Prawie 25 lat Olimpiady Informatycznej
|
|
- Eugeniusz Cybulski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Instytut Informatyki Uniwersytetu Wrocławskiego 8 października 2016
2 Ostrzeżenie Nie znam zadań na OI, więc zagadnienia podawane jako podstawowe/zaawansowane nie są w żaden sposób wskazówką n.t. przyszłych treści zadań na OI. Ostrzeżenie Sporo rzeczy na slajdach to moje prywatne opinie i obserwacje, a nie oficjalne stanowisko kogokolwiek z ramienia OI.
3 I etap Nie zmieniło się od lat: miesiąc czasu na rozwiązanie pięciu zadań, dość popularne są progi kwalifikacyjne rzędu 100 punktów. Zmiany: podzadania.
4 II etap Nie zmieniło się od lat: Zmiany: dzień próbny (jedno zadanie, 3 h) oraz dwa dni właściwe (dwa zadania, 5 h), wyniki nie są jawne, widać tylko wyniki na testach przykładowych. podzadania, testy ocen, bardzo duża wariancja progów kwalifikacyjnych do finału.
5 Finał Nie zmieniło się od lat: Zmiany: dzień próbny (jedno zadanie, 3 h) oraz dwa dni właściwe (trzy zadania, 5 h), podzadania, testy ocen, odsłanianie wyników, trudność zadań, wyższe wyniki zawodników, spryt zawodników, częste udane oszustwa organizatorów.
6 C++11 listy inicjalizacyjne (std::vector<int> x = {1, 2, 3};) automatyczne określanie typu (auto), pętle for oparte na zakresie (for (int x : tab)), funkcje i wyrażenia lambda ([](int a, int b){ return a + b; }), typy krotkowe (std::tuple), nowe kontenery STL (std::unordered set oraz std::unordered map), wyrażenia regularne (#include <regex>), inteligentne wskaźniki (std::shared ptr, std::unique ptr).
7 Czynniki kluczowe w odniesieniu sukcesu na II etapie znajomość podstawowych algorytmów i struktur danych, inteligencja, zdolność kojarzenia faktów, zauważania powiązań i zależności, umiejętność szybkiej implementacji wymyślonych rozwiązań, umiejętność testowania, nie popełnianie błędów.
8 Podstawowe algorytmy i struktury danych rekurencja, przeszukiwanie z nawrotami, metoda dziel i zwyciężaj, wyszukiwanie binarne (oraz jego zastosowania) (zadanie Test na inteligencję), obsługa dużych liczb, algorytmy zachłanne, programowanie dynamiczne (zadanie Konduktor), maski bitowe (zadanie Wiedźmak), teoria gier (nimbery, funkcja mex, twierdzenie Sprague Grundy ego) (zadanie Kamyki).
9 Podstawowe algorytmy i struktury danych Struktury danych: stos, kolejka, kopiec binarny, drzewo BST, statyczne drzewo przedziałowe (zadanie Łyżwy), Union Find (zadanie Biura).
10 Podstawowe algorytmy i struktury danych Teoria liczb: algorytm Euklidesa i rozszerzony algorytm Euklidesa, odwrotność modularna (zadanie Wyszukiwanie wzorca), dzielniki liczb, rozkład na czynniki pierwsze, sito Eratostenesa (zadanie Sejf), szybkie potęgowanie modularne.
11 Podstawowe algorytmy i struktury danych Kombinatoryka: podzbiory, permutacje (silnia), kombinacje (symbol Newtona) (zadanie Permutacja), interpretacje kombinatoryczne, zasada włączeń i wyłączeń.
12 Podstawowe algorytmy i struktury danych Algorytmy tekstowe: najdłuższy podciąg wspólny, wyszukiwanie wzorca i funkcja π (zadanie Szablon), haszowanie podsłów (zadanie Korale), okresy słów, pierwiastki słów, lemat o okresowości (zadanie Kafelki), algorytm Manachera (zadanie Antysymetria).
13 Podstawowe algorytmy i struktury danych Algorytmy grafowe: reprezentacja listowa i macierzowa grafu, przeszukiwanie w głąb (DFS) (zadanie Gildie) i wszerz (BFS), kolejność pre-order, post-order, in-order, sortowanie topologiczne, silnie spójne składowe (zadanie Profesor Szu), minimalne drzewo rozpinające (zadanie Labirynt), cykl Eulera, grafy funkcyjne (zadanie Randka), algorytm Dijkstry (zadanie Sumy).
14 Podstawowe algorytmy i struktury danych Geometria obliczeniowa: iloczyn skalarny i iloczyn wektorowy, technika zamiatania, najbliższa i najdalsza para punktów, sortowanie kątowe, otoczka wypukła (zadanie Wyspy).
15 Czynniki kluczowe w odniesieniu sukcesu na finale znajomość trudniejszych algorytmów i struktur danych, znajomość sztuczek algorytmicznych, strategia, zachowanie spokoju, elastyczność dla zmieniających się warunków, intuicja i wyczucie, szybkość, nie popełnianie błędów, wytrenowanie.
16 Trudniejsze algorytmy i struktury danych przepływy (zadanie Mosty), skojarzenia w grafach dwudzielnych, macierze (zadanie Chomiki), dwuspójne składowe, test Millera Rabina (zadanie Najdzielniejszy dzielnik), drzewo palindromiczne.
17 Sztuczki algorytmiczne meet-in-the-middle (zadanie Szyfr), Mo s algorithm, równoległe wyszukiwanie binarne (zadanie Meteory), dekompozycja heavy light.
18 Olimpiada sport umysłowy, długie przygotowania, ciężka praca, potrzebny trener, mentor, krzywa rozwoju nie jest zbliżona do funkcji liniowej.
19 Wyjątkowość Olimpiady mało zadań, dużo czasu, prawie bez limitu na trudność zadań, zadania wymagają pomysłu, wiele różnych ścieżek z pozoru sensownych prowadzi do niczego.
20 Dlaczego warto? Dla wszystkich: algorytmy i struktury danych (szczególnie na I i II etapie) przydatne w pracy informatyka, umiejętność programowania, motor do wzmożonej pracy nad sobą, nauka jak się uczyć, znajomość własnych sił i słabości. Dla najlepszych: stypendia, prestiż, docenienie, widoczny sens ciężkiej pracy, duża i silna sieć kontaktów, łatwiejsza kariera naukowa, możliwość pracy w wielkiej korporacji za granicą.
Wprowadzenie do algorytmów / Thomas H. Cormen [et al.]. - wyd. 7. Warszawa, Spis treści. Wprowadzenie 2
Wprowadzenie do algorytmów / Thomas H. Cormen [et al.]. - wyd. 7. Warszawa, 2012 Spis treści Przedmowa XIII Część I Podstawy Wprowadzenie 2 1. Rola algorytmów w obliczeniach 4 1.1. Algorytmy 4 1.2. Algorytmy
Grafy i sieci w informatyce - opis przedmiotu
Grafy i sieci w informatyce - opis przedmiotu Informacje ogólne Nazwa przedmiotu Grafy i sieci w informatyce Kod przedmiotu 11.9-WI-INFD-GiSwI Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje w roku akademickim 2012/2013. Algorytmy i struktury danych
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Elektrycznej i Komputerowej obowiązuje w roku akademickim 2012/2013 Kierunek studiów: Elektrotechnika Forma studiów: Niestacjonarne
Matematyka dyskretna
Matematyka dyskretna Andrzej Szepietowski Matematyka dyskretna Wydawnictwo Uniwersytetu Gdańskiego Gdańsk 2018 Recenzja prof. dr hab. Marek Zaionc Redakcja wydawnicza Dorota Zgaińska Projekt okładki i
Algorytmy i struktury danych Metody programowania Języki i paradygmaty programowania Nazwa jednostki prowadzącej przedmiot Instytut Matematyki
OPIS MODUŁU KSZTAŁCENIA (przedmiot lub grupa przedmiotów) Nazwa modułu/ przedmiotu Przedmiot/y Algorytmy i metody Algorytmy i struktury danych Metody Języki i paradygmaty Nazwa jednostki prowadzącej przedmiot
KARTA KURSU. Algorytmy, struktury danych i techniki programowania. Algorithms, Data Structures and Programming Techniques
KARTA KURSU Nazwa Nazwa w j. ang. Algorytmy, struktury danych i techniki programowania Algorithms, Data Structures and Programming Techniques Kod Punktacja ECTS* 3 Koordynator dr Paweł Pasteczka Zespół
Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010
1/1 Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 Kierunek: INFORMATYKA Specjalność: PRZEDMIOT OBOWIĄZKOWY DLA WSZYSTKICH STUDENTÓW. Tryb studiów: NIESTACJONARNE PIERWSZEGO STOPNIA
KARTA PRZEDMIOTU. Algorytmy i struktury danych, C4
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
Rozdział 4. Algorytmy sortowania 73 Rozdział 5. Typy i struktury danych 89 Rozdział 6. Derekursywacja i optymalizacja algorytmów 147
Spis treści Przedmowa 9 Rozdział 1. Zanim wystartujemy 17 Jak to wcześniej bywało, czyli wyjątki z historii maszyn algorytmicznych 18 Jak to się niedawno odbyło, czyli o tym, kto wymyślił" metodologię
Szczegółowy program kursów szkoły programowania Halpress
Szczegółowy program kursów szkoły programowania Halpress Lekcja A - Bezpłatna lekcja pokazowa w LCB Leszno "Godzina kodowania - Hour of Code (11-16 lat) Kurs (B) - Indywidualne przygotowanie do matury
EGZAMIN - Wersja A. ALGORYTMY I STRUKTURY DANYCH Lisek89 opracowanie kartki od Pani dr E. Koszelew
1. ( pkt) Dany jest algorytm, który dla dowolnej liczby naturalnej n, powinien wyznaczyd sumę kolejnych liczb naturalnych mniejszych od n. Wynik algorytmu jest zapisany w zmiennej suma. Algorytm i=1; suma=0;
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Pod auspicjami Polskiej Akademii Nauk Warszawa, ul. Newelska 6, tel.
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA Pod auspicjami Polskiej Akademii Nauk 01-447 Warszawa, ul. Newelska 6, tel. 22 3486544 Wydział Informatyki Kierunek studiów Profil Stopień studiów Forma
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Algorytmy i struktury danych 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu
Załącznik Nr 5 do Zarz. Nr 33/11/ Kod przedmiotu:aisd2
Załącznik Nr 5 do Zarz. Nr 33/11/12 (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: ALGORYTMY I STRUKTURY DANYCH 2 3. Karta przedmiotu ważna od roku akademickiego:
Kierunek: Informatyka. Przedmiot:
Kierunek: Informatyka Przedmiot: ALGORYTMY I Z LOŻONOŚĆ Czas trwania: Przedmiot: Jezyk wyk ladowy: semestr III obowiazkowy polski Rodzaj zaj eć Wyk lad Laboratorium Prowadzacy Prof. dr hab. Wojciech Penczek
KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Algorytmy i struktury danych, C3
KARTA PRZEDMIOTU 1. Informacje ogólne Nazwa przedmiotu i kod (wg planu studiów): Nazwa przedmiotu (j. ang.): Kierunek studiów: Specjalność/specjalizacja: Poziom kształcenia: Profil kształcenia: Forma studiów:
Algorytmy i struktury danych.
Kod przedmiotu: ASD Rodzaj przedmiotu: Wydział: Informatyki Kierunek: Informatyka Specjalność (specjalizacja): - Algorytmy i struktury danych. kierunkowy ; obowiązkowy Poziom studiów: pierwszego stopnia
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Matematyka dyskretna 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia
Literatura. 1) Pojęcia: złożoność czasowa, rząd funkcji. Aby wyznaczyć pesymistyczną złożoność czasową algorytmu należy:
Temat: Powtórzenie wiadomości z PODSTAW INFORMATYKI I: Pojęcia: złożoność czasowa algorytmu, rząd funkcji kosztu. Algorytmy. Metody programistyczne. Struktury danych. Literatura. A. V. Aho, J.E. Hopcroft,
Zagadnienia na egzamin licencjacki
Zagadnienia na egzamin licencjacki Kierunek: matematyka, specjalność: nauczanie matematyki i informatyki w zakresie zajęć komputerowych Zaleca się, by egzamin dyplomowy składał się z co najmniej trzech
Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott
Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy
Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki
Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First
3. Podaj elementy składowe jakie powinna uwzględniać definicja informatyki.
1. Podaj definicję informatyki. 2. W jaki sposób można definiować informatykę? 3. Podaj elementy składowe jakie powinna uwzględniać definicja informatyki. 4. Co to jest algorytm? 5. Podaj neumanowską architekturę
Złożoność obliczeniowa klasycznych problemów grafowych
Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.
Fakultet Informatyczny Algorytmy i ProgramowanIe (API)
Fakultet Informatyczny Algorytmy i ProgramowanIe (API) Program autorski fakultetu informatycznego dla uczniów gimnazjum do realizacji na zajęcia pozalekcyjne z komputerem w klasach II Autor: mgr Rafał
ID2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki stacjonarne
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV
Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów
Spis treści. Rozdział 2. Rekurencja Definicja rekurencji Ilustracja pojęcia rekurencji Jak wykonują się programy rekurencyjne?...
Spis treści Przedmowa...... 9 Co odróżnia tę książkę od innych podręczników?......... 9 Dlaczego C++?... IO Jak należy czytać tę książkę?........................ 11 Co zostało opisane w tej książce?...........
Spis treści. Przedmowa. Wprowadzenie 0.1 Czym jest matematyka dyskretna?... XIII 0.2 Podstawowa literatura... XIV
Spis treści Przedmowa XI Wprowadzenie XIII 0.1 Czym jest matematyka dyskretna?............... XIII 0.2 Podstawowa literatura...................... XIV 1 Rekurencja 1 1.1 Wieże Hanoi...........................
IZ2ZSD2 Złożone struktury danych Advanced data structures. Informatyka II stopień ogólnoakademicki niestacjonarne
KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
wstęp do informatyki i programowania część testowa (25 pyt. / 60 min.)
egzamin podstawowy 7 lutego 2017 r. wstęp do informatyki i programowania część testowa (25 pyt. / 60 min.) Instytut Informatyki Uniwersytetu Wrocławskiego Paweł Rzechonek imię, nazwisko i nr indeksu:..............................................................
Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010.
01.10.009r. 1/1 Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 009/010 Kierunek: INFORMATYKA AiSD/NSMW Specjalność: PRZEDMIOT OBOWIĄZKOWY DLA WSZYSTKICH STUDENTÓW Tryb studiów: NIESTACJONARNE
Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek
Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących
Algorytmika i pseudoprogramowanie
Przedmiotowy system oceniania Zawód: Technik Informatyk Nr programu: 312[ 01] /T,SP/MENiS/ 2004.06.14 Przedmiot: Programowanie Strukturalne i Obiektowe Klasa: druga Dział Dopuszczający Dostateczny Dobry
PROGRAM KOŁA INFORMATYCZNEGO
Marcin Hagmajer e-mail: mhagmajer[malpka]gmail.com Student I roku informatyki na Wydziale Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego Absolwent LXIV Liceum Ogólnokształcącego im. St.
Programowanie obiektowe
Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2014 1 / 24 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań
Sprawozdanie do zadania numer 2
Sprawozdanie do zadania numer 2 Michał Pawlik 29836 Temat: Badanie efektywności algorytmów grafowych w zależności od rozmiaru instancji oraz sposobu reprezentacji grafu w pamięci komputera 1 WSTĘP W ramach
Algorytmy grafowe. Wykład 2 Przeszukiwanie grafów. Tomasz Tyksiński CDV
Algorytmy grafowe Wykład 2 Przeszukiwanie grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów 3. Spójność grafu,
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Podniesienie poziomu wiedzy studentów z zagadnień dotyczących analizy i syntezy algorytmów z uwzględnieniem efektywności
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje w roku akademickim 2012/2013. Projektowanie i analiza algorytmów
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Elektrycznej i Komputerowej obowiązuje w roku akademickim 01/013 Kierunek studiów: Elektrotechnika Forma studiów: Niestacjonarne
Zagadnienia na egzamin dyplomowy
Zagadnienia na egzamin dyplomowy Zagadnienia podstawowe i kierunkowe 1. Wyjaśnij budowę i działanie pojedynczego neuronu w sztucznej sieci neuronowej. 2. Definicja złożoności czasowej i obliczeniowej algorytmów.
Technologie informacyjne Wykład VII-IX
Technologie informacyjne -IX A. Matuszak 19 marca 2013 A. Matuszak Technologie informacyjne -IX Rekurencja A. Matuszak (2) Technologie informacyjne -IX Gotowanie jajek na miękko weż czysty garnek włóż
Ogólne wiadomości o grafach
Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,
Algorytmiczna teoria grafów
Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)
TEORETYCZNE PODSTAWY INFORMATYKI
1 TEORETYCZNE PODSTAWY INFORMATYKI WFAiS UJ, Informatyka Stosowana I rok studiów, I stopień Wykład 2 2 Problemy algorytmiczne Klasy problemów algorytmicznych Liczby Fibonacciego Przeszukiwanie tablic Największy
Egzamin, AISDI, I termin, 18 czerwca 2015 r.
Egzamin, AISDI, I termin, 18 czerwca 2015 r. 1 W czasie niezależnym do danych wejściowych działają algorytmy A. sortowanie bąbelkowego i Shella B. sortowanie szybkiego i przez prosty wybór C. przez podział
Dr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska
Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik
Wykład 10 Grafy, algorytmy grafowe
. Typy złożoności obliczeniowej Wykład Grafy, algorytmy grafowe Typ złożoności oznaczenie n Jedna operacja trwa µs 5 logarytmiczna lgn. s. s.7 s liniowa n. s.5 s. s Logarytmicznoliniowa nlgn. s.8 s.4 s
Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska
Teoria grafów dla małolatów Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka to wiele różnych dyscyplin Bowiem świat jest bardzo skomplikowany wymaga rozważenia
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizacja w roku akademickim 2016/17
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015 2019 Realizacja w roku akademickim 2016/17 1.1. Podstawowe informacje o przedmiocie/module Nazwa przedmiotu/ modułu
Cena szkolenia. Opis kursu
Kurs C++ Cena szkolenia Cena szkolenia wynosi 90 zł za 60 min. Ilość godzin szkolenia jest zależna od postępów w nauce uczestnika kursu i ilości czasu, w którym realizuje zadania i projekty zlecone w ramach
Wymagania edukacyjne i sposoby sprawdzania edukacyjnych osiągnięć uczniów z informatyki - klasy II zakres rozszerzony
Wymagania edukacyjne i sposoby sprawdzania edukacyjnych osiągnięć uczniów z informatyki - klasy II zakres rozszerzony I. Cele kształcenia wymagania ogólne 1. Bezpieczne posługiwanie się komputerem i jego
Wstęp do Programowania potok funkcyjny
Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline 1 Podstawowe pojęcia Definition Graf = wierzchołki + krawędzie. Krawędzie muszą mieć różne końce. Między dwoma wierzchołkami może
Wstęp do programowania
Wstęp do programowania Stosy, kolejki, drzewa Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. VII Jesień 2013 1 / 25 Listy Lista jest uporządkowanym zbiorem elementów. W Pythonie
Matematyka dyskretna
Matematyka dyskretna Andrzej Szepietowski Matematyka dyskretna Wydawnictwo Uniwersytetu Gdańskiego Gdańsk 2018 Recenzja prof. dr hab. Marek Zaionc Redakcja wydawnicza Dorota Zgaińska Projekt okładki i
Zaawansowane algorytmy i struktury danych
Zaawansowane algorytmy i struktury danych u dr Barbary Marszał-Paszek Opracowanie pytań teoretycznych z egzaminów. Strona 1 z 12 Pytania teoretyczne z egzaminu pisemnego z 25 czerwca 2014 (studia dzienne)
Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej
Wybrane wymagania dla informatyki w gimnazjum i liceum z podstawy programowej Spis treści Autor: Marcin Orchel Algorytmika...2 Algorytmika w gimnazjum...2 Algorytmika w liceum...2 Język programowania w
Symulacje komputerowe
Fizyka w modelowaniu i symulacjach komputerowych Jacek Matulewski (e-mail: jacek@fizyka.umk.pl) http://www.fizyka.umk.pl/~jacek/dydaktyka/modsym/ Symulacje komputerowe Dynamika bryły sztywnej Wersja: 8
WYMAGANIA EGZAMINACYJNE Egzamin maturalny z INFORMATYKI
WYMAGANIA EGZAMINACYJNE Egzamin maturalny z INFORMATYKI 1. Cele ogólne Podstawowym celem kształcenia informatycznego jest przekazanie wiadomości i ukształtowanie umiejętności w zakresie analizowania i
Wykład 8. Drzewo rozpinające (minimum spanning tree)
Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,
Wstęp do Programowania potok funkcyjny
Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline 1 BFS DFS Algorytm Dijkstry Algorytm Floyda-Warshalla Podstawowe pojęcia Definition Graf = wierzchołki + krawędzie. Krawędzie muszą
Kurs MATURA Z INFORMATYKI
Kurs MATURA Z INFORMATYKI Cena szkolenia Cena szkolenia wynosi 90 zł za 60 min. Ilość godzin szkolenia jest zależna od postępów w nauce uczestnika kursu oraz ilości czasu, którą będzie potrzebował do realizacji
Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016. Forma studiów: Stacjonarne Kod kierunku: 11.
Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 201/2016 Kierunek studiów: Informatyka Profil: Ogólnoakademicki
Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólnoakademicki / praktyczny)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Podstawy Programowania 2 Nazwa modułu w języku angielskim Introduction to
PRZEDMIOTOWY SYSTEM OCENIANIA INFORMATYKA.
PRZEDMIOTOWY SYSTEM OCENIANIA INFORMATYKA. KLASA 3e I. Główne założenia PSO Ocenianie uczniów na lekcjach informatyki: spełnia założenia wewnątrzszkolnego systemu oceniania; powinno być systematyczne;
Teraz bajty. Informatyka dla szkół ponadpodstawowych. Zakres rozszerzony. Część 1.
Teraz bajty. Informatyka dla szkół ponadpodstawowych. Zakres rozszerzony. Część 1. Grażyna Koba MIGRA 2019 Spis treści (propozycja na 2*32 = 64 godziny lekcyjne) Moduł A. Wokół komputera i sieci komputerowych
Programowanie Komponentowe Zarządzanie obiektami: kontenery
Programowanie Komponentowe Zarządzanie obiektami: kontenery dr inż. Ireneusz Szcześniak jesień 2016 roku Kontenery Kontener w C++ to generyczna struktura danych. Przechowuje elementy jednego dowolnego
Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH
Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Przeszukiwanie przestrzeni rozwiązań, szukanie na ślepo, wszerz, w głąb. Spis treści: 1. Wprowadzenie 3. str. 1.1 Krótki Wstęp
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą
ZAGADNIENIA DO EGZAMINU DYPLOMOWEGO NA STUDIACH INŻYNIERSKICH. Matematyka dyskretna, algorytmy i struktury danych, sztuczna inteligencja
Kierunek Informatyka Rok akademicki 2016/2017 Wydział Matematyczno-Przyrodniczy Uniwersytet Rzeszowski ZAGADNIENIA DO EGZAMINU DYPLOMOWEGO NA STUDIACH INŻYNIERSKICH Technika cyfrowa i architektura komputerów
Zał. nr 4 do ZW. Wykład Ćwiczenia Laboratorium Projekt Seminarium 30 30
WYDZIAŁ ****** KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA DYSKRETNA Nazwa w języku angielskim DISCRETE MATHEMATICS Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów
Algorytmy i złożoność obliczeniowa. Wojciech Horzelski
Algorytmy i złożoność obliczeniowa Wojciech Horzelski 1 Tematyka wykładu Ø Ø Ø Ø Ø Wprowadzenie Poprawność algorytmów (elementy analizy algorytmów) Wyszukiwanie Sortowanie Elementarne i abstrakcyjne struktury
Programowanie obiektowe
Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2015 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2015 1 / 21 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań
1. Algorytmika. WPROWADZENIE DO ALGORYTMIKI Wprowadzenie do algorytmów. Pojęcie algorytmu.
Wymagania edukacyjne z informatyki poziom rozszerzony w klasie 2 Społecznego Liceum Ogólnokształcącego Splot im. Jana Karskiego w Nowym Sączu 1. Algorytmika TREŚCI NAUCZANIA WPROWADZENIE DO ALGORYTMIKI
Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy. Wykład 13. Karol Tarnowski A-1 p.
Wstęp do programowania INP001213Wcl rok akademicki 2017/18 semestr zimowy Wykład 13 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji (1) Złożoność algorytmów czy to istotne, skoro
Programowanie dynamiczne i algorytmy zachłanne
Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii
Program nauczania informatyki w gimnazjum Informatyka dla Ciebie. Modyfikacja programu klasy w cyklu 2 godzinnym
Modyfikacja programu klasy 2 nym Cele modyfikacji Celem modyfikacji jest poszerzenie zakresu wiedzy zawartej w podstawie programowej które pomoże uczniom uzmysłowić sobie treści etyczne związane z pracą
Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy. Wykład 13. Karol Tarnowski A-1 p.
Wstęp do programowania INP001213Wcl rok akademicki 2018/19 semestr zimowy Wykład 13 Karol Tarnowski karol.tarnowski@pwr.edu.pl A-1 p. 411B Plan prezentacji (1) Złożoność algorytmów czy to istotne, skoro
Zagadnienia na egzamin dyplomowy dla kierunku Informatyka. studia I stopnia rok akademicki 2019/2020
Zagadnienia na egzamin dyplomowy dla kierunku Informatyka INFORMATYKA (70%) Bazy danych studia I stopnia rok akademicki 2019/2020 1. Zapytania modyfikujące strukturę tabeli (alter). 2. Zapytania dodające
Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:
Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem
Programowanie w C++ Wykład 7. Katarzyna Grzelak. 23 kwietnia K.Grzelak (Wykład 7) Programowanie w C++ 1 / 40
Programowanie w C++ Wykład 7 Katarzyna Grzelak 23 kwietnia 2018 K.Grzelak (Wykład 7) Programowanie w C++ 1 / 40 Standard Template Library (STL) K.Grzelak (Wykład 7) Programowanie w C++ 2 / 40 C++ Templates
Egzaminy i inne zadania. Semestr II.
Egzaminy i inne zadania. Semestr II. Poniższe zadania są wyborem zadań ze Wstępu do Informatyki z egzaminów jakie przeprowadziłem w ciągu ostatnich lat. Ponadto dołączyłem szereg zadań, które pojawiały
Systemy operacyjne 14. Co to jest system operacyjny i jakie są jego podstawowe zadania? Scharakteryzować podstawowe struktury systemów operacyjnych i
Uniwersytet Jagielloński Wydział Fizyki, Astronomii i Informatyki Stosowanej pytania na egzamin licencjacki 2011/12 pytania te mogą być stosowane także w czasie egzaminu magisterskiego Wstęp do architektury
Programowanie w C++ Wykład 6. Katarzyna Grzelak. 1 kwietnia K.Grzelak (Wykład 6) Programowanie w C++ 1 / 43
Programowanie w C++ Wykład 6 Katarzyna Grzelak 1 kwietnia 2019 K.Grzelak (Wykład 6) Programowanie w C++ 1 / 43 Pojęcia z poprzednich wykładów Tablica to ciag obiektów tego samego typu, zajmujacy ciagły
Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I
Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja I Rozkład zgodny
Spis treści. Przedmowa... 9
Spis treści Przedmowa... 9 1. Algorytmy podstawowe... 13 1.1. Uwagi wstępne... 13 1.2. Dzielenie liczb całkowitych... 13 1.3. Algorytm Euklidesa... 20 1.4. Najmniejsza wspólna wielokrotność... 23 1.5.
Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II
Zespół TI Instytut Informatyki Uniwersytet Wrocławski ti@ii.uni.wroc.pl http://www.wsip.com.pl/serwisy/ti/ Rozkład materiału do nauczania informatyki w liceum ogólnokształcącym Wersja II Rozkład wymagający
Matematyczne podstawy informatyki Mathematical Foundations of Computational Sciences. Matematyka Poziom kwalifikacji: II stopnia
Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyczne podstawy informatyki Mathematical Foundations of Computational Sciences
Wrocław, Wstęp do informatyki i programowania: liczby pierwsze. Wydział Matematyki Politechniki Wrocławskiej.
Wrocław, 28.11.2017 Wstęp do informatyki i programowania: liczby pierwsze Wydział Matematyki Politechniki Wrocławskiej Andrzej Giniewicz Dzisiaj na zajęciach... Zajmiemy się liczbami pierwszymi... liczby
PRZEDMIOTOWY SYSTEM OCENIANIA
PRZEDMIOTOWY SYSTEM OCENIANIA Przedmiot: informatyka Program nauczania: DKOS-5002-5/03 Realizowany w Zespole Szkół Ekonomicznych im. A. i J. Vetterów w Lublinie Opracowanie: zespół nauczycieli informatyki
Teoria grafów - Teoria rewersali - Teoria śladów
17 maja 2012 1 Planarność Wzór Eulera Kryterium Kuratowskiego Algorytmy testujące planarność 2 Genom i jego przekształcenia Grafy złamań Sortowanie przez odwrócenia Inne rodzaje sortowania Algorytmy sortujące
Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1
Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność
Podstawy programowania. Podstawy C# Przykłady algorytmów
Podstawy programowania Podstawy C# Przykłady algorytmów Proces tworzenia programu Sformułowanie problemu funkcje programu zakres i postać danych postać i dokładność wyników Wybór / opracowanie metody rozwiązania
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Treści programowe. Złożoność obliczeniowa algorytmu na przykładach. dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 1 Bożena Woźna-Szcześniak
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: MATEMATYKA DYSKRETNA Discrete mathematics Forma studiów: Stacjonarne Poziom kwalifikacji: Kod przedmiotu: A_06 Rok: I obowiązkowy w ramach treści
TEORIA GRAFÓW I SIECI
TEORIA GRAFÓW I SIECI Temat nr : Grafy Berge a dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 6-83-95-0, p.5/00 Zakład Badań Operacyjnych i
Rozkład materiału do realizacji informatyki w szkole ponadgimnazjalnej w zakresie rozszerzonym
Rozkład materiału do realizacji informatyki w szkole ponadgimnazjalnej w zakresie rozszerzonym opracowany na podstawie podręcznika, MIGRA 2013 Autor: Grażyna Koba W rozporządzeniu Ministra Edukacji Narodowej
Zaawansowane algorytmy. Wojciech Horzelski
Zaawansowane algorytmy Wojciech Horzelski 1 Organizacja Wykład: poniedziałek 8 15-10 Aula Ćwiczenia: Każdy student musi realizować projekty (treść podawana na wykładzie) : Ilość projektów : 5-7 Na realizację
Wybrane zagadnienia teorii liczb
Wybrane zagadnienia teorii liczb Podzielność liczb NWW, NWD, Algorytm Euklidesa Arytmetyka modularna Potęgowanie modularne Małe twierdzenie Fermata Liczby pierwsze Kryptosystem RSA Podzielność liczb Relacja