Materiały e-learning

Wielkość: px
Rozpocząć pokaz od strony:

Download "Materiały e-learning"

Transkrypt

1 AKADEMIA MORSKA W SZCZECINIE JEDNOSKA ORGANIZACYJNA: ZAKŁAD KOMUNIKACYJNYCH ECHNOLOGII MORSKICH Materiały e-learning ELEKROECHNIKA I ELEKRONIKA Materiały dla studentów studiów niestacjonarnych Opracował: dr inż. Marcin Mąka, dr inż. Piotr Majzner Zatwierdził: dr inż. Piotr Majzner Obowiązuje od: 24. IX 2012

2 1. Pojęcie sygnałów elektrycznych Sygnałem elektrycznym nazywamy przebieg czasowy napięcia lub natężenia prądu elektrycznego wykorzystany do przekazania informacji, np. dźwięku, obrazu, danych, bodźców sterujących itp. W podstawowej klasyfikacji rozróżnia się sygnały analogowe (ciągłe) i cyfrowe (dyskretne) (rys. 1.1.). Rys Przykład sygnału ciągłego i dyskretnego Sygnały analogowe mogą przyjmować nieskończenie wiele wartości dowolnie mało różniących się od siebie, innymi słowy, zbiór wartości sygnału analogowego jest nieprzeliczalny. Sygnały cyfrowe przyjmują tylko skończoną liczbę wartości, a więc ich wartości należą do zbioru przeliczalnego. Sygnały analogowe mogą się zmieniać w dowolnej chwili, natomiast sygnały cyfrowe tylko w pewnych punktach czasowych. Szczególnymi rodzajami tych sygnałów są sygnały harmoniczne (analogowe) nazywane ogólnie sygnałami sinusoidalnymi oraz sygnały dwuwartościowe (cyfrowe) nazywane w skrócie sygnałami binarnymi. Ważne znaczenie w technice mają również sygnały nazywane ogólnie impulsowymi. Sygnałem impulsowym jest sygnał o dużej amplitudzie trwający bardzo krótko. W praktyce określenie impuls odnosi się najczęściej do przebiegów, których czas trwania jest znacznie krótszy niż okres powtarzania (rys. 1.2). Rys Przykłady sygnałów impulsowych

3 Impulsy mogą być dodatnie lub ujemne, pojedyncze lub grupowe, powtarzane okresowo lub nieokresowe itd. Wiele wspólnych cech z sygnałami impulsowymi mają sygnały okresowe prostokątne (rys.1.3) i piłokształtne (rys.1.4). f(t ) t f(t ) t f(t ) t f(t ) t Rys Przykłady sygnałów prostokątnych Rys Przykłady sygnałów piłokształtnych Parametry stosowane w opisie sygnałów elektrycznych Na rysunku 1.5. przedstawiono przebieg sinusoidalny natężenia prądu elektrycznego. Wartość chwilową tego sygnału (prądu sinusoidalnego) i(t) określa następująca zależność: i(t) = I m sin( t +) w której: - I m wartość maksymalna (amplituda) prądu; - faza początkowa prądu w chwili t = 0; - t + faza prądu w chwili t; - = 2 pulsacja (częstotliwość kątowa); - = 1/ częstotliwość, będąca odwrotnością okresu. W czasie jednego okresu faza prądu zmienia się o 2, tzn. = 2. Rys Interpretacja graficzna parametrów sygnału sinusoidalnego Wartość skuteczną (effective) sygnału okresowego (prądu) o okresie wyraża zależność:

4 I ef i ( t) dt Odpowiada ona wartości prądu stałego, który przepływając przez rezystor o stałej (niezmiennej) wartości rezystancji, spowoduje wydzielenie w nim takiej samej ilości energii (w postaci ciepła), co prąd sinusoidalny płynący w tym samym czasie. W przypadku prądu sinusoidalnego wartość skuteczna natężenia prądu jest równa jego amplitudzie podzielonej przez 2, czyli I ef = I m / 2 0,707 I m Wartość średnią (average) sygnału okresowego (prądu) o okresie wyraża zależność: I av = 1 i( t) dt 0 Odpowiada ona wartości prądu stałego, który płynąc przez dany przekrój poprzeczny przewodnika przeniósłby w tym samym czasie taki sam ładunek, jak prąd zmienny. Ponieważ w przypadku prądu sinusoidalnego wartość średnia za cały okres, czyli tzw. wartość całookresowa, jest równa zeru, dlatego zwykle w celu określenia wartości średniej prądu sinusoidalnego przyjmuje się czas równy połowie okresu /2, wówczas I av = / 2 2 i( t) dt 0 = 2 Im 0,637 I m Iloraz wartości skutecznej i średniej (prądu) określa tzw. współczynnik kształtu krzywej k = I ef /I av, który dla przebiegów sinusoidalnych jest równy k = /2 2 1,11. Sygnał binarny (rys. 1.6.a) charakteryzuje się tym, że przyjmuje tylko dwie różne wartości oznaczane zwykle symbolami L, H (Low niski, High wysoki) lub 0,1. Cyfry 0, 1 nazywa się bitami (Binary digit). Wartości napięć i prądów odpowiadające tym dwu wartościom dwójkowym (0, 1) nie muszą być ustalane z bezwzględną dokładnością. Wystarczy, że zawierają się w pewnych dość szerokich przedziałach poziomów L, H, rozdzielonych przedziałem wartości wzbronionych (rys. 1.6.b). Rys Interpretacja graficzna parametrów sygnału binarnego Sygnał binarny przedstawiony w funkcji czasu ma postać ciągu impulsów (zerojedynkowych). Reprezentuje on określoną informację wyrażoną w odpowiednim kodzie, np. dwójkowym naturalnym, dwójkowodziesiętnym (BCD) itp. Uporządkowany zbiór kolejno po sobie następujących bitów stanowi słowo kodowe. Charakterystyczną cechą każdego kodu jest długość słowa kodowego, wyrażająca się liczbą występujących w nim bitów. Do określania długości słowa jest stosowana jednostka zwana bajtem (byte), składająca się z umownej liczby bitów; zazwyczaj 1 bajt odpowiada 8 bitom. W zależności od tego, czy poszczególne bity słowa kodowego są przekazywane kolejno (szeregowo), czy jednocześnie (równolegle), rozróżnia się sygnały binarne szeregowe i równoległe.

5 Podstawowymi parametrami sygnału impulsowego są wartość maksymalna (amplituda) A m oraz czasy narastania t r, opadania t f, trwania t 1, odstępu t 2, a także okres powtarzania = t 1 + t 2. Interpretację graficzną tych parametrów podano na rysunku 1.7. Iloraz Czasu trwania (szerokości impulsu) t 1 i okresu powtarzania określa tzw. współczynnik wypełnienia impulsu (tj. k w = t 1 /). Rys Interpretacja graficzna parametrów sygnału impulsowego W elektronice często pojawia się określenie składowej stałej sygnału i składowej zmiennej sygnału. W wielu przypadkach trudno mówić o napięciu stałym, jeżeli napięci to waha się w pewnych nieznacznych przedziałach w stosunku do całego napięcia. Składową stałą przebiegu elektrycznego (napięcia elektrycznego, prądu elektrycznego) nazywamy wartość średnią tego przebiegu (rys 1.8). Składową zmienną przebiegu nazywamy różnicę pomiędzy przebiegiem a jego składową stałą (rys 1.9). Inaczej mówiąc składową stałą jest ten fragment przebiegu który się nie zmienia, a składową zmienną tylko ta jego część która się zmienia. U U t Uav t Rys. 1.8 Ilustracja przebiegu ze składowa stałą i zmienną Rys. 1.9 Przebieg tylko ze składową zmienną Sygnały elektryczne, w zależności od tego jaką cechę sygnału chcemy uwypuklić, mogą być prezentowane w różny sposób. Na rysunkach 1.2, 1.3, 1.4 sygnały były przedstawiane w sposób przebiegu. Jest to najbardziej naturalna prezentacja sygnałów, w takiej postaci oglądamy je np. na oscyloskopie. Przy tym systemie prezentacji na osi rzędnych odkładane są chwilowe wartości prądu lub napięcia wyrażone w amperach lub woltach (albo w jednostkach pochodnych ma, mv i tp.), a na osi odciętych czas wyrażany w sekundach lub jednostkach pochodnych. W sytuacji gdy zależy nam szczególnie na pokazaniu zależności fazowych między sygnałami elektrycznymi, bardziej przydatna okazuje się prezentacja wektorowa sygnałów. W tym systemie prezentacji długości wektorów przedstawiają w przyjętej skali wartości napięć lub prądów, a kąty między nimi zależności fazowe między poszczególnymi napięciami a prądami. Weźmy dla przykładu prosty obwód elektryczny składający się z rezystancji R i pojemności C zasilany napięciem sinusoidalnie zmiennym U o częstotliwości f przedstawiony na rys

6 I R C U U R U C Rys Napięcia w układzie RC. Oczywiście, zarówno prąd płynący w obwodzie jak i napięcie zasilające oraz spadki napięć na rezystancji i pojemności można by było przedstawić w postaci graficznej jako cztery poprzesuwane względem siebie sinusoidy, jednak rysunek ten byłby mało czytelny. Zdecydowanie bardziej przydatną będzie tu prezentacja wektorowa prądów i napięć (rys ). U U C U X I Rys Wykres wskazowy do układ z rys Rys. 5.7 Jeszcze inną metodą prezentacji sygnałów jest przedstawianie ich w postaci widma częstotliwości. Rozważmy w tym celu prosty sygnał sinusoidalny przedstawiony graficznie na rys U t Rys Sygnał ten możemy zapisać analitycznie w postaci: gdzie: U 0 amplituda sygnału 2 2f pulsacja u U o sint

7 W celu przedstawienia tego sygnału w postaci widmowej na osi wyskalowanej w jednostkach częstotliwości rysujemy prążek o wysokości równej, w przyjętej skali, amplitudzie sygnału. Położenie prążka na osi określa jego częstotliwość (rys. 1.13). Rys Widmo sygnały sinusoidalnegpo. f [Hz] Należy zwrócić uwagę, że rysunki 1.12 i 1.13 przedstawiają ten sam sygnał, różnią się jedynie sposobem jego prezentacji. Prezentacji widmowej szczególnie często używa się dla sygnałów złożonych pojawiających się w zagadnieniach związanych z łącznością radiową. W tym miejscu rozpatrzmy pojęcie sygnału złożonego. Wspomniany wyżej sygnał sinusoidalny zwany również harmonicznym określa się w elektronice mianem sygnału prostego. Każdy inny sygnał, o dowolnym kształcie, jest sygnałem złożonym składającym się ze skończonej lub nieskończonej sumy sygnałów prostych (sinusoidalnych) o różnych częstotliwościach. Sumę tą przedstawioną na osi częstotliwości w postaci układu prążków nazywamy widmem częstotliwości sygnału złożonego. Rozkład widma zależy od charakteru sygnału złożonego. Rozpatrzymy tu widma częstotliwości dla trzech grup sygnałów, a mianowicie dla sygnałów okresowych, akustycznych i impulsowych. Sygnał okresowy posiada regularne widmo prążkowe składające się ze skończonej lub nieskończonej sumy sygnałów prostych (sinusoidalnych), o częstotliwościach będących wielokrotnościami częstotliwości podstawowej sygnału złożonego. Suma ta będzie zawierała prążek o częstotliwości zerowej, jeśli w sygnale złożonym występowała składowa stała. W zależności od kształtu sygnału złożonego w widmie mogą występować harmoniczne tylko parzyste, tylko nieparzyste bądź zarówno parzyste jak i nieparzyste. Jako przykład na rys przedstawiono widmo sygnału prostokątnego bez składowej stałej, o częstotliwości f 0. U f 1 0 t f 0 3f 0 5f 0 7f 0 9f 0 f Rys Jak wynika z rysunku, w przypadku sygnału prostokątnego widmo składa się z harmonicznych nieparzystych. Brak składowej stałej w sygnale powoduje brak prążka o częstotliwości zerowej. Aczkolwiek ilość prążków w widmie jest nieskończenie wielka, to jednak z uwagi na szybkie malenie wyższych harmonicznych, pod uwagę wystarczy wziąć

8 maksymalnie dziesięć pierwszych harmonicznych, a więc pasmo zajmowane przez ten sygnał rozciąga się praktycznie od fo do 9fo. Podobny charakter ma widmo sygnału trójkątnego, również występują w nim harmoniczne nieparzyste. Natomiast sygnały na wyjściach prostowników jedno lub dwupołówkowych posiadają widmo składające się z harmonicznych parzystych. Oczywiście istnieją również sygnały okresowe zawierające w widmie zarówno harmoniczne parzyste jak i nieparzyste. Sygnał akustyczny składa się z wielu nałożonych na siebie dźwięków. Każdy z tych dźwięków posiada określoną częstotliwość (wysokość tonu) oraz zawiera pewne harmoniczne, będące wielokrotnościami częstotliwości podstawowej, które określają jego barwę. Widmo tego sygnału będzie się więc składało z wielu nieregularnie rozłożonych prążków przedstawiających amplitudy dźwięków składowych oraz ich harmonicznych. Na rys przedstawiono przykładowe widmo sygnału akustycznego składające się z dwóch dźwięków, łącznie z ich harmonicznymi. f 1 2f 1 f 2 3f 1 4f 1 2f 2 5f 1 3f 2 4f 2 f Widmo Rys Widmo sygnału harmonicznego. Sygnał akustyczny zawiera częstotliwości teoretycznie w paśmie 20 do Hz. Szczególnie istotna jest maksymalna częstotliwość tego sygnału. W praktyce zależy ona od technicznych możliwości zapisu i odtwarzania dźwięków oraz pewnych uregulowań prawnych związanych z systemem transmisji. I tak: dla sygnałów naddawanych na VHF z modulacją częstotliwości f max = Hz dla sygnałów naddawanych na MF i HF z modulacją amplitudy f max = Hz dla sygnałów naddawanych w ramach łączności morskiej f max = Hz Oczywiście im szersze pasmo nadawanych częstotliwości, tym lepsza jakość dźwięku. Sygnał impulsowy posiada widmo ciągłe rozciągające się teoretycznie od zera do nieskończoności. W praktyce części składowe widma o bardzo dużych częstotliwościach posiadają tak małe amplitudy, że można nie brać ich pod uwagę. Jako przykład tego typu widma na rys 1.16 przedstawiono pojedynczy impuls prostokątny o czasie trwania i jego widmo.

9 U U t 0 2/ 4/ 6/ 8/ Rys Sygnał i widmo sygnału inpulsowego. f Na powyższym rysunku pokazano cztery grupy zawierające częstotliwości składowe widma impulsu prostokątnego. W rzeczywistości grup tych jest nieskończenie wiele, jednak dalsze części widma mają tak małe amplitudy, że można nie brać ich pod uwagę. Ponieważ szerokość grupy jest odwrotnie proporcjonalna do czasu trwania impulsu, więc cały brany pod uwagę zakres widma również zależy od czasu trwania impulsu. Im krótszy impuls, tym szersze jest jego widmo częstotliwości. 2. Wielkości fizyczne i ich jednostki miar stosowane najczęściej w elektronice Jednostka miary jest to umownie przyjęta wartość danej wielkości fizycznej, która służy do porównywania ze sobą innych wartości tej samej wielkości. Zbiór jednostek wielkości mierzalnych nosi nazwę układu jednostek miar. Obecnie obowiązuje Międzynarodowy Układ Jednostek Miar (Système International d Unitès), w skrócie nazywany układem SI. Układ ten zawiera 7 jednostek podstawowych i 2 jednostki uzupełniające (tab. 2.1), jednostki pochodne spójne z jednostkami podstawowymi i uzupełniającymi oraz przedrostki służące do tworzenia jednostek wielokrotnych i podwielokrotnych (tab. 2.2).

10 abela 2.1. Jednostki miar podstawowe i uzupełniające układu SI Wielkość Jednostka nazwa oznaczenie Długość Masa Czas Natężenie prądu elektrycznego emperatura (termodynamiczna) Światłość Liczność (ilość) materii Kąt płaski Kąt bryłowy metr kilogram sekunda amper kelwin kandela mol radian steradian m kg s A K cd mol rad sr podstawowe uzupełniające abela 2.2. Przedrostki i oznaczenia do tworzenia jednostek miar wielokrotnych i podwielokrotnych układu SI Przedrostek Oznaczenie Mnożnik E P G M k h da Eksa Peta era Giga Mega Kilo Hekto Deka Decy Centy Mili Mikro Nano Piko Femto Atto d c m μ n p f a 10 1 = 0, = 0, = 0, = 0, = 0, = 0, = 0, = 0, = = = = = = = = 10 1 Podstawową zaletą układu SI jest to, że każdą z jednostek pochodnych można wyrazić za pomocą iloczynu potęg jednostek podstawowych i uzupełniających, przy czym współczynnik liczbowy w tym wyrażeniu jest równy 1. Przykłady: 0,025 [A] = 25 [ma] 0, [F] = 7 [nf] [Hz] = 36 [MHz] Niektóre jednostki pochodne układu SI mają swoje własne nazwy, np. jednostka ładunku kulomb [C] itp. W tabeli 2.3. zestawiono jednostki wielkości elektrycznych i magnetycznych układu SI najczęściej stosowane w elektronice.

11 abela 2.3. Jednostki miar wybranych wielkości elektrycznych i magnetycznych układu SI Wielkość Jednostka Zależności między jednostkami nazwa oznaczenie Ładunek elektryczny kulomb C 1C = 1A s (1A h = 3600 C) Napięcie elektryczne wolt V 1V = 1W/A Pojemność elektryczna farad F 1F = 1C/V Rezystancja om Ω 1Ω = 1V/A Konduktancja simens S 1S = 1/Ω Indukcyjność henr H 1H = 1V s/a Indukcja magnetyczna tesla 1 = 1Wb/m 2 Strumień magnetyczny weber Wb (1Gs = 10-4 ) Przenikalność elektryczna farad na metr F/m Przenikalność magnetyczna henr na metr H/m Moc wat W 1W = 1V A Energia, praca, ciepło dżul J 1J = W s Częstotliwość herc Hz 1Hz = 1/s Często wzmocnienie napięciowe lub wzmocnienie mocy pewnego układu elektronicznego wyraża się za pomocą jednostki zwanej decybelem. Wzmocnienie napięciowe oraz wzmocnienie mocy liczy się ze według wzoru: k k u p P 10log10 P U 20log10 U wy we wy we db db gdzie P we i U we są mocą i napięciem wejściowym, P wy i U wy mocą i napięciem wyjściowym a k p i k u wzmocnieniem mocy, wzmocnieniem napięcia wyrażonym w db. Uzupełnieniem układu jednostek jest tab. 2.4., w której zestawiono najważniejsze stałe fizyczne.

12 abela 2.4. Wybrane stałe fizyczne Wielkość Oznaczenie Wartość Jednostka Ładunek elementarny e -1, C Masa spoczynkowa elektronu m e 9, kg Masa spoczynkowa protonu m p 1, kg Masa spoczynkowa neutronu m n 1, kg Stała Plancka h 6, J s Stała Boltzmanna k 1, J/K Prędkość światła w próżni c 0 2, m/s Przenikalność magnetyczna próżni μ 0 4π 10-7 H/m Przenikalność elektryczna próżni ε 0 8, F/m W radiokomunikacji często operuje się pojęciem fali elektromagnetycznej. Najczęściej stosowane parametry fali elektromagnetycznej to częstotliwość f wyrażana w hercach i długość fali wyrażana w metrach. Zależność między nimi wyraża wzór: c c [m] f gdzie c jest prędkością rozchodzenia się fali elektromagnetycznej wynoszącą w przybliżeniu c m/s, a okresem fali równym: 1 [ s] f Można przyjąć, że prędkość rozchodzenia się fali elektromagnetycznej w powietrzu jest taka sama jak w próżni i wynosi tyle samo co prędkość światła. W tabeli 1.5 przedstawiono symbole graficzne niektórych częściej stosowanych elementów elektronicznych.

13 Zadania do wykonania 1. Scharakteryzuj podstawowe wielkości elektryczne. Podaj ich symbole literowe i jednostki. 2. Podaj treść prawa Ohma. 3. Wymień i krótko scharakteryzuj podstawowe elementy elektryczne ( symbole literowe, graficzne, jednostki). 4. Podaj wzór na moc w układach elektrycznych.. Jak jest jednostka mocy? 5. Na rysunku przedstawiono schemat układu elektrycznego. Prąd o jakim natężeniu I płynie przez obwód? I =? U = 12 V R = Na rysunku przedstawiono schemat układu elektrycznego. Jaka moc wydzieli się na rezystorze R? I U = 24 V R = Na rysunku przedstawiono schemat układu elektrycznego. Prąd o jakim natężeniu I płynie przez obwód? I =? R 1 = 10 U = 10 V R 2 = Na rysunku przedstawiono schemat układu elektrycznego. Prąd o jakim natężeniu I płynie przez obwód? I =? R 1 = R 2 = 20 U = 10 V R 1 R 2 9. Radiostacja okrętowa zasilana jest napięciem U = 24V. Maksymalna moc radiostacji wynosi P = 600W. Jaki maksymalny prąd Imax popłynie przez radiostację?.

14 10. Mostek na statku zasilany jest napięciem zmiennym o wartości U = 230 V. Na mostku zamontowano zabezpieczenia prądowe Imax = 25 A. Urządzenia o jakiej w sumie mocy Pmax możemy podłączyć na mostku? 11. Narysuj i podaj parametry sygnału sinusoidalnego. Narysuj jego widmo częstotliwościowe. 12. Narysuj i podaj parametry sygnału prostokątnego. Narysuj jego widmo częstotliwościowe. Gdzie tego typu sygnału są stosowane? 13. Narysuj i podaj parametry sygnału trójkątnego. Narysuj jego widmo częstotliwościowe. Gdzie tego typu sygnału są stosowane? 14. Narysuj sygnał sinusoidalny o amplitudzie U = 10 V i częstotliwości f = 10 khz. Jaki jest okres przebiegu? Narysuj widmo tego sygnału. 15. Narysuj sygnał sinusoidalny o amplitudzie U = 5 V, częstotliwości f = 1 khz i składowej stałej wynoszącej U = 10 V. Jaki jest okres przebiegu? Narysuj widmo tego sygnału. 16. Podaj zależność pomiędzy długością fali a jej częstotliwością. 17. Częstotliwość fali radiowej wynosi f = 1 MHz. Jaka jest długość fali ( c = m/s)? 18. Zakładając, że długość anteny nadawczej powinna być równa długości fali oszacuj, jaka powinna być długość anteny pracującej w morskim paśmie VHF ( MHz)? 19. Radar morski z pasm X pracuje na częstotliwości f = 9GHz. Jak jest długość fali radarowej? 20. Scharakteryzuj widmo sygnału akustycznego.

Fizyka (Biotechnologia)

Fizyka (Biotechnologia) Fizyka (Biotechnologia) Wykład I Marek Kasprowicz dr Marek Jan Kasprowicz pokój 309 marek.kasprowicz@ur.krakow.pl www.ar.krakow.pl/~mkasprowicz Marek Jan Kasprowicz Fizyka 013 r. Literatura D. Halliday,

Bardziej szczegółowo

Podstawy elektrotechniki

Podstawy elektrotechniki Politechnika Wrocławska Instytut Techniki Cieplnej i Mechaniki Płynów Zakład Elektrostatyki i Elektrotermii Podstawy elektrotechniki Prof. dr hab. inż. Juliusz B. Gajewski, prof. PWr Wybrzeże S. Wyspiańskiego

Bardziej szczegółowo

Wykładowca: dr inż. Mirosław Mizan - Wydz. Elektrotechniki i Automatyki, Katedra Elektrotechniki Teoretycznej i Informatyki

Wykładowca: dr inż. Mirosław Mizan - Wydz. Elektrotechniki i Automatyki, Katedra Elektrotechniki Teoretycznej i Informatyki ELEKTROTECHNIKA Wykładowca: dr inż. Mirosław Mizan - Wydz. Elektrotechniki i Automatyki, Katedra Elektrotechniki Teoretycznej i Informatyki Dane kontaktowe: budynek główny Wydz. E i A, pok. E-117 (I piętro),

Bardziej szczegółowo

Podstawowe umiejętności matematyczne - przypomnienie

Podstawowe umiejętności matematyczne - przypomnienie Podstawowe umiejętności matematyczne - przypomnienie. Podstawy działań na potęgach założenie:. założenie: założenie: a>0, n jest liczbą naturalną założenie: Uwaga:. Zapis dużych i małych wartości w postaci

Bardziej szczegółowo

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału

Bardziej szczegółowo

Elementy elektroniczne i przyrządy pomiarowe

Elementy elektroniczne i przyrządy pomiarowe Elementy elektroniczne i przyrządy pomiarowe Cel ćwiczenia. Nabycie umiejętności posługiwania się miernikami uniwersalnymi, oscyloskopem, generatorem, zasilaczem, itp. Nabycie umiejętności rozpoznawania

Bardziej szczegółowo

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1. 1. W p r owadze n ie 1 Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1.1. WPROWADZENIE SYGNAŁ nośnik informacji ANALIZA SYGNAŁU badanie, którego celem jest identyfikacja własności, cech, miar sygnału; odtwarzanie

Bardziej szczegółowo

Laboratorium Elektroniki

Laboratorium Elektroniki Wydział Mechaniczno-Energetyczny Laboratorium Elektroniki Badanie wzmacniaczy tranzystorowych i operacyjnych 1. Wstęp teoretyczny Wzmacniacze są bardzo często i szeroko stosowanym układem elektronicznym.

Bardziej szczegółowo

Dźwięk podstawowe wiadomości technik informatyk

Dźwięk podstawowe wiadomości technik informatyk Dźwięk podstawowe wiadomości technik informatyk I. Formaty plików opisz zalety, wady, rodzaj kompresji i twórców 1. Format WAVE. 2. Format MP3. 3. Format WMA. 4. Format MIDI. 5. Format AIFF. 6. Format

Bardziej szczegółowo

AC/DC. Jedno połówkowy, jednofazowy prostownik

AC/DC. Jedno połówkowy, jednofazowy prostownik AC/DC Przekształtniki AC/DC można podzielić na kilka typów, mianowicie: prostowniki niesterowane; prostowniki sterowane. Zależnie od stopnia skomplikowania układu i miejsca przyłączenia do sieci elektroenergetycznej

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Miernictwo przemysłowe

Miernictwo przemysłowe Miernictwo przemysłowe Józef Warechowski Olsztyn, 2014 Charakterystyka pomiarów w produkcji żywności Podstawa formalna do prowadzenia ciągłego nadzoru nad AKP: PN-EN ISO 9001 punkt 7.6 1 1 a) Bezpośrednie,

Bardziej szczegółowo

ĆWICZENIE NR 5 APARATURA DO TERAPII PRĄDEM ZMIENNYM MAŁEJ I ŚREDNIEJ CZĘSTOTLIWOŚCI

ĆWICZENIE NR 5 APARATURA DO TERAPII PRĄDEM ZMIENNYM MAŁEJ I ŚREDNIEJ CZĘSTOTLIWOŚCI ĆWICZENIE NR 5 APARATURA DO TERAPII PRĄDEM ZMIENNYM MAŁEJ I ŚREDNIEJ CZĘSTOTLIWOŚCI Cel ćwiczenia Zapoznanie się z budową i parametrami urządzeń do terapii prądem małej i średniej częstotliwości. Poznanie

Bardziej szczegółowo

Temat: PODSTAWY PRZETWARZANIA ENERGII W ODNAWIALNYCH ŹRÓDŁA ENERGII

Temat: PODSTAWY PRZETWARZANIA ENERGII W ODNAWIALNYCH ŹRÓDŁA ENERGII Temat: PODSTAWY PRZETWARZANIA ENERGII W ODNAWIALNYCH ŹRÓDŁA ENERGII 1. Przetwarzanie (wytwarzanie) energii elektrycznej 2. Podział źródeł energii 3. Podstawowe pojęcia z dziedziny elektryczności 1 WYTWARZANIE

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY

30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY 30R4 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - IV POZIOM ROZSZERZONY Magnetyzm Indukcja elektromagnetyczna Prąd przemienny Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod

Bardziej szczegółowo

Impedancje i moce odbiorników prądu zmiennego

Impedancje i moce odbiorników prądu zmiennego POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH LABORATORIUM ELEKTRYCZNE Impedancje i moce odbiorników prądu zmiennego (E 6) Opracował: Dr inż.

Bardziej szczegółowo

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT)

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) 8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) Ćwiczenie polega na wykonaniu analizy widmowej zadanych sygnałów metodą FFT, a następnie określeniu amplitud i częstotliwości głównych składowych

Bardziej szczegółowo

Prostowniki. Prostownik jednopołówkowy

Prostowniki. Prostownik jednopołówkowy Prostowniki Prostownik jednopołówkowy Prostownikiem jednopołówkowym nazywamy taki prostownik, w którym po procesie prostowania pozostają tylko te części przebiegu, które są jednego znaku a części przeciwnego

Bardziej szczegółowo

Ć w i c z e n i e 1 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH

Ć w i c z e n i e 1 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH Ć w i c z e n i e 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH. Wiadomości ogólne Prostowniki są to urządzenia przetwarzające prąd przemienny na jednokierunkowy. Prostowniki stosowane są m.in. do ładowania akumulatorów,

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m.

Zad. 2 Jaka jest częstotliwość drgań fali elektromagnetycznej o długości λ = 300 m. Segment B.XIV Prądy zmienne Przygotowała: dr Anna Zawadzka Zad. 1 Obwód drgający składa się z pojemności C = 4 nf oraz samoindukcji L = 90 µh. Jaki jest okres, częstotliwość, częstość kątowa drgań oraz

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.02. Woltomierz RMS oraz Analizator Widma 1. Woltomierz RMS oraz Analizator Widma Ćwiczenie to ma na celu poznanie

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTONIKI Część II Podstawowe elementy elektroniczne dwójniki bierne LC Formalizm zespolony opisu napięć i prądów harmonicznie zmiennych w czasie impedancja Źródła napięcia i prądu Przekazywanie

Bardziej szczegółowo

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW.

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW. CZWÓRNK jest to obwód elektryczny o dowolnej wewnętrznej strukturze połączeń elementów, mający wyprowadzone na zewnątrz cztery zaciski uporządkowane w dwie pary, zwane bramami : wejściową i wyjściową,

Bardziej szczegółowo

LEGALNE JEDNOSTKI MIAR. podstawowe jednostki SI

LEGALNE JEDNOSTKI MIAR. podstawowe jednostki SI LEGALNE JEDNOSTKI MIAR Obowiązujące w Polsce legalne jednostki miar ustalone zostały rozporządzeniem Rady Ministrów z dnia 17.10.1975 r. i doprecyzowane zarządzeniem Prezesa Polskiego Komitetu Normalizacji

Bardziej szczegółowo

Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki

Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki Politechnika Poznańska, Instytut Elektrotechniki i Elektroniki Przemysłowej, Zakład Energoelektroniki i Sterowania Laboratorium energoelektroniki Temat ćwiczenia: Przetwornica impulsowa DC-DC typu buck

Bardziej szczegółowo

Legalne jednostki miar wykorzystywane w ochronie atmosfery i pokrewnych specjalnościach naukowych

Legalne jednostki miar wykorzystywane w ochronie atmosfery i pokrewnych specjalnościach naukowych Legalne miar wykorzystywane w ochronie atmosfery i pokrewnych specjalnościach naukowych Legalne miar: 1). naleŝące do układu SI : podstawowe, uzupełniające pochodne 2). legalne, ale spoza układu SI Ad.

Bardziej szczegółowo

Systemy i architektura komputerów

Systemy i architektura komputerów Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Systemy i architektura komputerów Laboratorium nr 4 Temat: Badanie tranzystorów Spis treści Cel ćwiczenia... 3 Wymagania... 3 Przebieg ćwiczenia...

Bardziej szczegółowo

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.

Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A. Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy

Bardziej szczegółowo

BADANIE STATYCZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH

BADANIE STATYCZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH BADAIE STATYCZYCH WŁAŚCIWOŚCI PRZETWORIKÓW POMIAROWYCH 1. CEL ĆWICZEIA Celem ćwiczenia jest poznanie: podstawowych pojęć dotyczących statycznych właściwości przetworników pomiarowych analogowych i cyfrowych

Bardziej szczegółowo

Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych"

Ćwiczenie: Właściwości wybranych elementów układów elektronicznych Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Przetworniki AC i CA

Przetworniki AC i CA KATEDRA INFORMATYKI Wydział EAIiE AGH Laboratorium Techniki Mikroprocesorowej Ćwiczenie 4 Przetworniki AC i CA Cel ćwiczenia Celem ćwiczenia jest poznanie budowy i zasady działania wybranych rodzajów przetworników

Bardziej szczegółowo

Charakterystyka amplitudowa i fazowa filtru aktywnego

Charakterystyka amplitudowa i fazowa filtru aktywnego 1 Charakterystyka amplitudowa i fazowa filtru aktywnego Charakterystyka amplitudowa (wzmocnienie amplitudowe) K u (f) jest to stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w funkcji

Bardziej szczegółowo

Przydatne informacje. konsultacje: środa 14.00-16.00 czwartek 9.00-10.00 2/35

Przydatne informacje. konsultacje: środa 14.00-16.00 czwartek 9.00-10.00 2/35 1/35 Przydatne informacje dr inż. Adam Idźkowski Politechnika Białostocka, Wydział Elektryczny, Katedra Elektrotechniki Teoretycznej i Metrologii ul. Wiejska 45D, 15-351 Białystok WE-260, WE-208 e-mail:

Bardziej szczegółowo

Załącznik nr 3 Wymogi techniczne urządzeń. Stanowisko montażowo - pomiarowe Dotyczy: Zapytanie ofertowe nr POIG 4.4/07/11/2015 r. z dnia 10 listopada 2015 r. str. 1 1. Oscyloskop Liczba: 1 Parametr Pasmo

Bardziej szczegółowo

Lekcja 1. Temat: Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami oceniania.

Lekcja 1. Temat: Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami oceniania. Lekcja 1 Temat: Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami oceniania. 1. Program nauczania przedmiotu Podstawy elektrotechniki i elektroniki w klasie I. Działy programowe i zagadnienia

Bardziej szczegółowo

WZMACNIACZ OPERACYJNY. Podstawowe właściwości wzmacniaczy operacyjnych. Rodzaj wzmacniacza Rezystancja wejściowa Rezystancja wyjściowa

WZMACNIACZ OPERACYJNY. Podstawowe właściwości wzmacniaczy operacyjnych. Rodzaj wzmacniacza Rezystancja wejściowa Rezystancja wyjściowa WZMACNIACZ OPEACYJNY kłady aktywne ze wzmacniaczami operacyjnymi... Podstawowe właściwości wzmacniaczy operacyjnych odzaj wzmacniacza ezystancja wejściowa ezystancja wyjściowa Bipolarny FET MOS-FET Idealny

Bardziej szczegółowo

XXXIII OOWEE 2010 Grupa Elektryczna

XXXIII OOWEE 2010 Grupa Elektryczna 1. W jakich jednostkach mierzymy natężenie pola magnetycznego: a) w amperach na metr b) w woltach na metr c) w henrach d) w teslach 2. W przedstawionym na rysunku układzie trzech rezystorów R 1 = 8 Ω,

Bardziej szczegółowo

Ćwiczenie: "Mierniki cyfrowe"

Ćwiczenie: Mierniki cyfrowe Ćwiczenie: "Mierniki cyfrowe" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Próbkowanie

Bardziej szczegółowo

TEST KONKURSOWY CZAS TESTU 40 MIN ILOŚĆ MAKSYMALNA PUNKTÓW 20 INSTRUKCJA:

TEST KONKURSOWY CZAS TESTU 40 MIN ILOŚĆ MAKSYMALNA PUNKTÓW 20 INSTRUKCJA: CZAS TESTU 40 MIN ILOŚĆ MAKSYMALNA PUNKTÓW 20 INSTRUKCJA: TEST KONKURSOWY 1. Do arkusza testu dołączona jest KARTA ODPOWIEDZI, na której wpisz swoje imię i nazwisko, nazwę szkoły i miasto. 2. Test zawiera

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 4

Instrukcja do ćwiczenia laboratoryjnego nr 4 Instrukcja do ćwiczenia laboratoryjnego nr 4 Temat: Badanie własności przełączających diod półprzewodnikowych Cel ćwiczenia. Celem ćwiczenia jest poznanie własności przełączających złącza p - n oraz wybranych

Bardziej szczegółowo

Obwody liniowe. Sprawdzanie praw Kirchhoffa

Obwody liniowe. Sprawdzanie praw Kirchhoffa POLTECHNK ŚLĄSK WYDZŁ NŻYNER ŚRODOWSK ENERGETYK NSTYTT MSZYN RZĄDZEŃ ENERGETYCZNYCH LBORTORM ELEKTRYCZNE Obwody liniowe. Sprawdzanie praw Kirchhoffa (E 2) Opracował: Dr inż. Włodzimierz OGLEWCZ 3 1. Cel

Bardziej szczegółowo

Tranzystor bipolarny

Tranzystor bipolarny Tranzystor bipolarny 1. zas trwania: 6h 2. ele ćwiczenia adanie własności podstawowych układów wykorzystujących tranzystor bipolarny. 3. Wymagana znajomość pojęć zasada działania tranzystora bipolarnego,

Bardziej szczegółowo

BADANIE MODULATORÓW I DEMODULATORÓW AMPLITUDY (AM)

BADANIE MODULATORÓW I DEMODULATORÓW AMPLITUDY (AM) Zespół Szkół Technicznych w Suwałkach Pracownia Sieci Teleinformatycznych Ćwiczenie Nr 1 BADANIE MODULATORÓW I DEMODULATORÓW AMPLITUDY (AM) Opracował Sławomir Zieliński Suwałki 2010 Cel ćwiczenia Pomiar

Bardziej szczegółowo

Ryszard Kostecki. Badanie własności filtru rezonansowego, dolnoprzepustowego i górnoprzepustowego

Ryszard Kostecki. Badanie własności filtru rezonansowego, dolnoprzepustowego i górnoprzepustowego Ryszard Kostecki Badanie własności filtru rezonansowego, dolnoprzepustowego i górnoprzepustowego Warszawa, 3 kwietnia 2 Streszczenie Celem tej pracy jest zbadanie własności filtrów rezonansowego, dolnoprzepustowego,

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

Cyfrowy pomiar czasu i częstotliwości Przetwarzanie sygnałów pomiarowych (analogowych)

Cyfrowy pomiar czasu i częstotliwości Przetwarzanie sygnałów pomiarowych (analogowych) Cyfrowy pomiar czasu i częstotliwości Przetwarzanie sygnałów pomiarowych (analogowych) Wykład 10 2/38 Cyfrowy pomiar czasu i częstotliwości 3/38 Generatory, rezonatory, kwarce f w temperatura pracy np.-10

Bardziej szczegółowo

Gdy wzmacniacz dostarcz do obciążenia znaczącą moc, mówimy o wzmacniaczu mocy. Takim obciążeniem mogą być na przykład...

Gdy wzmacniacz dostarcz do obciążenia znaczącą moc, mówimy o wzmacniaczu mocy. Takim obciążeniem mogą być na przykład... Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Gdy wzmacniacz dostarcz do obciążenia znaczącą moc, mówimy

Bardziej szczegółowo

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ, Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ, Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ, Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA ĆWICZENIE 10 OBWODY RC: 10.1. Impedancja i kąt fazowy w

Bardziej szczegółowo

Autorzy: Tomasz Sokół Patryk Pawlos Klasa: IIa

Autorzy: Tomasz Sokół Patryk Pawlos Klasa: IIa Autorzy: Tomasz Sokół Patryk Pawlos Klasa: IIa Dźwięk wrażenie słuchowe, spowodowane falą akustyczną rozchodzącą się w ośrodku sprężystym (ciele stałym, cieczy, gazie). Częstotliwości fal, które są słyszalne

Bardziej szczegółowo

Obwody elektryczne Jacek.Szczytko@fuw.edu.pl

Obwody elektryczne Jacek.Szczytko@fuw.edu.pl Obwody elektryczne Jacek.Szczytko@fuw.edu.pl 1. Podstawowe pojęcia ładunek elektryczny - wyrażamy w kulombach [C] (analogia hydrodynamiczna: masa wody) Źródło: np. Wikipedia! natężenie prądu I wyrażamy

Bardziej szczegółowo

ĆWICZENIE nr 3. Badanie podstawowych parametrów metrologicznych przetworników analogowo-cyfrowych

ĆWICZENIE nr 3. Badanie podstawowych parametrów metrologicznych przetworników analogowo-cyfrowych Politechnika Łódzka Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych WWW.DSOD.PL LABORATORIUM METROLOGII ELEKTRONICZNEJ ĆWICZENIE nr 3 Badanie podstawowych parametrów metrologicznych przetworników

Bardziej szczegółowo

CHARAKTERYSTYKI BRAMEK CYFROWYCH TTL

CHARAKTERYSTYKI BRAMEK CYFROWYCH TTL CHARAKTERYSTYKI BRAMEK CYFROWYCH TTL. CEL ĆWICZENIA Celem ćwiczenia jest poznanie zasad działania, budowy i właściwości podstawowych funktorów logicznych wykonywanych w jednej z najbardziej rozpowszechnionych

Bardziej szczegółowo

L ABORATORIUM UKŁADÓW ANALOGOWYCH

L ABORATORIUM UKŁADÓW ANALOGOWYCH WOJSKOWA AKADEMIA TECHNICZNA W YDZIAŁ ELEKTRONIKI zima L ABORATORIUM UKŁADÓW ANALOGOWYCH Grupa:... Data wykonania ćwiczenia: Ćwiczenie prowadził: Imię:......... Data oddania sprawozdania: Podpis: Nazwisko:......

Bardziej szczegółowo

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym? Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie

Bardziej szczegółowo

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7 Łukasz Deńca V rok Koło Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE

Bardziej szczegółowo

Tranzystory bipolarne elementarne układy pracy i polaryzacji

Tranzystory bipolarne elementarne układy pracy i polaryzacji Tranzystory bipolarne elementarne układy pracy i polaryzacji Ryszard J. Barczyński, 2010 2014 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego

Bardziej szczegółowo

Przetworniki A/C. Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego

Przetworniki A/C. Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego Przetworniki A/C Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego Parametry przetworników analogowo cyfrowych Podstawowe parametry przetworników wpływające na ich dokładność

Bardziej szczegółowo

Ćw. 6 Generatory. ( ) n. 1. Cel ćwiczenia. 2. Wymagane informacje. 3. Wprowadzenie teoretyczne PODSTAWY ELEKTRONIKI MSIB

Ćw. 6 Generatory. ( ) n. 1. Cel ćwiczenia. 2. Wymagane informacje. 3. Wprowadzenie teoretyczne PODSTAWY ELEKTRONIKI MSIB Ćw. 6 Generatory. Cel ćwiczenia Tematem ćwiczenia są podstawowe zagadnienia dotyczące generacji napięcia sinusoidalnego. Ćwiczenie składa się z dwóch części. Pierwsza z nich, mająca charakter wprowadzenia,

Bardziej szczegółowo

Technik elektronik 311[07] Zadanie praktyczne

Technik elektronik 311[07] Zadanie praktyczne 1 Technik elektronik 311[07] Zadanie praktyczne Mała firma elektroniczna wyprodukowała tani i prosty w budowie prototypowy generator funkcyjny do zastosowania w warsztatach amatorskich. Podstawowym układem

Bardziej szczegółowo

Stabilizatory impulsowe

Stabilizatory impulsowe POITECHNIKA BIAŁOSTOCKA Temat i plan wykładu WYDZIAŁ EEKTRYCZNY Jakub Dawidziuk Stabilizatory impulsowe 1. Wprowadzenie 2. Podstawowe parametry i układy pracy 3. Przekształtnik obniżający 4. Przekształtnik

Bardziej szczegółowo

BADANIE DIOD PÓŁPRZEWODNIKOWYCH

BADANIE DIOD PÓŁPRZEWODNIKOWYCH BAANE O PÓŁPZEWONKOWYCH nstytut izyki Akademia Pomorska w Słupsku Cel i ćwiczenia. Celem ćwiczenia jest: - zapoznanie się z przebiegiem charakterystyk prądowo-napięciowych diod różnych typów, - zapoznanie

Bardziej szczegółowo

Enkoder magnetyczny AS5040.

Enkoder magnetyczny AS5040. Enkoder magnetyczny AS5040. Edgar Ostrowski Jan Kędzierski www.konar.ict.pwr.wroc.pl Wrocław, 28.01.2007 1 Spis treści 1 Wstęp... 3 2 Opis wyjść... 4 3 Tryby pracy... 4 3.1 Tryb wyjść kwadraturowych...

Bardziej szczegółowo

Lekcja 40. Obraz graficzny pola elektrycznego.

Lekcja 40. Obraz graficzny pola elektrycznego. Lekcja 40. Obraz graficzny pola elektrycznego. Polem elektrycznym nazywamy obszar, w którym na wprowadzony doń ładunek próbny q działa siła. Pole elektryczne występuje wokół ładunków elektrycznych i ciał

Bardziej szczegółowo

Ćwiczenie 1 Podstawy opisu i analizy obwodów w programie SPICE

Ćwiczenie 1 Podstawy opisu i analizy obwodów w programie SPICE Ćwiczenie 1 Podstawy opisu i analizy obwodów w programie SPICE Cel: Zapoznanie ze składnią języka SPICE, wykorzystanie elementów RCLEFD oraz instrukcji analiz:.dc,.ac,.tran,.tf, korzystanie z bibliotek

Bardziej szczegółowo

Parametry częstotliwościowe przetworników prądowych wykonanych w technologii PCB 1 HDI 2

Parametry częstotliwościowe przetworników prądowych wykonanych w technologii PCB 1 HDI 2 dr inż. ALEKSANDER LISOWIEC dr hab. inż. ANDRZEJ NOWAKOWSKI Instytut Tele- i Radiotechniczny Parametry częstotliwościowe przetworników prądowych wykonanych w technologii PCB 1 HDI 2 W artykule przedstawiono

Bardziej szczegółowo

Wykaz symboli, oznaczeń i skrótów

Wykaz symboli, oznaczeń i skrótów Wykaz symboli, oznaczeń i skrótów Symbole a a 1 operator obrotu podstawowej zmiennych stanu a 1 podstawowej uśrednionych zmiennych stanu b 1 podstawowej zmiennych stanu b 1 A A i A A i, j B B i cosφ 1

Bardziej szczegółowo

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

Modelowanie diod półprzewodnikowych

Modelowanie diod półprzewodnikowych Modelowanie diod półprzewodnikowych Programie PSPICE wbudowane są modele wielu elementów półprzewodnikowych takich jak diody, tranzystory bipolarne, tranzystory dipolowe złączowe, tranzystory MOSFET, tranzystory

Bardziej szczegółowo

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA

INDUKCJA ELEKTROMAGNETYCZNA Wstęp INDKCJA ELEKTROMAGNETYCZNA Zajęcia wyrównawcze, Częstochowa, 009/00 Ewa Jakubczyk Michalel Faraday (79-867) odkrył w 83roku zjawisko indukcji elektromagnetycznej. Oto pierwsza prądnica -generator

Bardziej szczegółowo

Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego:

Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego: Sprawozdanie z laboratorium elektroniki w Zakładzie Systemów i Sieci Komputerowych Temat ćwiczenia: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Sprawozdanie Rok: Grupa: Zespół:

Bardziej szczegółowo

Nieskończona jednowymiarowa studnia potencjału

Nieskończona jednowymiarowa studnia potencjału Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,

Bardziej szczegółowo

Karta wybranych wzorów i stałych fizycznych

Karta wybranych wzorów i stałych fizycznych Kata wybanych wzoów i stałych fizycznych Mateiały pomocnicze opacowane dla potzeb egzaminu matualnego i dopuszczone jako pomoce egzaminacyjne. publikacja współfinansowana pzez Euopejski Fundusz Społeczny

Bardziej szczegółowo

Logarytm dziesiętny - to po prostu wykładnik potęgi do której należy podnieść liczbę 10 aby uzyskać liczbę logarytmowaną

Logarytm dziesiętny - to po prostu wykładnik potęgi do której należy podnieść liczbę 10 aby uzyskać liczbę logarytmowaną Temat: Logarytmy, decybele, poziomy audio. W praktyce radiotechnicznej okazało się, że określając względne wielkości wzmocnienia, lub poziomu transmisji, wygodniej jest używać logarytmów stosunku mocy

Bardziej szczegółowo

Ruch drgający i falowy

Ruch drgający i falowy Ruch drgający i falowy 1. Ruch harmoniczny 1.1. Pojęcie ruchu harmonicznego Jednym z najbardziej rozpowszechnionych ruchów w mechanice jest ruch ciała drgającego. Przykładem takiego ruchu może być ruch

Bardziej szczegółowo

Ćwiczenie 1. Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym.

Ćwiczenie 1. Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym. Ćwiczenie 1 Symulacja układu napędowego z silnikiem DC i przekształtnikiem obniżającym. Środowisko symulacyjne Symulacja układu napędowego z silnikiem DC wykonana zostanie w oparciu o środowisko symulacyjne

Bardziej szczegółowo

Tranzystory bipolarne. Podstawowe układy pracy tranzystorów.

Tranzystory bipolarne. Podstawowe układy pracy tranzystorów. ĆWICZENIE 4 Tranzystory bipolarne. Podstawowe układy pracy tranzystorów. I. Cel ćwiczenia Zapoznanie się z układami zasilania tranzystorów. Wybór punktu pracy tranzystora. Statyczna prosta pracy. II. Układ

Bardziej szczegółowo

Diagnostyka układów elektrycznych i elektronicznych pojazdów samochodowych. 1.1.1. Podstawowe wielkości i jednostki elektryczne

Diagnostyka układów elektrycznych i elektronicznych pojazdów samochodowych. 1.1.1. Podstawowe wielkości i jednostki elektryczne Diagnostyka układów elektrycznych i elektronicznych pojazdów samochodowych 1. Prąd stały 1.1. Obwód elektryczny prądu stałego 1.1.1. Podstawowe wielkości i jednostki elektryczne 1.1.2. Natężenie prądu

Bardziej szczegółowo

Energetyka w Środowisku Naturalnym

Energetyka w Środowisku Naturalnym Energetyka w Środowisku Naturalnym Energia w Środowisku -technika ograniczenia i koszty Wykład 1-6.X.2015 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

Indukcja elektromagnetyczna

Indukcja elektromagnetyczna Rozdział 6 ndukcja elektromagnetyczna 6.1 Zjawisko indukcji elektromagnetycznej 6.1.1 Prawo Faraday a i reguła Lenza W rozdziale tym rozpatrzymy niektóre zagadnienia, związane ze zmiennymi w czasie polami

Bardziej szczegółowo

Wzmacniacz jako generator. Warunki generacji

Wzmacniacz jako generator. Warunki generacji Generatory napięcia sinusoidalnego Drgania sinusoidalne można uzyskać Poprzez utworzenie wzmacniacza, który dla jednej częstotliwości miałby wzmocnienie równe nieskończoności. Poprzez odtłumienie rzeczywistego

Bardziej szczegółowo

Własności i zastosowania diod półprzewodnikowych

Własności i zastosowania diod półprzewodnikowych Własności i zastosowania diod półprzewodnikowych 1. zas trwania: 6h 2. el ćwiczenia Badanie charakterystyk prądowo-napięciowych różnych typów diod półprzewodnikowych. Montaż i badanie wybranych układów,

Bardziej szczegółowo

Przyrządy i przetworniki pomiarowe

Przyrządy i przetworniki pomiarowe Przyrządy i przetworniki pomiarowe Są to narzędzia pomiarowe: Przyrządy -służące do wykonywania pomiaru i służące do zamiany wielkości mierzonej na sygnał pomiarowy Znajomość zasady działania przyrządów

Bardziej szczegółowo

41 Przekształtniki napięcia przemiennego na napięcie stałe - typy, praca prostownika sterowanego

41 Przekształtniki napięcia przemiennego na napięcie stałe - typy, praca prostownika sterowanego 41 Przekształtniki napięcia przemiennego na napięcie stałe - typy, praca prostownika sterowanego Prostownikami są nazywane układy energoelektroniczne, służące do przekształcania napięć przemiennych w napięcia

Bardziej szczegółowo

ĆWICZENIE 3 BADANIE UKŁADÓW PROSTOWNICZYCH

ĆWICZENIE 3 BADANIE UKŁADÓW PROSTOWNICZYCH ĆWICZENIE 3 BADANIE UKŁADÓW PROSTOWNICZYCH Cel ćwiczenia: zbadanie wpływu typu układu prostowniczego oraz wartości i charakteru obciążenia na parametry wyjściowe zasilacza. 3.1. Podstawy teoretyczne 3.1.1.

Bardziej szczegółowo

Elektrotechnika 2. Stany nieustalone w obwodach elektrycznych: Metoda klasyczna. Kolokwium. Metoda operatorowa. Kolokwium

Elektrotechnika 2. Stany nieustalone w obwodach elektrycznych: Metoda klasyczna. Kolokwium. Metoda operatorowa. Kolokwium Wybrane zagadnienia teorii obwodów Osoba odpowiedzialna za przedmiot (wykłady): dr hab. inż. Ryszard Pałka prof. PS ćwiczenia i projekt: dr inż. Krzysztof Stawicki e-mail: ks@ps.pl w temacie wiadomości

Bardziej szczegółowo

TEST DLA GRUPY ELEKTRYCZNEJ

TEST DLA GRUPY ELEKTRYCZNEJ XXXV Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej 29-30.03.2012 Wałbrzych TEST DLA GRUPY ELEKTRYCZNEJ WYJAŚNIENIE: Przed przystąpieniem do udzielenia odpowiedzi przeczytaj uważnie tekst.

Bardziej szczegółowo

Projekt z przedmiotu Systemy akwizycji i przesyłania informacji. Temat pracy: Licznik binarny zliczający do 10.

Projekt z przedmiotu Systemy akwizycji i przesyłania informacji. Temat pracy: Licznik binarny zliczający do 10. Projekt z przedmiotu Systemy akwizycji i przesyłania informacji Temat pracy: Licznik binarny zliczający do 10. Andrzej Kuś Aleksander Matusz Prowadzący: dr inż. Adam Stadler Układy cyfrowe przetwarzają

Bardziej szczegółowo

Badanie własności diód krzemowej, germanowej, oraz diody Zenera

Badanie własności diód krzemowej, germanowej, oraz diody Zenera 23 kwietnia 2001 Ryszard Kostecki Badanie własności diód krzemowej, germanowej, oraz diody Zenera Streszczenie Celem tej pracy jest zapoznanie się z tematyką i zbadanie diód krzemowej, germanowej, oraz

Bardziej szczegółowo

Układy pasywne RLC. 1. Czas trwania: 6h

Układy pasywne RLC. 1. Czas trwania: 6h kłady pasywne LC. Czas trwania: 6h 2. Cele ćwiczenia Badanie własności prostych pasywnych układów LC. Badanie szeregowego obwodu rezonansowego LC. 3. Wymagana znajomość pojęć działania na liczbach zespolonych,

Bardziej szczegółowo

Dmuchając nad otworem butelki można sprawić, że z butelki zacznie wydobywać się dźwięk.

Dmuchając nad otworem butelki można sprawić, że z butelki zacznie wydobywać się dźwięk. Zadanie D Gwiżdżąca butelka Masz do dyspozycji: plastikową butelkę o pojemności 1,5- l z szyjką o walcowym kształcie i długości ok. 3 cm, naczynie o znanej pojemności, znacznie mniejszej niż pojemność

Bardziej szczegółowo

Streszczenie W niniejszej pracy został przedstawiony sposób obliczania charakterystyki częstotliwościowej i fazowej dla przykładowego czwórnika.

Streszczenie W niniejszej pracy został przedstawiony sposób obliczania charakterystyki częstotliwościowej i fazowej dla przykładowego czwórnika. Streszczenie W niniejszej pracy został przedstawiony sposób obliczania charakterystyki częstotliwościowej i fazowej dla przykładowego czwórnika. Wszystkie obliczenia zostały wykonane krok po kroku, a wszystkie

Bardziej szczegółowo

DRGANIA ELEMENTÓW KONSTRUKCJI

DRGANIA ELEMENTÓW KONSTRUKCJI DRGANIA ELEMENTÓW KONSTRUKCJI (Wprowadzenie) Drgania elementów konstrukcji (prętów, wałów, belek) jak i całych konstrukcji należą do ważnych zagadnień dynamiki konstrukcji Przyczyna: nawet niewielkie drgania

Bardziej szczegółowo