudolosowych, ponieważ algorytmy zaczynają się od rand( state,0). dyscyplina I s b FCFS SPTF LPTF FCFSanthy SPTFanthy LPTFanthy Tablica 2: SzacowanieC przy użyciu CMC i anthy; N = 10, liczba replikacji m = Slide 29/??

30 Metoda warstw Cel I = EY. Niech A 1,...,A m będzie rozbiciem IR warstwami. Oznaczmy prawdopodobieństwo wylosowania warstwy p j = P(Y A j ) (to przyjmujemy za znane i dodatnie) oraz y j = E[Y Y A j ] (j = 1,...,m) (oczywiście to jest nieznane bo inaczej nie trzeba by nic obliczać). Ze wzoru na prawdopodobieństwo całkowite EY = p 1 y p m y m. Slide 30/??

31 Metoda warstw: Potrafimy losowac Y j = d (Y Y A j ). n będzie ogólną liczbą replikacji, n j replikacji Y j w warstwie j; n = j n j Slide 31/??

32 Niech Y j 1,...,Y j n j będą więc replikacjami Y j w warstwie j. Definiujemy jako estymator y j. Ŷ j = 1 n j n j i=1 Y j i Niech σ 2 j = VarY j będzie wariancją w warstwie j. Zauważmy, ż Estymator Ŷ j jest nieobciążonym y j oraz VarŶ j = σ2 j n. Następnie definiujemy estymator warstwowy (nieobciążony) Ŷ str = p 1 Ŷ p m Ŷ m. Slide 32/??

33 Mamy oraz EŶ str = p 1 EŶ p m EŶ m m EY1 Y Ai = p i = EY = I. p i i=1 σstr(n 2 1,...,n m ) = nvarŷ str m = n p 2 jvarŷ j = p 2 1 j=1 n σ p 2 n m σm 2. n 1 n m Wielkość σ 2 str(n 1,...,n m ) będziemy nazywać wariancją estymatora warstwowego. A więc VarŶ str = σ2 str(n 1,...,n m ) n. Slide 33/??

34 Symulacja procesów matematyki finansowej Realizacje badanych tutaj procesów są ciągłe, i dlatego czegoś takiego nie można wylosować na komputerze. Możemy zjedynie wylosować realizację (X(0),X(t 1 ),...,X(t n )) w momentach 0 = t 0 < t 1 <... < t n T. Będziemy przyjmowali, ze t 1 <... < t n. Example Niech {S(t),0 t T} będzie ewolucją ceny akcji - geometrycznych ruch Browna. Najbardziej popularną jest opcja możliwości zakupu akcji za cenę K jeśli cena w chwili T spełnia warunek S(T) K, w przeciwnym razie rezygnację z zakupu. Jest to tzw opcja europejska call. Inną opcją jest tzw. azjatycka gdzie zamiast wartości S(T) bierzemy po uwagę uśrednioną ceną T 0 S(s)ds/T. Slide 34/??

35 W takimi razie korzyść kupującego jest (S(T) K) + lub T ( 0 S(s)ds/T K) +. r bezryzykownym natężeniem stopy procentowej, to cena takich opcji byłaby e rt E(S(T) K) + lub e rt E ( T 0 S(s)ds ) T K +. Slide 35/??

36 Ponieważ nie mamy możliwości symulacji realizacji {S(t),0 t T} więc symulujemy S(0),S(T/N),...,S(T). Dla opcji azjatyckiej będziemy obliczali jej cenę za pomocą N Y = e rt S(jT/N))/T K. j=1 A więc estymator zdefiniowany przez Y nie będzie nieobciążony, mimo, że rozkład (S(0),S(1/N),...,S(T)) jest dokładny. + Slide 36/??

37 Jednakże nie zawsze jesteśmy w stanie symulować rozkład dokładny, ze względu na to, że nie znamy tego rozkładu ani procedury jego generowania. W przypadku gdy proces S(t) jest zadany przez stochastyczne równanie różniczkowe, to istnieje procedura numeryczna, generowania aproksymacji S(0), S(T/N),..., S(T), który to wektor ma jedynie rozkład przybliżony do S(0),S(T/N),...,S(T). Będzie to metoda Eulera lub jej rozwinięcie zwane metodą Milsteina. Możemy interpolować S(0), S(T/N),..., S(T) do procesu { S(t),0 t T} w sposób ciągły i następnie badać jak szybko dąży do zera błąd postaci lub E T 0 E sup 0 t T S(t) S(t) p dt S(t) S(t) dt. Innym błędem zbadanym teoretycznie jest e s (N) = E S(1) S(1). Slide 37/??

38 Ruch Browna Ruch Browna ma przyrosty niezależne. Realizację B(t) (0 t T) symulujemy w punktach 0 < t 1 <... < t n 1 < t n = T. Korzystając z tego, że B(t i ) B(t i 1 ) = d ti t i 1 Z i, gdzie Z 1,...,Z n są iid standardowe normalne. Bardziej ogólny model to ruch Browna z dryfem BM(µ, σ), gdzie dryf µ IR i współczynnikem dyfuzji σ > 0. Taki proces definiujemy przez X(t) = σb(t) + µt gdzie B(t) jest standardowym ruchem Browna. W języku stochastycznych równań różniczkowych dx(t) = µdt+σdb(t). Slide 38/??

39 Most Browna i inna konstrukcja ruchu Browna Przedstawimy teraz inną konstrukcję ruchu Browna, korzystając z mostu Browna. Rozpatrzmy (B(s), B(t), B(u)), gdzie 0 u < s < t. Rozkład B(s) pod warunkiem B(u) = x i B(t) = y jest normalny z średnią oraz wariancją (t s)x+(s u)y (t u) (s u)(t s). (t u) W szczególności B(t+h) pod warunkiem B(t) = x i B(t+2h) = y ma średnią (x+y)/2 i wariancję h/2. Slide 39/??

40 Będziemy zakładać, że T = 1. Naszym celem jest wygenerowanie b k 0,...,b k 2 k 1,bk 2 k mający łączny rozkład taki jak Algorytm: (B(0),...,B((2 k 1)/2 k ),B(1)). 1. Generuj b 0 0,b 0 1, gdzie b 0 0 = 0 oraz b 1 0 N(0,1). 2. Mając wygenerowane b k 1 j,(j = 1,...,2 k 1 ), zauważamy, że b k 2j = bk 1 j,(j = 1,...,2 k 1 ), natomiast dla j = 2j + 1, generujemy b k i N(y,2 k 1 ), gdzie y = 1 2 (bk 1 j +b k 1 j+1 ). Slide 40/??

41 Reprezentację standardowego ruchu Browna. Niech Z 0, Z i,j ;l = 1,2,...,j = 1,...,2 l 1 iid N(0,1). Definiujemy b k (t) jako 0 (t)z 0 + k l=1 Zauważmy, że l (l+1)/2 i=1 (b k (0),b k (1/2 k ),...,b k (1)) ma taki sam rozkład, jak l,i (t)z l,i, t [0,1]. (B(0),...,B((2 k 1)/2 k ),B(1)). Można pokazać, że dla k mamy zbieżność prawie wszędzie do procesu 0 (t)z 0 + l=1 l (l+1)/2 i=1 l,i (t)z l,i, t [0,1]. Ten proces ma ciągłe trajektorie i spełnia warunki ruchu Browna. Slide 41/??

42 Geometryczny ruch Browna Przypuśmy, że gdzie B(t) jest SBM. X(t) = X(0)exp(σB(t)+ηt) Stosując wzór Ito do X(t) = f(b(t),t), gdzie f(x,t) = ξexp(σx+ηt) mamy dx(t) = = t f(b(t),t)dt+ x f(b(t),t)db(t)+ 1 2 = (η +σ 2 /2)X(t)dt+σX(t)dB(t). Podstawiając µ = η +σ 2 /2 widzimy, że stochastyczne równanie różniczkowe dx(t) = µx(t)dt+σx(t)db(t) z warunkiem początkowym X(0) = ξ ma rozwiązanie X(t) = ξexp((µ σ 2 /2)t+σB(t)). Ten proces nazywamy geometrycznym ruchem Browna X(t) ( GBM(µ,σ)). 2 x 2f(B(t) Slide 42/??

43 Algorytm. Wartości X w punktach 0 = t 0 < t 1 <... < t n spełniają rekurencję X(t i+1 ) = = X(t i )exp((µ 1 2 σ2 )(t i+1 t i )+σ t i+1 t i Z i+1 ) z Z 1,...,Z n iid N(0,1). Slide 43/??

44 Materiał z tego wykładu i dużo więcej jest w: [1] Asmussen, S. & Glynn, P. Stochastic Simulation. Springer, [2] Glasserman, P. Monte Carlo Methods in Financial Engineering, Springer, [3] Rolski, T. Symulacje Stochastyczne i Teoria Monte Carlo, Skrypt IM UWr dostępny na rolski/skrypty.html Slide 44/??

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)

Bardziej szczegółowo

Monte Carlo, bootstrap, jacknife

Monte Carlo, bootstrap, jacknife Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział

Bardziej szczegółowo

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =. Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 6 Wrocław, 7 listopada 2011 Temat. Weryfikacja hipotez statystycznych dotyczących proporcji. Test dla proporcji. Niech X 1,..., X n będzie próbą statystyczną z 0-1. Oznaczmy odpowiednio

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Wykład 14. Testowanie hipotez statystycznych - test zgodności chi-kwadrat. Generowanie liczb losowych.

Wykład 14. Testowanie hipotez statystycznych - test zgodności chi-kwadrat. Generowanie liczb losowych. Wykład 14 Testowanie hipotez statystycznych - test zgodności chi-kwadrat. Generowanie liczb losowych. Rozkład chi-kwadrat Suma kwadratów n-zmiennych losowych o rozkładzie normalnym standardowym ma rozkład

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

Statystyka w przykładach

Statystyka w przykładach w przykładach Tomasz Mostowski Zajęcia 10.04.2008 Plan Estymatory 1 Estymatory 2 Plan Estymatory 1 Estymatory 2 Własności estymatorów Zazwyczaj w badaniach potrzebujemy oszacować pewne parametry na podstawie

Bardziej szczegółowo

Metoda Monte Carlo i jej zastosowania

Metoda Monte Carlo i jej zastosowania i jej zastosowania Tomasz Mostowski Zajęcia 31.03.2008 Plan 1 PWL 2 3 Plan PWL 1 PWL 2 3 Przypomnienie PWL Istnieje wiele wariantów praw wielkich liczb. Wspólna ich cecha jest asymptotyczne zachowanie

Bardziej szczegółowo

Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport

Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport Generowanie ciągów pseudolosowych o zadanych rozkładach przykładowy raport Michał Krzemiński Streszczenie Projekt dotyczy metod generowania oraz badania własności statystycznych ciągów liczb pseudolosowych.

Bardziej szczegółowo

Spacery losowe generowanie realizacji procesu losowego

Spacery losowe generowanie realizacji procesu losowego Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne

Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład

Bardziej szczegółowo

Własności statystyczne regresji liniowej. Wykład 4

Własności statystyczne regresji liniowej. Wykład 4 Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności

Bardziej szczegółowo

Zakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji.

Zakładamy, że są niezależnymi zmiennymi podlegającymi (dowolnemu) rozkładowi o skończonej wartości oczekiwanej i wariancji. Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Centralne Twierdzenie Graniczne 1.1 Twierdzenie Lindeberga Levy'ego 1.2 Dowód 1.2.1 funkcja tworząca sumy zmiennych niezależnych 1.2.2 pochodna funkcji

Bardziej szczegółowo

Gdy n jest duże, statystyka ta (zwana statystyką chikwadrat), przy założeniu prawdziwości hipotezy H 0, ma w przybliżeniu rozkład χ 2 (k 1).

Gdy n jest duże, statystyka ta (zwana statystyką chikwadrat), przy założeniu prawdziwości hipotezy H 0, ma w przybliżeniu rozkład χ 2 (k 1). PRZYKŁADY TESTÓW NIEPARAMETRYCZNYCH. Test zgodności χ 2. Ten test służy testowaniu hipotezy, czy rozważana zmienna ma pewien ustalony rozkład, czy też jej rozkład różni się od tego ustalonego. Tym testem

Bardziej szczegółowo

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne)

Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Korzystanie z podstawowych rozkładów prawdopodobieństwa (tablice i arkusze kalkulacyjne) Przygotował: Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Zima 2014/15 1 TABLICE ROZKŁADÓW... 3 ROZKŁAD

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje

Bardziej szczegółowo

1. Wykład NWD, NWW i algorytm Euklidesa.

1. Wykład NWD, NWW i algorytm Euklidesa. 1.1. NWD, NWW i algorytm Euklidesa. 1. Wykład 1 Twierdzenie 1.1 (o dzieleniu z resztą). Niech a, b Z, b 0. Wówczas istnieje dokładnie jedna para liczb całkowitych q, r Z taka, że a = qb + r oraz 0 r< b.

Bardziej szczegółowo

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1

Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Przykładowe zadania na egzamin z matematyki - dr Anita Tlałka - 1 Zadania rozwiązywane na wykładzie Zadania rozwiązywane na ćwiczeniach Przy rozwiązywaniu zadań najistotniejsze jest wykazanie się rozumieniem

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 0/5 () Nazwa Rachunek prawdopodobieństwa i statystyka () Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot ()

Bardziej szczegółowo

Estymacja parametrów w modelu normalnym

Estymacja parametrów w modelu normalnym Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

Układy stochastyczne

Układy stochastyczne Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

Rachunek prawdopodobieństwa 1B; zadania egzaminacyjne.

Rachunek prawdopodobieństwa 1B; zadania egzaminacyjne. Rachunek prawdopodobieństwa B; zadania egzaminacyjne.. Niech µ będzie rozkładem probabilistycznym na (0, ) (0, ): µ(b) = l({x (0,) : (x, x) B}), dla B B((0, ) (0, ))), gdzie l jest miarą Lebesgue a na

Bardziej szczegółowo

Kolokwium ze statystyki matematycznej

Kolokwium ze statystyki matematycznej Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VIII: Przestrzenie statystyczne. Estymatory 1 grudnia 2014 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji r(x, Z) = 0, 986 Wprowadzenie Przykład: pomiar z błędem Współczynnik korelacji

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 7 i 8 - Efektywność estymatorów, przedziały ufności Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 7 i 8 1 / 9 EFEKTYWNOŚĆ ESTYMATORÓW, próba

Bardziej szczegółowo

Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1

Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1 Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład dr Mariusz Grządziel 5 lutego 04 Paradoks Zenona z Elei wersja uwspółcześniona Zenek goni Andrzeja; prędkość Andrzeja:

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH

MODELE MATEMATYCZNE W UBEZPIECZENIACH MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 3: WYZNACZANIE ROZKŁADU CZASU PRZYSZŁEGO ŻYCIA 1 Hipoteza jednorodnej populacji Rozważmy pewną populację osób w różnym wieku i załóżmy, że każda z tych osób

Bardziej szczegółowo

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p. Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

Bardziej szczegółowo

Drugie kolokwium z Rachunku Prawdopodobieństwa, zestaw A

Drugie kolokwium z Rachunku Prawdopodobieństwa, zestaw A Drugie kolokwium z Rachunku Prawdopodobieństwa, zestaw A Zad. 1. Korzystając z podanych poniżej mini-tablic, oblicz pierwszy, drugi i trzeci kwartyl rozkładu N(10, 2 ). Rozwiązanie. Najpierw ogólny komentarz

Bardziej szczegółowo

Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną

Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 16 zaliczenie z oceną Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: prof. nadzw. dr hab. Tomasz Kuszewski Poziom studiów (I lub II stopnia): II stopnia

Bardziej szczegółowo

Metody redukcji wariancji

Metody redukcji wariancji Metody redukcji wariancji Michał Kołodziejczyk 26 maja 2009 Spis treści 1 Przedstawienie problemu 1 2 Metody redukcji - opis teoretyczny 2 2.1 Metoda Antithetic Variates...............................

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w

Bardziej szczegółowo

Matematyka finansowa w pakiecie Matlab

Matematyka finansowa w pakiecie Matlab Matematyka finansowa w pakiecie Matlab Wykład 6. Wycena opcji modele ciągłe, metoda Monte Carlo Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK Kurs letni dla studentów studiów zamawianych na

Bardziej szczegółowo

Wynik pomiaru jako zmienna losowa

Wynik pomiaru jako zmienna losowa Wynik pomiaru jako zmienna losowa Wynik pomiaru jako zmienna losowa Zmienne ciągłe i dyskretne Funkcja gęstości i dystrybuanta Wartość oczekiwana Momenty rozkładów Odchylenie standardowe Estymator zmiennej

Bardziej szczegółowo

Symulacje stochastyczne i teoria Monte Carlo

Symulacje stochastyczne i teoria Monte Carlo Symulacje stochastyczne i teoria Monte Carlo Tomasz Rolski Instytut Matematyczny, Uniwersytet Wrocławski Wrocław styczeń, 2013 Wersja v2.4 drukowana w dniu 20 stycznia 2013 r. Spis treści I Wstęp 3 1 O

Bardziej szczegółowo

Mikroekonometria 6. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 6. Mikołaj Czajkowski Wiktor Budziński Mikroekonometria 6 Mikołaj Czajkowski Wiktor Budziński Metody symulacyjne Monte Carlo Metoda Monte-Carlo Wykorzystanie mocy obliczeniowej komputerów, aby poznać charakterystyki zmiennych losowych poprzez

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

Metody Statystyczne. Metody Statystyczne.

Metody Statystyczne. Metody Statystyczne. gkrol@wz.uw.edu.pl #4 1 Sprawdzian! 5 listopada (ok. 45-60 minut): - Skale pomiarowe - Zmienne ciągłe i dyskretne - Rozkład teoretyczny i empiryczny - Miary tendencji centralnej i rozproszenia - Standaryzacja

Bardziej szczegółowo

Generowanie liczb o zadanym rozkładzie. ln(1 F (y) λ

Generowanie liczb o zadanym rozkładzie. ln(1 F (y) λ Wprowadzenie Generowanie liczb o zadanym rozkładzie Generowanie liczb o zadanym rozkładzie wejście X U(0, 1) wyjście Y z zadanego rozkładu F (y) = 1 e λy y = ln(1 F (y) λ = ln(1 0,1563 0, 5 0,34 Wprowadzenie

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania

SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania SIMR 7/8, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania. Dana jest gęstość prawdopodobieństwa zmiennej losowej ciągłej X : { a( x) dla x [, ] f(x) = dla pozostałych x Znaleźć: i) Wartość parametru

Bardziej szczegółowo

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 7

Stanisław Cichocki Natalia Nehrebecka. Wykład 7 Stanisław Cichocki Natalia Nehrebecka Wykład 7 1 1. Metoda Największej Wiarygodności MNW 2. Założenia MNW 3. Własności estymatorów MNW 4. Testowanie hipotez w MNW 2 1. Metoda Największej Wiarygodności

Bardziej szczegółowo

Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap

Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Magdalena Frąszczak Wrocław, 21.02.2018r Tematyka Wykładów: Próba i populacja. Estymacja parametrów z wykorzystaniem metody

Bardziej szczegółowo

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe

Bardziej szczegółowo

Statystyka matematyczna. Wykład III. Estymacja przedziałowa

Statystyka matematyczna. Wykład III. Estymacja przedziałowa Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 9

Stanisław Cichocki. Natalia Nehrebecka. Wykład 9 Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności

Bardziej szczegółowo

W4 Eksperyment niezawodnościowy

W4 Eksperyment niezawodnościowy W4 Eksperyment niezawodnościowy Henryk Maciejewski Jacek Jarnicki Jarosław Sugier www.zsk.iiar.pwr.edu.pl Badania niezawodnościowe i analiza statystyczna wyników 1. Co to są badania niezawodnościowe i

Bardziej szczegółowo

Wykład z równań różnicowych

Wykład z równań różnicowych Wykład z równań różnicowych 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp. Zamiast tego pisać będziemy x (n), y (n) itp.

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematyczna Anna Janicka wykład IX, 25.04.2016 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Plan na dzisiaj 1. Hipoteza statystyczna 2. Test statystyczny 3. Błędy I-go i II-go rodzaju 4. Poziom istotności,

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Statystyka matematyczna. Wykład VI. Zesty zgodności

Statystyka matematyczna. Wykład VI. Zesty zgodności Statystyka matematyczna. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści 1 Testy zgodności 2 Test Shapiro-Wilka Test Kołmogorowa - Smirnowa Test Lillieforsa Test Jarque-Bera Testy zgodności Niech x

Bardziej szczegółowo

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

12DRAP - parametry rozkładów wielowymiarowych

12DRAP - parametry rozkładów wielowymiarowych DRAP - parametry rozkładów wielowymiarowych Definicja.. Jeśli h : R R, a X, Y ) jest wektorem losowym o gęstości fx, y) to EhX, Y ) = hx, y)fx, y)dxdy. Jeśli natomiast X, Y ) ma rozkład dyskretny skupiony

Bardziej szczegółowo

Hipotezy statystyczne

Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej próbki losowej. Hipotezy

Bardziej szczegółowo

WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO

WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO Zał. nr 4 do ZW WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA STOSOWANA Nazwa w języku angielskim APPLIED STATISTICS Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

5 Błąd średniokwadratowy i obciążenie

5 Błąd średniokwadratowy i obciążenie 5 Błąd średniokwadratowy i obciążenie Przeprowadziliśmy 200 powtórzeń przebiegu próbnika dla tego samego zestawu parametrów modelowych co w Rozdziale 1, to znaczy µ = 0, s = 10, v = 10, n i = 10 (i = 1,...,

Bardziej szczegółowo

Wykład 11: Martyngały: definicja, twierdzenia o zbieżności

Wykład 11: Martyngały: definicja, twierdzenia o zbieżności RAP 412 14.01.2009 Wykład 11: Martyngały: definicja, twierdzenia o zbieżności Wykładowca: Andrzej Ruciński Pisarz:Mirosława Jańczak 1 Wstęp Do tej pory zajmowaliśmy się ciągami zmiennych losowych (X n

Bardziej szczegółowo

4.Zmienne losowe X 1, X 2,..., X 100 są niezależne i mają rozkład wykładniczy z α = 0.25 Jakie jest prawdopodobieństwo, że 1

4.Zmienne losowe X 1, X 2,..., X 100 są niezależne i mają rozkład wykładniczy z α = 0.25 Jakie jest prawdopodobieństwo, że 1 LISTA 7 W rozwiązaniu zadań 1-4 wykorzystać centralne twierdzenie graniczne. 1.Prawdopodobieństwo, że aparat zepsuje się w czasie jego konserwacji wynosi 0.02. Jakie jest prawdopodobieństwo, że w trakcie

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) = Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x

Bardziej szczegółowo

Model Blacka-Scholesa

Model Blacka-Scholesa WYCENA OPCJI EUROPEJSKIEJ I AMERYKAŃSKIEJ W MODELACH DWUMIANOWYCH I TRÓJMIANOWYCH COXA-ROSSA-RUBINSTEINA I JARROWA-RUDDA Joanna Karska W modelach dyskretnych wyceny opcji losowość wyrażana jest poprzez

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący

Bardziej szczegółowo

Metoda Monte Carlo. Jerzy Mycielski. grudzien Jerzy Mycielski () Metoda Monte Carlo grudzien / 10

Metoda Monte Carlo. Jerzy Mycielski. grudzien Jerzy Mycielski () Metoda Monte Carlo grudzien / 10 Metoda Monte Carlo Jerzy Mycielski grudzien 2012 Jerzy Mycielski () Metoda Monte Carlo grudzien 2012 1 / 10 Przybliżanie całek Powiedzmy, że mamy do policzenia następującą całkę: b f (x) dx = I a Założmy,

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

1 Gaussowskie zmienne losowe

1 Gaussowskie zmienne losowe Gaussowskie zmienne losowe W tej serii rozwiążemy zadania dotyczące zmiennych o rozkładzie normalny. Wymagana jest wiedza na temat własności rozkładu normalnego, CTG oraz warunkowych wartości oczekiwanych..

Bardziej szczegółowo

dr Jerzy Pusz, st. wykładowca, Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu

dr Jerzy Pusz, st. wykładowca, Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu Kod przedmiotu TR.SIK303 Nazwa przedmiotu Probabilistyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne

Bardziej szczegółowo

Całkowanie metodą Monte Carlo

Całkowanie metodą Monte Carlo Całkowanie metodą Monte Carlo Plan wykładu: 1. Podstawowa metoda Monte Carlo 2. Metody MC o zwiększonej efektywności a) losowania ważonego b) zmiennej kontrolnej c) losowania warstwowego d) obniżania krotności

Bardziej szczegółowo

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński czyli jak tanio i dobrze zabezpieczyć opcję Michał Krawiec Piotr Piestrzyński Koło Naukowe Probabilistyki i Statystyki Matematycznej Uniwersytet Wrocławski Niedziela, 19 kwietnia 2015 Przykład (opis problemu)

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

Teoretyczne podstawy informatyki

Teoretyczne podstawy informatyki Teoretyczne podstawy informatyki Wykład 12a: Prawdopodobieństwo i algorytmy probabilistyczne http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Teoria prawdopodobieństwa

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona

Bardziej szczegółowo

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA STUDIA DOKTORANCKIE JEDNOSTKA ZGŁASZAJĄCA/REALIZUJĄCA KURS: WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO / STUDIUM DOKTORANCKIE

POLITECHNIKA WROCŁAWSKA STUDIA DOKTORANCKIE JEDNOSTKA ZGŁASZAJĄCA/REALIZUJĄCA KURS: WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO / STUDIUM DOKTORANCKIE JEDNOSTKA ZGŁASZAJĄCA/REALIZUJĄCA KURS: WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO / STUDIUM DOKTORANCKIE KARTA PRZEDMIOTU Nazwa w języku polskim: Symulacje Monte Carlo w obliczeniach inżynierskich Nazwa w

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom

Bardziej szczegółowo

STATYSTYKA

STATYSTYKA Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo