MODEL MATEMATYCZNY ZAGREGOWANEGO ELEMENTU UKŁADU ELEKTRYCZNEGO W CYFROWYCH SYMULATORACH PRACUJĄCYCH W CZASIE RZECZYWISTYM

Wielkość: px
Rozpocząć pokaz od strony:

Download "MODEL MATEMATYCZNY ZAGREGOWANEGO ELEMENTU UKŁADU ELEKTRYCZNEGO W CYFROWYCH SYMULATORACH PRACUJĄCYCH W CZASIE RZECZYWISTYM"

Transkrypt

1 POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 7 Electrical Engineering 20 Sławomir CIEŚLIK* MODEL MATEMATYCZNY ZAGREGOWANEGO ELEMENTU UKŁADU ELEKTRYCZNEGO W CYFROWYCH SYMULATORACH PRACUJĄCYCH W CZASIE RZECZYWISTYM W artykule przedstawiono koncepcję modelu matematycznego zagregowanego elementu układu elektrycznego stosowanego w cyfrowych symulatorach pracujących w czasie rzeczywistym. W tego typu symulatorach, oprócz odpowiedniej dokładności wyników, ważny jest czas obliczeń. Zastosowanie proponowanego modelu wraz z dekompozycją modelu układu elektrycznego na potrzeby obliczeń równoległych zmniejsza liczbę równań w układzie rozwiązywanym w każdym kroku całkowania. Wymiernym efektem tego jest uzyskanie wyników w krótszym czasie.. WSTĘP Problemy dotyczące modelowania matematycznego układów elektrycznych należą do grupy zagadnień numerycznych charakteryzujących się dużą intensywnością arytmetyczną. Jest ona definiowana [5] jako stosunek czasu na wykonanie operacji arytmetycznych w programie do czasu na transfer danych do i z pamięci operacyjnej. Właśnie dla tego typu zagadnień możliwe jest wykorzystanie procesorów graficznych (GPU) []. Zatem celowe jest poszukiwanie efektywnych sposobów podziału procesu obliczeniowego na zadania realizujące te same operacje dla różnych danych. System pracujący w czasie rzeczywistym rozumiany jest jako cyfrowa platforma komputerowa, w której wyniki obliczeń zależą nie tylko od danych generowanych przez otoczenie, ale również od upływu czasu. Bazując na standardach IEEE [, ], można zdefiniować pojęcie symulatora działającego w czasie rzeczywistym jako platformę cyfrową, w której obliczenia wykonywane są współbieżnie z procesem zewnętrznym (otoczenie) w celu sterowania, nadzoru lub terminowego reagowania na zdarzenia występujące w tym procesie. Specyfiką pracy symulatorów pracujących w czasie rzeczywistym jest wymiana danych z otoczeniem, która odbywa się w ściśle określonych chwilach. Zakłada się, że wartości sygnałów wejściowych i wyjściowych są w określonych chwilach * Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy.

2 0 Sławomir Cieślik zatrzaskiwane w jednostkach pamiętających. Wymiana danych z otoczeniem odbywa się zgodnie z taktowaniem zegara sterującego z określoną stałą częstotliwością, zwaną częstotliwością wymiany danych pomiędzy symulatorem i otoczeniem. Z częstotliwości tej bezpośrednio wynika kwant czasu pracy symulatora. Obliczenia numeryczne w symulatorze w rzeczywistości muszą być wykonywane w czasie krótszym od kwantu czasu pracy tego symulatora, aby umożliwić terminowe reagowanie na zdarzenia. W związku z tym wprowadza się pojęcie programowego kroku całkowania równań różniczkowych, z którym są rozwiązywane równania występujące w modelu matematycznym. Symulator działa skutecznie pod względem terminowego reagowania na zdarzenia wtedy, gdy równania modelu matematycznego układu elektrycznego całkowane z określonym programowym krokiem rozwiązywane są w rzeczywistości w czasie krótszym od przyjętego kwantu czasu pracy tego symulatora. Zagadnienia związane z obwodowymi modelami matematycznymi układów elektrycznych w cyfrowych symulatorach pracujących w czasie rzeczywistym przedstawiono w rozprawie [2]. W niniejszym artykule zaprezentowano model matematyczny zagregowanego elementu układu elektrycznego, który wraz z dekompozycją modelu tego układu na potrzeby obliczeń równoległych zmniejsza liczbę równań w matematycznym układzie rozwiązywanym w każdym kroku całkowania. Wymiernym efektem tego jest uzyskanie wyników w krótszym czasie. 2. MODEL MATEMATYCZNY ZAGREGOWANEGO LINIOWEGO TRÓJFAZOWEGO ELEMENTU UKŁADU ELEKTRYCZNEGO [2] Zagregowany liniowy trójfazowy element strukturalny jest to połączenie przynajmniej dwóch podstawowych liniowych trójfazowych elementów strukturalnych, w którym w sposób jawny wyróżnione są wewnętrzne węzły obwodu elektrycznego (węzeł jako połączenie minimum trzech gałęzi). Celem praktycznym tworzenia zagregowanych elementów strukturalnych jest zmniejszenie liczby węzłów w analizowanym układzie elektrycznym, a tym samym zmniejszenie liczby równań w rozwiązywanych numerycznie równaniach. Na rysunku przedstawiono schemat liniowego trójfazowego zagregowanego elementu strukturalnego typu RL+RL w postaci trójbiegunnika. Liniowy trójfazowy zagregowany element strukturalny typu RL+RL składa się z połączenia dwóch liniowych trójfazowych elementów strukturalnych typu RL. Dla odróżnienia samych elementów, ich parametrów oraz wielkości fizycznych z nimi związanych zastosowano oznaczenia: element RLx oraz RLy. Element zagregowany, jego parametry oraz wielkości fizyczne oznaczono symbolem RLz. Wewnątrz elementu RLz wyróżniono trzy węzły: w, 2w i w.

3 Model matematyczny zagregowanego elementu układu elektrycznego w 05 Dla przykładu wyprowadzony jest dyskretny model liniowego trójfazowego zagregowanego elementu strukturalnego typu RL+RL (rys. ) stowarzyszony z interpolacyjnym algorytmem Eulera. 2 i i x 2 i 2 i 2x i i x R Ax R Bx R Cx L Ax i y 5 2 L Bx i 2y L Cx RLx i y R Ay R By R Cy L Ay 5 L By L Cy RLy RLxy Rys.. Schemat liniowego trójfazowego zagregowanego elementu strukturalnego typu RL+RL w postaci trójbiegunnika [2] Równanie wektorowe dla elementu RLy, z uwagi na zewnętrzne (względem elementu RLy) połączenie węzłów (układ trójkąta), zapisano: i A v + B = 0, () RLy + RLy w RLy i RLy = irly i2rly irly wektor prądów gałęzi elementu RLy, gdzie: [ ] T w = [ v v v ] T v wektor potencjałów węzłów wewnętrznych elementu RLz, w 2w w αarly αarly 0 A RLy = 0 αbrly αbrly macierz, której elementy α ζrly αcrly 0 αcrly wyznacza się z zastosowaniem wzoru = ( R + h L ) [ β β β ] T α, B RLy = ARLy BRLy CRLy wektor, którego elementy β ζrly wyznacza ( ) się z zastosowaniem wzoru =α h L i ( t ) k n β.

4 0 Sławomir Cieślik Równanie wektorowe dla elementu RLx, z uwagi na bezpośrednie wyprowadzenie gałęzi na zewnątrz zagregowanego elementu RLz ( i RLz = irlx, i 2RLz = i 2RLx, i RLz = i RLx ), zapisano: i a v a v + B = 0, (2) RLz + RLx RLz RLx w RLx gdzie: [ ] T i RLz = irlz i2rlz irlz wektor prądów gałęzi zewnętrznych zagregowanego elementu RLz, [ v v v ] T v RLz = RLz 2RLz RLz wektor potencjałów węzłów zewnętrznych zagregowanego elementu RLz, a = diag( α, α α ) macierz, której elementy α ζrlx wyznacza RLx ARLx BRLx, CRLx się z zastosowaniem wzoru = ( R + h L ) RLx = α, [ β β β ] T ARLx BRLx CRLx B wektor, którego elementy β ζrlx wyznacza ( ) się z zastosowaniem wzoru β =α h L i ( t ) k n, z uwzględnieniem, że i RLz = i RLx. Na podstawie I prawa Kirchhoffa zapisano równanie: i RLz + PwRLziRLy = 0, () 0 gdzie P wrlz = 0 macierz incydencji wewnętrznych połączeń 0 zagregowanego elementu RLz. Po przekształceniach równań (), (2) oraz () otrzymano następujące zależności do wyznaczania wartości macierzy A RLz oraz wektora B RLz w zewnętrznym równaniu irlz + ARLzv RLz + BRLz = 0 liniowego trójfazowego zagregowanego elementu strukturalnego (rys. ): A RLz = HPwRLzARLy, () B RLz = HPwRLz( ARLya RLxBRLx + BRLy), gdzie = ( P A a ) H wrlz RLy RLx. Wartości prądów elementu strukturalnego RLy oblicza się ze wzoru: irly = ARLy( arlx( irlz + BRLx) + vrlz) BRLy. (5) Wektor potencjałów węzłów wewnętrznych zagregowanego elementu strukturalnego RLz wyznacza się, przekształcając równanie (2) v = a i + B + v. () w RLx ( RLz RLx) RLz

5 Model matematyczny zagregowanego elementu układu elektrycznego w 07 Przykład modelu matematycznego tranzystorowego przekształtnika z kondensatorem i trójfazowym dławikiem, jako trójfazowego zagregowanego elementu strukturalnego (trójbiegunnika elektrycznego), przy zastosowaniu modelowania matematycznego z elementami RLC, przedstawiono w pracy [].. PRZYKŁAD ZASTOSOWANIA MODELU ZAGREGOWANEGO TRÓJFAZOWEGO ELEMENTU UKŁADU ELEKTRYCZNEGO Na rysunku 2 przedstawiono schemat zastępczy przykładowego układu elektrycznego. Modelowany układ elektryczny składa się z połączenia dwudziestu pięciu elementów strukturalnych 25. Przy tak wyodrębnionych elementach strukturalnych w analizowanym układzie elektrycznym występuje w sposób jawny 9 węzłów. Każdy sześciobiegunnik posiada sześć węzłów zewnętrznych, teoretycznie każdy ma inną wartość potencjału elektrycznego oraz trzy prądy zewnętrzne (odpowiednie pary węzłów zewnętrznych wielobiegunników połączone są jedną gałęzią). W dwóch elementach strukturalnych (2 i 25) występują po dwie zmienne na jedną fazę, a w pozostałych 2 elementach po jednej zmiennej na fazę. W analizowanym układzie elektrycznym występuje zatem 8 zmiennych, których wartości muszą być obliczane w każdym kroku całkowania. Zadaniem jest skonstruowanie symulatora do badania stanów przejściowych i ustalonych w przykładowym układzie elektrycznym (rys. 2), który ma współpracować z rzeczywistymi urządzeniami zewnętrznymi. Z uwagi na to ostatnie określa się wartość kwantu czasu pracy symulatora równą 0,2 ms. Z tego wynika wartość programowego kroku całkowania równań występujących w modelu matematycznym układu również równa 0,2 ms. Chociaż można przyjąć, że możliwe jest wykonywanie obliczeń z programowym krokiem całkowania mniejszym niż kwant czasu pracy symulatora. Wówczas w jednym kwancie czasu pracy symulatora wykona się k kroków całkowania z h równym kwantowi czasu pracy symulatora podzielonym przez k. W praktyce, jeżeli taka sytuacja jest możliwa, odpowiednio zmniejsza się kwant czasu pracy symulatora. Badania eksperymentalne modelu matematycznego przykładowego układu elektrycznego wykonywane były na platformie cyfrowej (platforma nr ) opartej na komputerze osobistym z sześciordzeniowym procesorem Intel Core i7 GHz, 597 MHz (pamięć fizyczna,00 GB, dostępna pamięć fizyczna,5 GB, całkowity rozmiar pamięci wirtualnej 2,0 GB, dostępna pamięć wirtualna 0, GB). Wykorzystano klasyczny -bitowy system operacyjny Microsoft Windows 7 Professional (..70 Service Pack ). Wyniki eksperymentów z zastosowaniem zagregowanego modelu matematycznego elementu strukturalnego oznaczonego symbolem 78, który zastępuje dwa elementy strukturalne 7 i 8 (rys. 2) przedstawiono na rys..

6 08 Sławomir Cieślik Zastosowanie zagregowanego elementu strukturalnego ma na celu przeniesienie określonych węzłów układu elektrycznego do wewnątrz zagregowanego elementu strukturalnego, co w efekcie prowadzi do zmniejszenia liczby równań do rozwiązania i przyspieszenia obliczeń. Potwierdzają to wyniki eksperymentu przedstawione na rys v v 2 v v v 7 v v 0 v v v 7 5 v v 5 v 5 2 v 8 v 9 v v v 5 v 5 2 v 7 v 8 v v 22 v 20 v 2 v 2 v 2 v 25 7 v 2 v 27 v 29 v v v v v v 2 v Rys. 2. Schemat zastępczy analizowanego układu elektrycznego [2] Rys.. Czas wykonania fragmentu obliczeń w jednym kroku całkowania w symulatorze stanów przejściowych układu elektrycznego (rys. 2) z zastosowaniem modelu zagregowanego elementu 78 [2]

7 Model matematyczny zagregowanego elementu układu elektrycznego w 09. WNIOSEK Pokazano na przykładzie liniowego trójfazowego elementu strukturalnego możliwość konstruowania zagregowanego modelu matematycznego jako połączenie przynajmniej dwóch podstawowych elementów strukturalnych, w którym w sposób jawny wyróżnione są wewnętrzne węzły obwodu elektrycznego (w tej sytuacji węzeł jest traktowany jako połączenie minimum trzech gałęzi). Wykazano, że użycie zagregowanego modelu powoduje przeniesienie określonych węzłów układu elektrycznego do wewnątrz elementu strukturalnego, co przy zastosowaniu obliczeń równoległych skróci czas otrzymywania wyników dla całego układu elektrycznego. LITERATURA [] Cieślik S., Modelowanie matematyczne i symulacja układów elektroenergetycznych z generatorami indukcyjnymi. Wyd. Uczelniane Uniwersytetu Technologiczno-Przyrodniczego, Bydgoszcz [2] Cieślik S., Obwodowe modele układów elektrycznych w cyfrowych symulatorach pracujących w czasie rzeczywistym. Wyd. Politechn. Poznańskiej 20. [] Drechny M., Możliwości zastosowania obliczeń równoległych w elektroenergetyce. Rynek Energii, nr (0), 202, s. 70. [] Glossary of Software Engineering Terminology. IEEE/ANSI Standard 729, 98. [5] Karbowski A., Niewiadomska-Szynkiewicz E. (red.), Programowanie równoległe i rozproszone. Warszawa, Oficyna Wyd. Politechn. Warszawskiej [] Standard Computer Dictionary, IEEE Std 0, 990. MATHEMATICAL MODEL OF INTEGRATED UNIT OF ELECTRIC POWER SYSTEM IN REAL-TIME DIGITAL SIMULATORS This paper presents the concept of a mathematical model of a theintegrated unit of the electrical power system used in real-time digital simulators. In this type of simulators, in addition to adequate accuracy of the results, it is important computation time. The use of the proposed model with the decomposition of the electrical system model for parallel computing reduces the number of equations in the system, whith is solved at each step of integration. Measurable effect of this is to obtain results in less time.

ANALIZA STABILNOŚCI SYMULACJI UKŁADU ELEKTRYCZNEGO W CZASIE RZECZYWISTYM

ANALIZA STABILNOŚCI SYMULACJI UKŁADU ELEKTRYCZNEGO W CZASIE RZECZYWISTYM POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 81 Electrical Engineering 2015 Maciej FAJFER* ANALIZA STABILNOŚCI SYMULACJI UKŁADU ELEKTRYCZNEGO W CZASIE RZECZYWISTYM W artykule przedstawiono wyniki

Bardziej szczegółowo

SYMULACJA ZAKŁÓCEŃ W UKŁADACH AUTOMATYKI UTWORZONYCH ZA POMOCĄ OBWODÓW ELEKTRYCZNYCH W PROGRAMACH MATHCAD I PSPICE

SYMULACJA ZAKŁÓCEŃ W UKŁADACH AUTOMATYKI UTWORZONYCH ZA POMOCĄ OBWODÓW ELEKTRYCZNYCH W PROGRAMACH MATHCAD I PSPICE POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 76 Electrical Engineering 2013 Piotr FRĄCZAK* SYMULACJA ZAKŁÓCEŃ W UKŁADACH AUTOMATYKI UTWORZONYCH ZA POMOCĄ OBWODÓW ELEKTRYCZNYCH W PROGRAMACH MATHCAD

Bardziej szczegółowo

SYMULACJA STANÓW PRACY UKŁADU ELEKTRYCZNEGO Z WYKORZYSTANIEM SYMULATORA OPARTEGO NA PROCESORZE SYGNAŁOWYM

SYMULACJA STANÓW PRACY UKŁADU ELEKTRYCZNEGO Z WYKORZYSTANIEM SYMULATORA OPARTEGO NA PROCESORZE SYGNAŁOWYM POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Maciej FAJFER* SYMULACJA STANÓW PRACY UKŁADU ELEKTRYCZNEGO Z WYKORZYSTANIEM SYMULATORA OPARTEGO NA PROCESORZE SYGNAŁOWYM

Bardziej szczegółowo

BADANIA MODELOWE OGNIW SŁONECZNYCH

BADANIA MODELOWE OGNIW SŁONECZNYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Bartosz CERAN* BADANIA MODELOWE OGNIW SŁONECZNYCH W artykule przedstawiono model matematyczny modułu fotowoltaicznego.

Bardziej szczegółowo

MODELOWANIE PRZEKSZTAŁTNIKÓW ENERGOELEKTRONICZNYCH W CYFROWYCH UKŁADACH CZASU RZECZYWISTEGO

MODELOWANIE PRZEKSZTAŁTNIKÓW ENERGOELEKTRONICZNYCH W CYFROWYCH UKŁADACH CZASU RZECZYWISTEGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 76 Electrical Engineering 2013 Norbert MIELCZAREK* MODELOWANIE PRZEKSZTAŁTNIKÓW ENERGOELEKTRONICZNYCH W CYFROWYCH UKŁADACH CZASU RZECZYWISTEGO W

Bardziej szczegółowo

Spis treści. Oznaczenia Wiadomości ogólne Przebiegi zwarciowe i charakteryzujące je wielkości

Spis treści. Oznaczenia Wiadomości ogólne Przebiegi zwarciowe i charakteryzujące je wielkości Spis treści Spis treści Oznaczenia... 11 1. Wiadomości ogólne... 15 1.1. Wprowadzenie... 15 1.2. Przyczyny i skutki zwarć... 15 1.3. Cele obliczeń zwarciowych... 20 1.4. Zagadnienia zwarciowe w statystyce...

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

Wykład z Technologii Informacyjnych. Piotr Mika

Wykład z Technologii Informacyjnych. Piotr Mika Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły

Bardziej szczegółowo

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7 Łukasz Deńca V rok Koło Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Ćwiczenie: Obwody prądu sinusoidalnego jednofazowego Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres

Bardziej szczegółowo

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013 SIMULINK część pakietu numerycznego MATLAB (firmy MathWorks) służąca do przeprowadzania symulacji komputerowych. Atutem programu jest interfejs graficzny (budowanie układów na bazie logicznie połączonych

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Spis treści 1. Wstęp 2. Ćwiczenia laboratoryjne LPM

Spis treści 1. Wstęp 2. Ćwiczenia laboratoryjne LPM Spis treści 1. Wstęp... 9 2. Ćwiczenia laboratoryjne... 12 2.1. Środowisko projektowania Quartus II dla układów FPGA Altera... 12 2.1.1. Cel ćwiczenia... 12 2.1.2. Wprowadzenie... 12 2.1.3. Przebieg ćwiczenia...

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa

Bardziej szczegółowo

Algorytmy i schematy blokowe

Algorytmy i schematy blokowe Algorytmy i schematy blokowe Algorytm dokładny przepis podający sposób rozwiązania określonego zadania w skończonej liczbie kroków; zbiór poleceń odnoszących się do pewnych obiektów, ze wskazaniem porządku,

Bardziej szczegółowo

AUTO-STROJENIE REGULATORA TYPU PID Z WYKORZYSTANIEM LOGIKI ROZMYTEJ

AUTO-STROJENIE REGULATORA TYPU PID Z WYKORZYSTANIEM LOGIKI ROZMYTEJ POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 75 Electrical Engineering 2013 Łukasz NIEWIARA* Krzysztof ZAWIRSKI* AUTO-STROJENIE REGULATORA TYPU PID Z WYKORZYSTANIEM LOGIKI ROZMYTEJ Zagadnienia

Bardziej szczegółowo

AUTO-STROJENIE REGULATORA TYPU PID Z WYKORZYSTANIEM LOGIKI ROZMYTEJ

AUTO-STROJENIE REGULATORA TYPU PID Z WYKORZYSTANIEM LOGIKI ROZMYTEJ POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 75 Electrical Engineering 2013 Łukasz NIEWIARA* Krzysztof ZAWIRSKI* AUTO-STROJENIE REGULATORA TYPU PID Z WYKORZYSTANIEM LOGIKI ROZMYTEJ Zagadnienia

Bardziej szczegółowo

Praca dyplomowa magisterska

Praca dyplomowa magisterska Praca dyplomowa magisterska Implementacja algorytmów filtracji adaptacyjnej o strukturze transwersalnej na platformie CUDA Dyplomant: Jakub Kołakowski Opiekun pracy: dr inż. Michał Meller Plan prezentacji

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x

Bardziej szczegółowo

Tranzystory bipolarne. Małosygnałowe parametry tranzystorów.

Tranzystory bipolarne. Małosygnałowe parametry tranzystorów. ĆWICZENIE 3 Tranzystory bipolarne. Małosygnałowe parametry tranzystorów. I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie małosygnałowych parametrów tranzystorów bipolarnych na podstawie ich charakterystyk

Bardziej szczegółowo

BADANIA SYMULACYJNE PROSTOWNIKA PÓŁSTEROWANEGO

BADANIA SYMULACYJNE PROSTOWNIKA PÓŁSTEROWANEGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 78 Electrical Engineering 2014 Mikołaj KSIĄŻKIEWICZ* BADANIA SYMULACYJNE PROSTOWNIKA W pracy przedstawiono wyniki badań symulacyjnych prostownika

Bardziej szczegółowo

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4)

Metodę poprawnie mierzonego prądu powinno się stosować do pomiaru dużych rezystancji, tzn. wielokrotnie większych od rezystancji amperomierza: (4) OBWODY JEDNOFAZOWE POMIAR PRĄDÓW, NAPIĘĆ. Obwody prądu stałego.. Pomiary w obwodach nierozgałęzionych wyznaczanie rezystancji metodą techniczną. Metoda techniczna pomiaru rezystancji polega na określeniu

Bardziej szczegółowo

BADANIA SYMULACYJNE STABILIZATORA PRĄDU

BADANIA SYMULACYJNE STABILIZATORA PRĄDU POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 78 Electrical Engineering 2014 Mikołaj KSIĄŻKIEWICZ* BADANIA SYMULACYJNE STABILIZATORA PRĄDU Praca przedstawia wyniki badań symulacyjnych stabilizatora

Bardziej szczegółowo

MODELOWANIE PRZEKSZTAŁTNIKÓW ENERGOELEKTRONICZNYCH W ŚRODOWISKU LABVIEW

MODELOWANIE PRZEKSZTAŁTNIKÓW ENERGOELEKTRONICZNYCH W ŚRODOWISKU LABVIEW POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 76 Electrical Engineering 2013 Michał KRYSTKOWIAK* MODELOWANIE PRZEKSZTAŁTNIKÓW ENERGOELEKTRONICZNYCH W ŚRODOWISKU LABVIEW W artykule zaprezentowano

Bardziej szczegółowo

Państwowa WyŜsza Szkoła Zawodowa w Pile Studia Stacjonarne i niestacjonarne PODSTAWY ELEKTRONIKI rok akademicki 2008/2009

Państwowa WyŜsza Szkoła Zawodowa w Pile Studia Stacjonarne i niestacjonarne PODSTAWY ELEKTRONIKI rok akademicki 2008/2009 Państwowa WyŜsza Szkoła Zawodowa w Pile Studia Stacjonarne i niestacjonarne PODSTAWY ELEKTRONIKI rok akademicki 008/009 St. Stacjonarne: Semestr III - 45 h wykłady, 5h ćwicz. audytor., 5h ćwicz. lab. St.

Bardziej szczegółowo

ANALIZA MOŻLIWOŚCI WYKORZYSTANIA PRĄDNIC SYNCHRONICZNYCH W ZESPOŁACH PRĄDOTWÓRCZYCH (SPALINOWO-ELEKTRYCZNYCH)

ANALIZA MOŻLIWOŚCI WYKORZYSTANIA PRĄDNIC SYNCHRONICZNYCH W ZESPOŁACH PRĄDOTWÓRCZYCH (SPALINOWO-ELEKTRYCZNYCH) POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 83 Electrical Engineering 015 Ryszard NAWROWSKI* Zbigniew STEIN* Maria ZIELIŃSKA* ANALIZA MOŻLIWOŚCI WYKORZYSTANIA PRĄDNIC SYNCHRONICZNYCH W ZESPOŁACH

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: ELEKTROTECHNIKA 2. Kod przedmiotu: Eef 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Automatyka i Robotyka 5. Specjalność: Elektroautomatyka

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan Wprowadzenie do technik regulacji automatycznej prof nzw. dr hab. inż. Krzysztof Patan Czym jest AUTOMATYKA? Automatyka to dziedzina nauki i techniki zajmująca się teorią i praktycznym zastosowaniem urządzeń

Bardziej szczegółowo

Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki

Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki Temat ćwiczenia: Przetwornica impulsowa DC-DC typu boost

Bardziej szczegółowo

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu 7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R

Bardziej szczegółowo

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe)

Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) METODA ELEMENTÓW W SKOŃCZONYCH 1 Pierwsze komputery, np. ENIAC w 1946r. Obliczenia dotyczyły obiektów: o bardzo prostych geometriach (najczęściej modelowanych jako jednowymiarowe) stałych własnościach

Bardziej szczegółowo

Sprzęt i architektura komputerów

Sprzęt i architektura komputerów Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Sprzęt i architektura komputerów Laboratorium Temat:Pomiary podstawowych wielkości elektryczych: prawa Ohma i Kirchhoffa Katedra Architektury

Bardziej szczegółowo

Obwody elektryczne prądu stałego

Obwody elektryczne prądu stałego Obwody elektryczne prądu stałego Dr inż. Andrzej Skiba Katedra Elektrotechniki Teoretycznej i Informatyki Politechniki Gdańskiej Gdańsk 12 grudnia 2015 Plan wykładu: 1. Rozwiązanie zadania z poprzedniego

Bardziej szczegółowo

ĆWICZENIE 3 Badanie obwodów trójfazowych z odbiornikiem połączonym w trójkąt

ĆWICZENIE 3 Badanie obwodów trójfazowych z odbiornikiem połączonym w trójkąt ĆWICZENIE 3 Badanie obwodów trójfazowych z odbiornikiem połączonym w trójkąt 1. Cel ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem napięć i poborem mocy w obwodach trójfazowych połączonych w trójkąt:

Bardziej szczegółowo

Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych.

Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Jedną z metod symulacji dynamiki cieczy jest zastosowanie metody siatkowej Boltzmanna.

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu

Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu Lekcja 5. Temat: Prawo Ohma dla części i całego obwodu Prąd płynący w gałęzi obwodu jest wprost proporcjonalny do przyłożonej siły elektromotorycznej E, a odwrotnie proporcjonalne do rezystancji R umieszczonej

Bardziej szczegółowo

Rys. 1 Schemat układu L 2 R 2 E C 1. t(0+)

Rys. 1 Schemat układu L 2 R 2 E C 1. t(0+) Autor: Piotr Fabijański Koreferent: Paweł Fabijański Zadanie Obliczyć napięcie na stykach wyłącznika S zaraz po jego otwarciu, w chwili t = (0 + ) i w stanie ustalonym, gdy t. Do obliczeń przyjąć następujące

Bardziej szczegółowo

MONITOROWANIE PARAMETRÓW PRACY HYBRYDOWEGO ODNAWIALNEGO ŹRÓDŁA ENERGII ELEKTRYCZNEJ

MONITOROWANIE PARAMETRÓW PRACY HYBRYDOWEGO ODNAWIALNEGO ŹRÓDŁA ENERGII ELEKTRYCZNEJ POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 74 Electrical Engineering 2013 Marek PALUSZCZAK* Wojciech TWARDOSZ** Grzegorz TWARDOSZ*** MONITOROWANIE PARAMETRÓW PRACY HYBRYDOWEGO ODNAWIALNEGO

Bardziej szczegółowo

ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI

ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI Budownictwo 18 Mariusz Poński ZASTOSOWANIE RACHUNKU OPERATORÓW MIKUS- IŃSKIEGO W PEWNYCH ZAGADNIENIACH DYNAMIKI KONSTRUKCJI 1. Metody transformacji całkowych Najczęściej spotykaną metodą rozwiązywania

Bardziej szczegółowo

Numeryczna symulacja rozpływu płynu w węźle

Numeryczna symulacja rozpływu płynu w węźle 231 Prace Instytutu Mechaniki Górotworu PAN Tom 7, nr 3-4, (2005), s. 231-236 Instytut Mechaniki Górotworu PAN Numeryczna symulacja rozpływu płynu w węźle JERZY CYGAN Instytut Mechaniki Górotworu PAN,

Bardziej szczegółowo

STANOWISKO LABORATORYJNE DO CYFROWEGO PRZETWARZANIA SYGNAŁÓW Z WYKORZYSTANIEM ŚROWODOWISKA MATLAB ORAZ PLATFORMY PROGRAMISTYCZNEJ.

STANOWISKO LABORATORYJNE DO CYFROWEGO PRZETWARZANIA SYGNAŁÓW Z WYKORZYSTANIEM ŚROWODOWISKA MATLAB ORAZ PLATFORMY PROGRAMISTYCZNEJ. POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Stanisław MIKULSKI* STANOWISKO LABORATORYJNE DO CYFROWEGO PRZETWARZANIA SYGNAŁÓW Z WYKORZYSTANIEM ŚROWODOWISKA MATLAB

Bardziej szczegółowo

KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK

KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK Inżynieria Rolnicza 8(117)/2009 KOMPUTEROWY MODEL UKŁADU STEROWANIA MIKROKLIMATEM W PRZECHOWALNI JABŁEK Ewa Wachowicz, Piotr Grudziński Katedra Automatyki, Politechnika Koszalińska Streszczenie. W pracy

Bardziej szczegółowo

Komputer IBM PC niezależnie od modelu składa się z: Jednostki centralnej czyli właściwego komputera Monitora Klawiatury

Komputer IBM PC niezależnie od modelu składa się z: Jednostki centralnej czyli właściwego komputera Monitora Klawiatury 1976 r. Apple PC Personal Computer 1981 r. pierwszy IBM PC Komputer jest wart tyle, ile wart jest człowiek, który go wykorzystuje... Hardware sprzęt Software oprogramowanie Komputer IBM PC niezależnie

Bardziej szczegółowo

Architektura Systemów Komputerowych 2

Architektura Systemów Komputerowych 2 Architektura Systemów Komputerowych 2 Pytania egzaminacyjne z części pisemnej mgr inż. Leszek Ciopiński Wykład I 1. Historia i ewolucja architektur komputerowych 1.1. Czy komputer Z3 jest zgodny z maszyną

Bardziej szczegółowo

Pracownia pomiarów i sterowania Ćwiczenie 4 Badanie ładowania i rozładowywania kondensatora

Pracownia pomiarów i sterowania Ćwiczenie 4 Badanie ładowania i rozładowywania kondensatora Małgorzata Marynowska Uniwersytet Wrocławski, I rok Fizyka doświadczalna II stopnia Prowadzący: dr M. Grodzicki Data wykonania ćwiczenia: 17.03.2015 Pracownia pomiarów i sterowania Ćwiczenie 4 Badanie

Bardziej szczegółowo

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań. Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,

Bardziej szczegółowo

EUROELEKTRA. Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej. Rok szkolny 2012/2013. Zadania dla grupy elektronicznej na zawody II stopnia

EUROELEKTRA. Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej. Rok szkolny 2012/2013. Zadania dla grupy elektronicznej na zawody II stopnia EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2012/2013 Zadania dla grupy elektronicznej na zawody II stopnia 1. Wykorzystując rachunek liczb zespolonych wyznacz impedancję

Bardziej szczegółowo

PROGRAMOWALNE STEROWNIKI LOGICZNE

PROGRAMOWALNE STEROWNIKI LOGICZNE PROGRAMOWALNE STEROWNIKI LOGICZNE I. Wprowadzenie Klasyczna synteza kombinacyjnych i sekwencyjnych układów sterowania stosowana do automatyzacji dyskretnych procesów produkcyjnych polega na zaprojektowaniu

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

Pulse width modulation control of three-phase three-level inverter Sterowanie modulacji szerokości impulsów trójpoziomowego trójfazowego falownika.

Pulse width modulation control of three-phase three-level inverter Sterowanie modulacji szerokości impulsów trójpoziomowego trójfazowego falownika. Krzysztof Sroka V rok Koło Naukowe Techniki Cyfrowej Dr inż. Wojciech Mysiński opiekun naukowy Pulse width modulation control of three-phase three-level inverter Sterowanie modulacji szerokości impulsów

Bardziej szczegółowo

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION Mirosław GUZIK Grzegorz KOSZŁKA PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION W artykule przedstawiono niektóre

Bardziej szczegółowo

Sprawdzian test egzaminacyjny 2 GRUPA I

Sprawdzian test egzaminacyjny 2 GRUPA I ... nazwisko i imię ucznia Sprawdzian test egzaminacyjny 2 GRUPA I 1. Na rys. 1 procesor oznaczony jest numerem A. 2 B. 3 C. 5 D. 8 2. Na rys. 1 karta rozszerzeń oznaczona jest numerem A. 1 B. 4 C. 6 D.

Bardziej szczegółowo

Metody analizy obwodów w stanie ustalonym

Metody analizy obwodów w stanie ustalonym Metody analizy obwodów w stanie ustalonym Stan ustalony Stanem ustalonym obwodu nazywać będziemy taki stan, w którym charakter odpowiedzi jest identyczny jak charakter wymuszenia, to znaczy odpowiedzią

Bardziej szczegółowo

OCENA DOKŁADNOŚCI FIRMOWYCH MODELI DIOD SCHOTTKY EGO Z WĘGLIKA KRZEMU

OCENA DOKŁADNOŚCI FIRMOWYCH MODELI DIOD SCHOTTKY EGO Z WĘGLIKA KRZEMU POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 84 Electrical Engineering 2015 Damian BISEWSKI* Janusz ZARĘBSKI* OCENA DOKŁADNOŚCI FIRMOWYCH MODELI DIOD SCHOTTKY EGO Z WĘGLIKA KRZEMU W pracy przedstawiono

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

4.2 Analiza fourierowska(f1)

4.2 Analiza fourierowska(f1) Analiza fourierowska(f1) 179 4. Analiza fourierowska(f1) Celem doświadczenia jest wyznaczenie współczynników szeregu Fouriera dla sygnałów okresowych. Zagadnienia do przygotowania: szereg Fouriera; sygnał

Bardziej szczegółowo

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka Poznań, 16.05.2012r. Raport z promocji projektu Nowa generacja energooszczędnych

Bardziej szczegółowo

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość

Bardziej szczegółowo

Teoria przetwarzania A/C i C/A.

Teoria przetwarzania A/C i C/A. Teoria przetwarzania A/C i C/A. Autor: Bartłomiej Gorczyński Cyfrowe metody przetwarzania sygnałów polegają na przetworzeniu badanego sygnału analogowego w sygnał cyfrowy reprezentowany ciągiem słów binarnych

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 2. Analiza obwodów liniowych przy wymuszeniach stałych

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 2. Analiza obwodów liniowych przy wymuszeniach stałych Pracownia Automatyki i lektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie ĆWCZN Analiza obwodów liniowych przy wymuszeniach stałych. CL ĆWCZNA Celem ćwiczenia jest praktyczno-analityczna ocena złożonych

Bardziej szczegółowo

Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI. Katedra Metrologii i Optoelektroniki. Metrologia. Ilustracje do wykładu

Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI. Katedra Metrologii i Optoelektroniki. Metrologia. Ilustracje do wykładu Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Metrologii i Optoelektroniki Metrologia Studia I stopnia, kier Elektronika i Telekomunikacja, sem. 2 Ilustracje do wykładu

Bardziej szczegółowo

Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika)

Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika) Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika) 1 1 Cel ćwiczenia Celem ćwiczenia jest rozwiązanie równań ruchu ciała (kuli) w ośrodku

Bardziej szczegółowo

Sterowniki Programowalne (SP)

Sterowniki Programowalne (SP) Sterowniki Programowalne (SP) Wybrane aspekty procesu tworzenia oprogramowania dla sterownika PLC Podstawy języka funkcjonalnych schematów blokowych (FBD) Politechnika Gdańska Wydział Elektrotechniki i

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCHY KOMPETENCJI EFEKTY KSZTAŁCENIA

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCHY KOMPETENCJI EFEKTY KSZTAŁCENIA I. KARTA PRZEDMIOTU. Nazwa przedmiotu: MATEMATYKA STOSOWANA 2. Kod przedmiotu: Ms 3. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego 4. Kierunek: Nawigacja 5. Specjalność: Nawigacja morska

Bardziej szczegółowo

ALGORYTMY. 1. Podstawowe definicje Schemat blokowy

ALGORYTMY. 1. Podstawowe definicje Schemat blokowy ALGORYTMY 1. Podstawowe definicje Algorytm (definicja nieformalna) to sposób postępowania (przepis) umożliwiający rozwiązanie określonego zadania (klasy zadań), podany w postaci skończonego zestawu czynności

Bardziej szczegółowo

KATEDRA ELEKTROTECHNIKI LABORATORIUM ELEKTROTECHNIKI

KATEDRA ELEKTROTECHNIKI LABORATORIUM ELEKTROTECHNIKI KTEDR ELEKTROTECHNIKI LBORTORIUM ELEKTROTECHNIKI =================================================================================================== Temat ćwiczenia POMIRY OBODCH SPRZĘŻONYCH MGNETYCZNIE

Bardziej szczegółowo

Budowa komputera Komputer computer computare

Budowa komputera Komputer computer computare 11. Budowa komputera Komputer (z ang. computer od łac. computare obliczać) urządzenie elektroniczne służące do przetwarzania wszelkich informacji, które da się zapisać w formie ciągu cyfr albo sygnału

Bardziej szczegółowo

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych ĆWICZENIE 1 Badanie obwodów jednofazowych rozgałęzionych przy wymuszeniu sinusoidalnym Cel ćwiczenia Celem ćwiczenia jest Poznanie podstawowych elementów pasywnych R, L, C, wyznaczenie ich wartości na

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia

Bardziej szczegółowo

POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012

POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Ryszard NAWROWSKI* Zbigniew STEIN* Maria ZIELIŃSKA* PRÓBA ILOŚCIOWEGO PRZEDSTAWIENIA WPŁYWU CHARAKTERYSTYCZNYCH PARAMETRÓW

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

Wykorzystanie architektury Intel MIC w obliczeniach typu stencil

Wykorzystanie architektury Intel MIC w obliczeniach typu stencil Wykorzystanie architektury Intel MIC w obliczeniach typu stencil Kamil Halbiniak Wydział Inżynierii Mechanicznej i Informatyki Kierunek informatyka, Rok IV Instytut Informatyki Teoretycznej i Stosowanej

Bardziej szczegółowo

Sieci obliczeniowe poprawny dobór i modelowanie

Sieci obliczeniowe poprawny dobór i modelowanie Sieci obliczeniowe poprawny dobór i modelowanie 1. Wstęp. Jednym z pierwszych, a zarazem najważniejszym krokiem podczas tworzenia symulacji CFD jest poprawne określenie rozdzielczości, wymiarów oraz ilości

Bardziej szczegółowo

Stacja robocza TYP1A Zał. 8.1, pkt. 1.1) 2. Monitor LCD 21.3 Zał. 8.1, pkt. 1.1) 2. Zasilacz awaryjny UPS Zał. 8.1, pkt. 1.1) 2

Stacja robocza TYP1A Zał. 8.1, pkt. 1.1) 2. Monitor LCD 21.3 Zał. 8.1, pkt. 1.1) 2. Zasilacz awaryjny UPS Zał. 8.1, pkt. 1.1) 2 Załącznik nr 7 do SIWZ nr TA/ZP-4/2007 Formularz cenowy oferowanego sprzętu GRUPA 1 (Szczegółowa specyfikacja w Załączniku nr 8.1) Stacje robocze przetwarzania graficznego wysokiej wydajności z monitorem

Bardziej szczegółowo

Dr inż. hab. Siergiej Fialko, IF-PK,

Dr inż. hab. Siergiej Fialko, IF-PK, Dr inż. hab. Siergiej Fialko, IF-PK, http://torus.uck.pk.edu.pl/~fialko sfialko@riad.pk.edu.pl 1 Osobliwości przedmiotu W podanym kursie główna uwaga będzie przydzielona osobliwościom symulacji komputerowych

Bardziej szczegółowo

JĘZYKI PROGRAMOWANIA STEROWNIKÓW

JĘZYKI PROGRAMOWANIA STEROWNIKÓW JĘZYKI PROGRAMOWANIA STEROWNIKÓW dr inż. Wiesław Madej Wstęp Języki programowania sterowników 15 h wykład 15 h dwiczenia Konsultacje: - pokój 325A - środa 11 14 - piątek 11-14 Literatura Tadeusz Legierski,

Bardziej szczegółowo

Elektrotechnika teoretyczna

Elektrotechnika teoretyczna Zachodniopomorski Uniwersytet Technologiczny w Szczecinie RYSZARD SIKORA TOMASZ CHADY PRZEMYSŁAW ŁOPATO GRZEGORZ PSUJ Elektrotechnika teoretyczna Szczecin 2016 Spis treści Spis najważniejszych oznaczeń...

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Obliczenia symboliczne Symbolic computations Kierunek: Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Informatyka Rodzaj zajęć: wykład,

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PODSTAWY MODELOWANIA PROCESÓW WYTWARZANIA Fundamentals of manufacturing processes modeling Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj

Bardziej szczegółowo

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 13 - Układy bramkowe. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 13 - Układy bramkowe Instytut Automatyki i Robotyki Warszawa, 2015 Układy z elementów logicznych Bramki logiczne Elementami logicznymi (bramkami logicznymi) są urządzenia o dwustanowym sygnale wyjściowym

Bardziej szczegółowo

Zestaw 1 1. Rodzaje ruchu punktu materialnego i metody ich opisu. 2. Mikrokontrolery architektura, zastosowania. 3. Silniki krokowe budowa, zasada działania, sterowanie pracą. Zestaw 2 1. Na czym polega

Bardziej szczegółowo

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,

Bardziej szczegółowo

Specyfika projektowania Mariusz Rawski

Specyfika projektowania Mariusz Rawski CAD Specyfika projektowania Mariusz Rawski rawski@tele.pw.edu.pl http://rawski.zpt.tele.pw.edu.pl/ System cyfrowy pierwsze skojarzenie Urządzenia wprowadzania danych: klawiatury czytniki urządzenia przetwarzania

Bardziej szczegółowo

Definicje. Najprostszy schemat blokowy. Schemat dokładniejszy

Definicje. Najprostszy schemat blokowy. Schemat dokładniejszy Definicje owanie i symulacja owanie zastosowanie określonej metodologii do stworzenia i weryfikacji modelu dla danego rzeczywistego Symulacja zastosowanie symulatora, w którym zaimplementowano model, do

Bardziej szczegółowo

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora.

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. I. Cel ćwiczenia ĆWICZENIE 6 Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. Badanie właściwości wzmacniaczy tranzystorowych pracujących w układzie wspólnego kolektora. II.

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M Prof. dr hab. inż. Radosław TRĘBIŃSKI dm Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: NUMERYCZNE METODY OBLICZENIOWE

Bardziej szczegółowo

SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701.

SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy dla procesora ADAU1701. SigmaDSP - zestaw uruchomieniowy. SigmaDSP jest niedrogim zestawem uruchomieniowym dla procesora DSP ADAU1701 z rodziny SigmaDSP firmy Analog Devices, który wraz z programatorem USBi i darmowym środowiskiem

Bardziej szczegółowo

Zadania badawcze prowadzone przez Zakład Technik Programowania:

Zadania badawcze prowadzone przez Zakład Technik Programowania: Zadania badawcze prowadzone przez Zakład Technik Programowania: - Opracowanie metod zrównoleglania programów sekwencyjnych o rozszerzonym zakresie stosowalności. - Opracowanie algorytmów obliczenia tranzytywnego

Bardziej szczegółowo

Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji

Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 1 Temat: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Katedra Architektury Komputerów i Telekomunikacji

Bardziej szczegółowo

OBLICZENIA SYMULACYJNE MOCY TRACONEJ NA POWIERZCHNI IZOLATORA W UJĘCIU TEORII PERKOLACJI

OBLICZENIA SYMULACYJNE MOCY TRACONEJ NA POWIERZCHNI IZOLATORA W UJĘCIU TEORII PERKOLACJI POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 82 Electrical Engineering 2015 Piotr FRĄCZAK* OBLICZENIA SYMULACYJNE MOCY TRACONEJ NA POWIERZCHNI IZOLATORA W UJĘCIU TEORII PERKOLACJI W pracy przedstawiono

Bardziej szczegółowo

42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe

42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe Prąd stały. Prawa, twierdzenia, metody obliczeniowe 42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe Celem ćwiczenia jest doświadczalne sprawdzenie praw obowiązujących w obwodach prądu stałego,

Bardziej szczegółowo