SID Wykład 4 Gry Wydział Matematyki, Informatyki i Mechaniki UW
|
|
- Laura Pietrzak
- 1 lat temu
- Przeglądów:
Transkrypt
1 SID Wykład 4 Gry Wydział Matematyki, Informatyki i Mechaniki UW
2 Gry a problemy przeszukiwania Nieprzewidywalny przeciwnik rozwiazanie jest strategia specyfikujac a posunięcie dla każdej możliwej odpowiedzi przeciwnika Ograniczenia czasowe mało prawdopodobne znalezienie celu, trzeba aproksymować Historia: Maszyna rozważa różne scenariusze rozgrywki (Babbage, 1846) Algorytmy dla gier z pełna informacja (Zermelo, 1912; Von Neumann, 1944) Backward-induction algorithm (von Neumann, Morgenstern, 1944) Skończony horyzont, aproksymacyjna ocena stanu gry (Zuse, 1945; Wiener, 1948; Shannon, 1950) Program grajacy w szachy (Turing, 1951) Zastosowanie uczenia maszynowego do poprawy trafności oceny stanu gry (Samuel, ) Odcięcia umożliwiajace głębsze przeszukiwanie (McCarthy, 1956)
3 Rodzaje gier Pełna informacja Niepełna informacja deterministyczne szachy, warcaby, go niedeterministyczne backgammon, monopoly bridge, poker, scrabble
4 Gra deterministyczna: 2 graczy Gracze: MAX i MIN Stan poczatkowy: stan planszy i wskazanie gracza rozpoczynajacego (MAX) Funkcja następnika: zbiór par (posunięcie, stan) opisujacych wszystkie dopuszczalne posunięcia z bieżacego stanu Test końca gry: sprawdza, czy stan gry jest końcowy Funkcja użyteczności (wypłaty): numeryczna wartość dla stanów końcowych, np. wypłaty dla wygranej, porażki i remisu moga być równe odpowiednio +1, -1 i 0.
5 Drzewo gry deterministycznej: 2 graczy MAX (X) MIN (O) X X X X X X X X X MAX (X) X O X O X O... MIN (O) X O X X O X X O X TERMINAL Utility X O X X O X X O X O X O O X X O X X O X O O
6 Strategia minimax: algorytm Dla gier deterministycznych z pełna informacja. Pomysł: wybiera ruch zapewniajacy największa wypłatę tzn. największa wartość minimax (funkcja MINIMAX-VALUE) przy założeniu, że przeciwnik gra optymalnie. function MINIMAX-DECISION(state) returns an action action,state the a,s in SUCCESSORS(state) such that MINIMAX-VALUE(s) is maximized return action end function function MINIMAX-VALUE(state) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state) else if MAX is to move in state then return the highest MINIMAX-VALUE of SUCCESSORS(state) else return the lowest MINIMAX-VALUE of SUCCESSORS(state) end if end function
7 Strategia minimax: przykład Gracz MAX maksymalizuje funkcję wypłaty (węzły ruch w lewa gałaź drzewa Gracz MIN minimalizuje funkcję wypłaty (węzły do lewego liścia poddrzewa ) wybiera ) wybiera ruch 3 MAX A 1 A 3 A 2 2 MIN 3 2 A 11 A 12 A 13 A 21 A 22 A 23 A 31 A 32 A 33 MAX
8 Strategia minimax: własności Użyteczność: Gry deterministyczne z pełna informacja z dowolna liczba graczy Pełność: Tak, jeśli drzewo przeszukiwań jest skończone Gry z nieskończonym drzewem przeszukiwań moga mieć strategie skończone! Optymalność: Tak, jeśli przeciwnik gra optymalnie. W ogólności nieoptymalne. Złożoność czasowa: O(b m ), gdzie b - maksymalne rozgałęzienie drzewa przeszukiwań m - maksymalna głębokość drzewa przeszukiwań Złożoność pamięciowa: O(bm) (przeszukiwanie wgłab) Dla szachów, b 35, m 100 dla sensownych rozgrywek dokładne rozwiazanie zupełnie nieosiagalne.
9 Strategia minimax z odcięciem Problem: brak czasu na pełne przeszukanie przestrzeni stanów, np. 100 sekund na posunięcie, szybkość 10 4 węzłów/sek 10 6 węzłów na ruch Rozwiazanie: przeszukiwanie z odcięciem ograniczajacym głębokość przeszukiwania
10 Strategia minimax z odcięciem: algorytm function MINIMAX-DECISION(state) returns an action action,state the a,s in SUCCESSORS(state) such that MINIMAX-VALUE(s) is maximized return action end function function MINIMAX-VALUE(state) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state) else if MAX is to move in state then return the highest MINIMAX-VALUE of SUCCESSORS(state) else return the lowest MINIMAX-VALUE of SUCCESSORS(state) end if end function Funkcja oceny UTILITY szacuje wypłatę dla danego stanu gry = rzeczywistej wypłacie dla stanów końcowych
11 Funkcja oceny: przykład Dla szachów, przeważnie liniowa ważona suma cech UTILITY (s) = w 1 f 1 (s)+w 2 f 2 (s)+...+w n f n (s) Black to move White slightly better np. White to move Black winning f 1 (s) =(liczba białych hetmanów) (liczba czarnych hetmanów) f 2 (s) =(najmniejsza odległość od linii przemiany dla pionów czarnych) (najmniejsza odległość od linii przemiany dla pionów białych) f 3 (s) =(1 jeśli była wykonana lub nadal jest możliwa roszada białych, w przeciwnym przypadku 0) (1 jeśli była wykonana lub nadal jest możliwa roszada czarnych, w przeciwnym przypadku 0))
12 Przeszukiwanie stabilne Problem: Stany maja taka sama wartość oceny (na korzyść czarnych), ale stan z prawej jest niestabilny kolejny ruch daje duża zmianę oceny stanu gry (na korzyść białych) (a) White to move (b) White to move Rozwiazanie: przeszukiwanie stabilne stany niestabilne sa rozwijane do momentu osiagnięcia stanu stabilnego
13 Przeszukiwanie z pojedynczym rozwinięciem Efekt horyzontu: gracz wykonuje ruchy odsuwajac nieuniknione posunięcie na korzyść przeciwnika poza horyzont przeszukiwania, np. czarna wieża powtarza szachowanie białego króla Black to move Rozwiazanie: przeszukiwanie z pojedynczym rozwinięciem algorytm wykonuje pogłębione przeszukiwanie dla wybranych posunięć wyraźnie lepszych od pozostałych
14 Strategia minimax z odcięciem α β α jest najlepsza wartościa dla MAX poza bieżac a ścieżka przeszukiwania MAX Jeśli V jest gorsze niż α, MAX nigdy nie wejdzie do tej gałęzi gałaź z V można odciać. β jest definiowane analogicznie dla MIN MIN MAX MIN V
15 Strategia minimax z odcięciem α β : algorytm function ALPHA-BETA-SEARCH(state) returns an action v MAX-VALUE(state,, + ) return the action in SUCCESSORS(state) with value v end function function MAX-VALUE(state, α, β ) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state) end if for each s in SUCCESSORS(state) do α max(α,min-value(s,α,β)) if α β then return β end if end for end function function MIN-VALUE(state, α, β ) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state) end if for each s in SUCCESSORS(state) do β min(β,max-value(s,α,β)) if β α then return α end if end for end function
16 Strategia minimax z odcięciem α β : przykład MAX 3 MIN 3 MAX
17 Strategia minimax z odcięciem α β : przykład MAX 3 MIN 3 2 MAX X X
18 Strategia minimax z odcięciem α β : przykład MAX 3 MIN MAX X X 14
19 Strategia minimax z odcięciem α β : przykład MAX 3 MIN MAX X X 14 5
20 Strategia minimax z odcięciem α β : przykład MAX 3 3 MIN MAX X X
21 Gry deterministyczne: osiagnięcia Warcaby: Chinook zakończył 40-letnie panowanie mistrza świata Mariona Tinsley w Użył biblioteki wszystkich zakończeń dla 8 lub mniej pionków na planszy, w sumie pozycji. Chinook - warcaby zostały rozwiazane (Schaeffer et al, 2007). Szachy: Deep Blue pokonał mistrza świata Gary Kasparowa w meczu z 6-ioma partiami w Deep Blue przeszukiwał 200 milionów pozycji na sekundę, używajac bardzo wyszukanej funkcji oceny i nieznanych metod rozszerzajacych niektóre ścieżki przeszukiwania do głębokości 40. Go: mistrz świata odmówił rozgrywki z komputerami, które sa zbyt słabe. W go, b > 300, więc większość programów używa bazy wiedzy z wzorcami do wyboru dopuszczalnych ruchów.
22 Gry niedeterministyczne Źródło niedeterminizmu: rzut kostka, tasowanie kart Przykład z rzucaniem moneta: MAX CHANCE 3-1 MIN
23 Gry niedeterministyczne: backgammon
24 Strategia uśrednionego minimax Uogólnienie strategii minimax dla gier niedeterministycznych function EXPECTIMINIMAX-DECISION(state) returns an action action,state the a,s in SUCCESSORS(state) such that EXPECTIMINIMAX-VALUE(s) is maximized return action end function function EXPECTIMINIMAX-VALUE(state) returns a utility value if TERMINAL-TEST(state) then return UTILITY(state) else if state is a MAX node then return the highest EXPECTIMINIMAX-VALUE of SUCCESSORS(state) else if state is a MIN node then return the lowest EXPECTIMINIMAX-VALUE of SUCCESSORS(state) else if state is a chance node then return average of EXPECTIMINIMAX-VALUE of SUCCESSORS(state) end if end function
25 Strategia uśrednionego minimax z odcięciem α-β [, + ] [, + ] [, + ] [, + ] [, + ] [, + ]
26 Strategia uśrednionego minimax z odcięciem α-β [, + ] [, 2] [, + ] [, + ] [, + ] [, + ] 2
27 Strategia uśrednionego minimax z odcięciem α-β [2,2] [, + ] [, + ] [, + ] [, + ] [, + ] 2 2
28 Strategia uśrednionego minimax z odcięciem α-β [2,2] [, 2] [, 2] [, + ] [, + ] [, + ] 2 2 2
29 Strategia uśrednionego minimax z odcięciem α-β [2,2] [1.5, 1.5] [1,1] [, + ] [, + ] [, + ]
30 Strategia uśrednionego minimax z odcięciem α-β [2,2] [1.5, 1.5] [1,1] [, + ] [, 0] [, + ]
31 Strategia uśrednionego minimax z odcięciem α-β [1.5, 1.5] [, + ] [2,2] [1,1] [0,0] [, + ]
32 Strategia uśrednionego minimax z odcięciem α-β [1.5, 1.5] [, ] [2,2] [1,1] [0,0] [, 1]
33 Strategia uśrednionego minimax z odcięciem α-β Bardziej efektywna, jeśli wartości wypłaty sa ograniczone. [ 2, 2] [ 2, 2] [ 2, 2] [ 2, 2] [ 2, 2] [ 2, 2]
34 Gry z niepełna informacja Np. gry karciane, w których poczatkowy zestaw kart przeciwnika jest nieznany. Można policzyć prawdopodobieństwo każdego rozdania wyglada jak jeden duży rzut kostka na poczatku gry. Pomysł: algorytm oblicza wartość minimax dla każdej akcji w każdym możliwym rozdaniu i wybiera akcje z największa wartościa uśredniona po wszystkich rozdaniach. GIB, najlepszy program do brydża, przybliża tę ideę: generuje 100 rozdań zgodnych z informacja z licytacji wybiera akcję, która zbiera średnio najwięcej lew
35 Wyzwania w modelowaniu gier właściwy dobór strategii, ocena strategii adaptacja do informacji zyskiwanych podczas gry gry zespołowe gry z wieloma graczami modelowanie stylu gry przeciwników - mecze złożone z wielu partii/gier z tym samym przeciwnikiem, np. poker
36 Dziękuję za uwagę!
Sztuczna Inteligencja i Systemy Doradcze
Sztuczna Inteligencja i Systemy Doradcze Przeszukiwanie przestrzeni stanów gry Przeszukiwanie przestrzeni stanów gry 1 Gry a problemy przeszukiwania Nieprzewidywalny przeciwnik rozwiązanie jest strategią
Gry. wykład 5. dr inż. Joanna Kołodziejczyk. Zakład Sztucznej Inteligencji ISZiMM. ESI - wykład 5 p. 1
Gry wykład 5 dr inż. Joanna Kołodziejczyk jkolodziejczyk@wi.ps.pl Zakład Sztucznej Inteligencji ISZiMM ESI - wykład 5 p. 1 Plan wykładu Adversarial search jak postępować, gdy inni agenci sa naszymi przeciwnikami,
WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI
POLITECHNIKA WARSZAWSKA WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA MEL WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI NS 586 Dr inż. Franciszek Dul 6. GRY POSZUKIWANIA W OBECNOŚCI PRZECIWNIKA Gry Pokażemy, w jaki
Algorytmy dla gier dwuosobowych
Algorytmy dla gier dwuosobowych Wojciech Dudek Seminarium Nowości Komputerowe 5 czerwca 2008 Plan prezentacji Pojęcia wstępne (gry dwuosobowe, stan gry, drzewo gry) Algorytm MiniMax Funkcje oceniające
Wykład 7 i 8. Przeszukiwanie z adwersarzem. w oparciu o: S. Russel, P. Norvig. Artificial Intelligence. A Modern Approach
(4g) Wykład 7 i 8 w oparciu o: S. Russel, P. Norvig. Artificial Intelligence. A Modern Approach P. Kobylański Wprowadzenie do Sztucznej Inteligencji 177 / 226 (4g) gry optymalne decyzje w grach algorytm
Wyznaczanie strategii w grach
Wyznaczanie strategii w grach Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Definicja gry Teoria gier i konstruowane na jej podstawie programy stanowią jeden z głównych
Podstawy sztucznej inteligencji
wykład II Problem solving 03 październik 2012 Jakie problemy możemy rozwiązywać? Cel: Zbudować inteligentnego agenta planującego, rozwiązującego problem. Szachy Kostka rubika Krzyżówka Labirynt Wybór trasy
Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH
Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Przeszukiwanie przestrzeni rozwiązań, szukanie na ślepo, wszerz, w głąb. Spis treści: 1. Wprowadzenie 3. str. 1.1 Krótki Wstęp
Teoria gier. Wykład7,31III2010,str.1. Gry dzielimy
Wykład7,31III2010,str.1 Gry dzielimy Wykład7,31III2010,str.1 Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), Wykład7,31III2010,str.1 Gry
Teoria gier. Teoria gier. Odróżniać losowość od wiedzy graczy o stanie!
Gry dzielimy ze względu na: liczbę graczy: 1-osobowe, bez przeciwników(np. pasjanse, 15-tka, gra w życie, itp.), 2-osobowe(np. szachy, warcaby, go, itp.), wieloosobowe(np. brydż, giełda, itp.); wygraną/przegraną:
Heurystyki. Strategie poszukiwań
Sztuczna inteligencja Heurystyki. Strategie poszukiwań Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski DLACZEGO METODY PRZESZUKIWANIA? Sztuczna Inteligencja
Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne
Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na
Partition Search i gry z niezupełną informacją
MIMUW 21 stycznia 2010 1 Co to jest gra? Proste algorytmy 2 Pomysł Algorytm Przykład użycia 3 Monte Carlo Inne spojrzenie Definicja Co to jest gra? Proste algorytmy Grą o wartościach w przedziale [0, 1]
TEORIA GIER DEFINICJA (VON NEUMANN, MORGENSTERN) GRA. jednostek (graczy) znajdujących się w sytuacji konfliktowej (konflikt interesów),w
TEORIA GIER GRA DEFINICJA (VON NEUMANN, MORGENSTERN) Gra składa się z zestawu reguł określających możliwości wyboru postępowania jednostek (graczy) znajdujących się w sytuacji konfliktowej (konflikt interesów),w
Teoria gier. prof. UŚ dr hab. Mariusz Boryczka. Wykład 4 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 4 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Sztuczna Inteligencja i Systemy Doradcze
ztuczna Inteligencja i ystemy Doradcze Przeszukiwanie przestrzeni stanów Przeszukiwanie przestrzeni stanów 1 Postawienie problemu eprezentacja problemu: stany: reprezentują opisy różnych stanów świata
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Rozwiązywanie problemów-i Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Rozwiązywanie problemów Podstawowe fazy: Sformułowanie celu -
Teoria gier. dr Przemysław Juszczuk. Wykład 2 - Gry o sumie zero. Instytut Informatyki Uniwersytetu Śląskiego
Instytut Informatyki Uniwersytetu Śląskiego Wykład 2 - Gry o sumie zero Gry o sumie zero Dwuosobowe gry o sumie zero (ogólniej: o sumie stałej) były pierwszym typem gier dla których podjęto próby ich rozwiązania.
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN Szkoła Wyższa Psychologii Społecznej d.wojcik@nencki.gov.pl dwojcik@swps.edu.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/
Porządek symetryczny: right(x)
Porządek symetryczny: x lef t(x) right(x) Własność drzewa BST: W drzewach BST mamy porządek symetryczny. Dla każdego węzła x spełniony jest warunek: jeżeli węzeł y leży w lewym poddrzewie x, to key(y)
Elementy Modelowania Matematycznego
Elementy Modelowania Matematycznego Wykład 12 Teoria gier II Spis treści Wstęp Oligopol, cła oraz zbrodnia i kara Strategie mieszane Analiza zachowań w warunkach dynamicznych Indukcja wsteczna Gry powtarzane
WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI
POLITECHNIKA WARSZAWSKA WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA MEL WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI NS 586 Dr inż. Franciszek Dul Poziomy sztucznej inteligencji Sztuczna świadomość? Uczenie się
ALGORYTMY I STRUKTURY DANYCH
LGORTM I STRUKTUR DNH Temat 6: Drzewa ST, VL Wykładowca: dr inż. bigniew TRPT e-mail: bigniew.tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/ Współautorami wykładu
Adam Meissner. SZTUCZNA INTELIGENCJA Gry dwuosobowe
Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej Adam Meissner Adam.Meissner@put.poznan.pl http://www.man.poznan.pl/~ameis SZTUCZNA INTELIGENCJA Gry dwuosobowe Literatura [1] Sterling
Wykład 6. Wyszukiwanie wzorca w tekście
Wykład 6 Wyszukiwanie wzorca w tekście 1 Wyszukiwanie wzorca (przegląd) Porównywanie łańcuchów Algorytm podstawowy siłowy (naive algorithm) Jak go zrealizować? Algorytm Rabina-Karpa Inteligentne wykorzystanie
Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1
Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,
Wykład2,24II2010,str.1 Przeszukiwanie przestrzeni stanów powtórka
Wykład2,24II2010,str.1 Przeszukiwanie przestrzeni stanów powtórka DEFINICJA: System produkcji M zbiórst.zw.stanów wyróżnionys 0 St.zw.stanpoczątkowy podzbiórg St.zw.stanówdocelowych zbiórot.zw.operacji:
ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.
POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie
Metody przeszukiwania
Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania
TEORIA GIER W EKONOMII WYKŁAD 5: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE NIESTAŁEJ
TEORI GIER W EKONOMII WYKŁD 5: GRY DWUOSOOWE KOOPERCYJNE O SUMIE NIESTŁEJ dr Robert Kowalczyk Katedra nalizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwumacierzowe Skończoną grę dwuosobową o
CZYM JEST SZTUCZNA INTELIGENCJA? REPREZENTACJA WIEDZY SZTUCZNA INTELIGENCJA PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI
PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI CZYM JEST SZTUCZNA INTELIGENCJA? Jak działa ludzki mózg? SZTUCZNA INTELIGENCJA Jak zasymulować ludzki mózg? Co to kogo obchodzi zróbmy coś pożytecznego
Rozwiązywanie problemów metodą przeszukiwania
Rozwiązywanie problemów metodą przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Reprezentacja problemu w przestrzeni stanów Jedną z ważniejszych metod sztucznej
Szachy - Samouczek. Maciek Nowak
Szachy - Samouczek Maciek Nowak Co to w ogóle są szachy? Szachy strategi czna gra pl anszowych rozgrywana przez dwóch graczy na 64- pol owej szachowni cy, za pomocą zestawu pi onów i f i gur. Mi ędzynarodowy
Drzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np.
Drzewa binarne Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0 i T 1 są drzewami binarnymi to T 0 T 1 jest drzewem binarnym Np. ( ) ( ( )) Wielkość drzewa
Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.
Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy
Alfa-beta Ulepszenie minimax Liczba wierzchołk ow w drzewie gry. maksymalnie wd. minimalnie wbd/2c + wdd/2e Algorytmy przeszukiwania drzewa gry 5
Zastosowanie metody Samuela doboru współczynników funkcji oceniajacej w programie grajacym w anty-warcaby Daniel Osman promotor: dr hab. inż. Jacek Mańdziuk 1 Spis treści Algorytmy przeszukiwania drzewa
Szachy INSTRUKCJA. rekwizyty: 1) Bierki - 32 szt. 2) plansza - 1 szt.
INSTRUKCJA Szachy rekwizyty: 1) Bierki - 32 szt. 2) plansza - 1 szt. Partia szachowa jest rozgrywana między dwoma przeciwnikami, którzy wykonują posunięcia bierkami na kwadratowej tablicy, zwanej szachownicą.
SZACHY mini INSTRUKCJA. rekwizyty: 1) Bierki - 32 szt. 2) plansza - 1 szt.
INSTRUKCJA SZACHY mini rekwizyty: 1) Bierki - 32 szt. 2) plansza - 1 szt. Partia szachowa jest rozgrywana między dwoma przeciwnikami, którzy wykonują posunięcia bierkami na kwadratowej tablicy, zwanej
TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ
TEORIA GIER W EKONOMII WYKŁAD 6: GRY DWUOSOBOWE KOOPERACYJNE O SUMIE DOWOLNEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Gry dwuosobowe z kooperacją Przedstawimy
prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325
PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj
Szachowisko Żywe Szachy (zapraszamy do znajomych) www.szachowisko.wordpress.com Szachowisko co to takiego? Szachowisko żywe szachy w Lublinie to projekt realizowany przez młodzież przy wsparciu Fundacji
Wykład 2. Drzewa zbalansowane AVL i 2-3-4
Wykład Drzewa zbalansowane AVL i -3-4 Drzewa AVL Wprowadzenie Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Drzewa -3-4 Definicja drzewa -3-4 Operacje wstawiania
Skowrońska-Szmer. Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością. 04.01.2012r.
mgr inż. Anna Skowrońska-Szmer Instytut Organizacji i Zarządzania Politechniki Wrocławskiej Zakład Zarządzania Jakością 04.01.2012r. 1. Cel prezentacji 2. Biznesplan podstawowe pojęcia 3. Teoria gier w
WYKŁAD 11 Uczenie maszynowe drzewa decyzyjne
WYKŁAD 11 Uczenie maszynowe drzewa decyzyjne Reprezentacja wiedzy w postaci drzew decyzyjnych entropia, przyrost informacji algorytmy ID3, C4.5 problem przeuczenia wyznaczanie reguł rzykładowe drzewo decyzyjne
PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI
Wprowadzenie do badań operacyjnych z komputerem Opisy programów, ćwiczenia komputerowe i zadania. T. Trzaskalik (red.) Rozdział 5 PODEJMOWANIE DECYZJI W WARUNKACH NIEPEŁNEJ INFORMACJI 5.2. Ćwiczenia komputerowe
Struktura danych. Sposób uporządkowania informacji w komputerze.
Struktura danych Sposób uporządkowania informacji w komputerze. Algorytm Skończony, uporządkowany ciąg jasno zdefiniowanych czynności, koniecznych do wykonania pewnego zadania. Al-Khwarizmi perski matematyk
TEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ
TEORIA GIER W EKONOMII dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Informacje Ogólne (dr Robert Kowalczyk) Wykład: Poniedziałek 16.15-.15.48 (sala A428) Ćwiczenia:
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych
Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych ELEMENTY SZTUCZNEJ INTELIGENCJI Laboratorium nr 9 PRZESZUKIWANIE GRAFÓW Z
TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ
TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Definicja gry o sumie zerowej Powiemy, że jest grą o
W którym rozważamy problemy pojawiające się, gdy próbujemy planować z góry w świecie zawierającym wrogiego agenta.
Rozdział 5 Gry W którym rozważamy problemy pojawiające się, gdy próbujemy planować z góry w świecie zawierającym wrogiego agenta. 5.1 Wprowadzenie: gry jako problemy szukania Gry angażowały zdolności intelektualne
ATOLL. Wykonali: Aleksandra Kuchta, Łukasz Wójcik, Sztuczna Inteligencja, Semestr trzeci, Kierunek Informatyka, Wydział Informatyki i Zarządzania,
Sztuczna Inteligencja, Semestr trzeci, Kierunek Informatyka, Wydział Informatyki i Zarządzania, Politechnika Poznańska ATOLL Wykonali: Aleksandra Kuchta, WFT, PP, nr 76690, rok IV Łukasz Wójcik, WIiZ,
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 12a: Prawdopodobieństwo i algorytmy probabilistyczne http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2010/tpi-2010 Prof. dr hab. Elżbieta Richter-Wąs 1 Teoria prawdopodobieństwa
Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).
Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze
10. Wstęp do Teorii Gier
10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej
Programowanie dynamiczne
Programowanie dynamiczne Patryk Żywica 5 maja 2008 1 Spis treści 1 Problem wydawania reszty 3 1.1 Sformułowanie problemu...................... 3 1.2 Algorytm.............................. 3 1.2.1 Prosty
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 01 Modele obliczeń Jarosław Miszczak IITiS PAN Gliwice 05/10/2016 1 / 33 1 2 3 4 5 6 2 / 33 Co to znaczy obliczać? Co to znaczy obliczać? Deterministyczna maszyna Turinga
ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO KONSTRUKCJI
ZASTOSOWANIE ALGORYTMU GENETYCZNEGO DO KONSTRUKCJI FUNKCJI OCENIAJĄCEJ W GRZE OTHELLO Tomasz Dąbrowski, Halina Kwaśnicka, Maciej Piasecki Wydziałowy Zakład Informatyki, Politechnika Wrocławska, ul. Wybrzeże
Co to są drzewa decyzji
Drzewa decyzji Co to są drzewa decyzji Drzewa decyzji to skierowane grafy acykliczne Pozwalają na zapis reguł w postaci strukturalnej Przyspieszają działanie systemów regułowych poprzez zawężanie przestrzeni
ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe opracował:
Sztuczna inteligencja w programowaniu gier
ztuczna inteligencja w programowaniu gier Algorytmy przeszukiwania przestrzeni rozwiązań Krzysztof Ślot Wprowadzenie Ogólna charakterystyka zagadnienia Cel przeszukiwania: znaleźć element będący rozwiązaniem
Internetowe Ko³o M a t e m a t yc z n e
Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 3 szkice rozwiązań zadań 1. Plansza do gry składa się z 15 ustawionych w rzędzie kwadratów. Pierwszy z graczy
TEORIA GIER W EKONOMII. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ
TEORIA GIER W EKONOMII dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Informacje Ogólne Wykład: Sobota/Niedziela Ćwiczenia: Sobota/Niedziela Dyżur: Czwartek 14.00-16.00
Podstawy Sztucznej Inteligencji (PSZT)
Podstawy Sztucznej Inteligencji (PSZT) Paweł Wawrzyński Przeszukiwanie Przeszukiwanie przestrzeni stanów Motywacja Rozwiązywanie problemów: poszukiwanie sekwencji operacji prowadzącej do celu poszukiwanie
Metody klasyfikacji danych - część 1 p.1/24
Metody klasyfikacji danych - część 1 Inteligentne Usługi Informacyjne Jerzy Dembski Metody klasyfikacji danych - część 1 p.1/24 Plan wykładu - Zadanie klasyfikacji danych - Przeglad problemów klasyfikacji
Podstawowe zasady gry w szachy. Ustawienie bierek na szachownicy w pozycji wyjściowej.
Podstawowe zasady gry w szachy Ustawienie bierek na szachownicy w pozycji wyjściowej. Bierki o d lewej: Wieża, Skoczek, Goniec, Hetman, Król, Goniec, Skoczek, Wieża oraz 8 pionków w na drugiej linii. Cel
Algorytmy i Struktury Danych.
Algorytmy i Struktury Danych. Metoda Dziel i zwyciężaj. Problem Sortowania, cd. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Algorytmy
Wykład 2. Drzewa poszukiwań binarnych (BST)
Wykład 2 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST
Drzewa poszukiwań binarnych
1 Drzewa poszukiwań binarnych Kacper Pawłowski Streszczenie W tej pracy przedstawię zagadnienia związane z drzewami poszukiwań binarnych. Przytoczę poszczególne operacje na tej strukturze danych oraz ich
Jak wygrywać w brydża znając mechanikę kwantową?
Jak wygrywać w brydża znając mechanikę kwantową? Tomasz Kisielewski 15 grudnia 2014 Podstawowe zasady brydża Brydż jest grą karcianą dla czterech osób grających w drużynach po dwie osoby. Gra składa się
Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne
Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może
Informatyka Systemów Autonomicznych
Grzegorz Bartoszek 148326 Informatyka Systemów Autonomicznych Systemy informatyczne działające w świecie statycznym, quasi-statycznym i dynamicznym Prowadzący: dr inż. Marek Piasecki 1.Wstęp Systemy komputerowe
Teoria Gier - wojna, rybołówstwo i sprawiedliwość w polityce.
Liceum Ogólnokształcące nr XIV we Wrocławiu 5 maja 2009 1 2 Podobieństwa i różnice do gier o sumie zerowej Równowaga Nasha I co teraz zrobimy? 3 Idee 1 Grać będą dwie osoby. U nas nazywają się: pan Wiersz
Wykład 3. Drzewa czerwono-czarne
Wykład 3 Drzewa czerwono-czarne 1 Drzewa zbalansowane Wprowadzenie Drzewa czerwono-czarne Definicja, wysokość drzewa Rotacje, operacje wstawiania i usuwania Literatura Cormen, Leiserson, Rivest, Wprowadzenie
Wybrane podstawowe rodzaje algorytmów
Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych
Heurystyczne metody przeszukiwania
Heurystyczne metody przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Pojęcie heurystyki Metody heurystyczne są jednym z ważniejszych narzędzi sztucznej inteligencji.
Kognitywne podejście do gry w szachy kontynuacja prac
Kognitywne podejście do gry w szachy kontynuacja prac Stanisław Kaźmierczak Opiekun naukowy: prof. dr hab. Jacek Mańdziuk 2 Agenda Motywacja Kilka badań Faza nauki Wzorce Generowanie ruchów Przykłady Pomysły
Drzewa czerwono-czarne.
Binboy at Sphere http://binboy.sphere.p l Drzewa czerwono-czarne. Autor: Jacek Zacharek Wstęp. Pojęcie drzewa czerwono-czarnego (red-black tree) zapoczątkował Rudolf Bayer w książce z 1972 r. pt. Symmetric
Drzewa podstawowe poj
Drzewa podstawowe poj ecia drzewo graf reprezentujacy regularna strukture wskaźnikowa, gdzie każdy element zawiera dwa lub wiecej wskaźników (ponumerowanych) do takich samych elementów; wez ly (albo wierzcho
TEORIA GIER W NAUKACH SPOŁECZNYCH. Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą
TEORIA GIER W NAUKACH SPOŁECZNYCH Gry macierzowe, rybołówstwo na Jamajce, gry z Naturą Przypomnienie Gry w postaci macierzowej i ekstensywnej Gry o sumie zerowej i gry o sumie niezerowej Kryterium dominacji
3.2 Wykorzystanie drzew do generowania pytań
Algorithm 3.2 Schemat prostego przycinania drzewa function przytnij_drzewo( T: drzewo do przycięcia, P: zbiór_przykładów) returns drzewo decyzyjne begin for węzły n drzewa T: T* = w drzewie T zastąp n
Narzędzia AI. Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312. http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE)
Narzędzia AI Jakub Wróblewski jakubw@pjwstk.edu.pl Pokój 312 http://zajecia.jakubw.pl SZTUCZNA INTELIGENCJA (ARTIFICIAL INTELLIGENCE) Nauka o maszynach realizujących zadania, które wymagają inteligencji
Archipelag Sztucznej Inteligencji
Archipelag Sztucznej Inteligencji Istniejące metody sztucznej inteligencji mają ze sobą zwykle niewiele wspólnego, więc można je sobie wyobrażać jako archipelag wysp, a nie jako fragment stałego lądu.
Algorytmy i złożoność obliczeniowa. Wojciech Horzelski
Algorytmy i złożoność obliczeniowa Wojciech Horzelski 1 Tematyka wykładu Ø Ø Ø Ø Ø Wprowadzenie Poprawność algorytmów (elementy analizy algorytmów) Wyszukiwanie Sortowanie Elementarne i abstrakcyjne struktury
Uniwersytet Warszawski Teoria gier dr Olga Kiuila LEKCJA 3
LEKCJA 3 Wybór strategii mieszanej nie jest wyborem określonych decyzji, lecz pozornie sztuczną procedurą która wymaga losowych lub innych wyborów. Gracze mieszają nie dlatego że jest im obojętna strategia,
Algorytmy i Struktury Danych, 2. ćwiczenia
Algorytmy i Struktury Danych, 2. ćwiczenia 2015-10-09 Spis treści 1 Szybkie potęgowanie 1 2 Liczby Fibonacciego 2 3 Dowód, że n 1 porównań jest potrzebne do znajdowania minimum 2 4 Optymalny algorytm do
SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.
SYSTEMY UCZĄCE SIĘ WYKŁAD 3. DRZEWA DECYZYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska BUDOWA DRZEW DECYZYJNYCH Drzewa decyzyjne są metodą indukcyjnego
Algorytmiczne Aspekty Teorii Gier Rozwiązania zadań
Algorytmiczne Aspekty Teorii Gier Rozwiązania zadań Bartosz Gęza 19/06/2009 Zadanie 2. (gra symetryczna o sumie zerowej) Profil prawdopodobieństwa jednorodnego nie musi być punktem równowagi Nasha. Przykładem
Algorytmy w teorii liczb
Łukasz Kowalik, ASD 2004: Algorytmy w teorii liczb 1 Algorytmy w teorii liczb Teoria liczb jest działem matemtyki dotyczącym własności liczb naturalnych. Rozważa się zagadnienia związane z liczbami pierwszymi,
Przykład. 1 losuje kartę z potasowanej talii, w której połowa kart ma kolor czarny a połowa czerwony. Postać ekstensywna Postać normalna
Przykład Postać ekstensywna Postać normalna Na poczatku gry dwaj gracze wkładaja do puli po 1$. Następnie, gracz 1 losuje kartę z potasowanej talii, w której połowa kart ma kolor czarny a połowa czerwony.
Wykład 6. Drzewa poszukiwań binarnych (BST)
Wykład 6 Drzewa poszukiwań binarnych (BST) 1 O czym będziemy mówić Definicja Operacje na drzewach BST: Search Minimum, Maximum Predecessor, Successor Insert, Delete Struktura losowo budowanych drzew BST
Deep Learning na przykładzie Deep Belief Networks
Deep Learning na przykładzie Deep Belief Networks Jan Karwowski Zakład Sztucznej Inteligencji i Metod Obliczeniowych Wydział Matematyki i Nauk Informacyjnych PW 20 V 2014 Jan Karwowski (MiNI) Deep Learning
Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel
Wstęp do programowania Drzewa Piotr Chrząstowski-Wachtel Drzewa Drzewa definiują matematycy, jako spójne nieskierowane grafy bez cykli. Równoważne określenia: Spójne grafy o n wierzchołkach i n-1 krawędziach
Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne. Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych
Sztuczna inteligencja stan wiedzy, perspektywy rozwoju i problemy etyczne Piotr Bilski Instytut Radioelektroniki i Technik Multimedialnych Plan wystąpienia Co to jest sztuczna inteligencja? Pojęcie słabej
Uczenie maszynowe end-to-end na przykładzie programu DeepChess. Stanisław Kaźmierczak
Uczenie maszynowe end-to-end na przykładzie programu DeepChess Stanisław Kaźmierczak 2 Agenda Wprowadzenie Dane treningowe Trening i struktura sieci Redukcja rozmiaru sieci Zmodyfikowane alfa beta Wyniki
Heurystyczne przeszukiwanie grafów gier dwuosobowych
Heurystyczne przeszukiwanie grafów gier dwuosobowych Wykład Informatyka Studia InŜynierskie Teoria gier w dziedzinie SI Liczba graczy jednoosobowe, dwuosobowe oraz wieloosobowe Suma wypłat gry o sumie
Wykład 8. Drzewa AVL i 2-3-4
Wykład 8 Drzewa AVL i 2-3-4 1 Drzewa AVL Ø Drzewa AVL Definicja drzewa AVL Operacje wstawiania i usuwania Złożoność obliczeniowa Ø Drzewa 2-3-4 Definicja drzewa 2-3-4 Operacje wstawiania i usuwania Złożoność
SPOTKANIE 11: Reinforcement learning
Wrocław University of Technology SPOTKANIE 11: Reinforcement learning Adam Gonczarek Studenckie Koło Naukowe Estymator adam.gonczarek@pwr.edu.pl 19.01.2016 Uczenie z nadzorem (ang. supervised learning)
Przykłady problemów optymalizacyjnych
Przykłady problemów optymalizacyjnych NAJKRÓTSZA ŚCIEŻKA W zadanym grafie G = (V, A) wyznacz najkrótsza ścieżkę od wierzchołka s do wierzchołka t. 2 7 5 5 3 9 5 s 8 3 1 t 2 2 5 5 1 5 4 Przykłady problemów
SID Wykład 1 Wprowadzenie
SID Wykład 1 Wprowadzenie Wydział Matematyki, Informatyki i Mechaniki UW slezak@mimuw.edu.pl Program przedmiotu algorytmy heurystyczne problemy optymalizacyjne strategie w grach wnioskowanie w logice planowanie