Nowy regionalny satelitarny system wspomagający QZSS powstaje w Japonii

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Nowy regionalny satelitarny system wspomagający QZSS powstaje w Japonii"

Transkrypt

1 CZASOPISMO STOWARZYSZENIA ELEKTRYKÓW POLSKICH ORAZ DWUKROTNIE ODZNACZONE ROK LXXXV kwiecień 2016 NR 4 Jacek JANUSZEWSKI* DOI: / Nowy regionalny satelitarny system wspomagający QZSS powstaje w Japonii New regional satellite system augmentation under construction in Japan Powstały w Japonii system QZSS (Quasi-Zenitalny System Satelitarny) zapewnia regionalny serwis nawigacji satelitarnej (w tym również usługi wspomagające) w Azji Wschodniej i Oceanii. System ten został zbudowany w celu zapewnienia możliwości określania pozycji za pomocą systemu satelitarnego w miejskich kanionach i rejonach górzystych. Opisano segment kosmiczny, obejmujący satelity na nachylonych orbitach geosynchronicznych (IGSO), podano parametry wszystkich sześciu sygnałów i depesz nawigacyjnych wysyłanych przez te satelity. Opisano segment naziemny z 11 stacjami, segment użytkownika ze zintegrowanymi odbiornikami (QZSS i inne nawigacyjne systemy satelitarne), możliwości i zastosowania systemu obecnie i w przyszłości. Słowa kluczowe: QZSS, nawigacyjny system satelitarny, sygnał LEX, serwis SLAS, serwis CLAS The Quasi Zenith Satellite System (QZSS), developed by Japan, provides a regional satellite navigation service (augmentation also) in East Asia and Oceania. QZSS was developed to provide position service in urban canyons and mountainous environments. Spatial segments with Inclined GeoSynchronous Orbit (IGSO) satellites, the parameters of all six signals transmitted by satellites, all six navigation messages, terrestrial segment with 11 stations, user segment with integrated (QZSS and other satellite navigation system) receivers and the system performance and its use today and in the future are described in this paper. Key words: QZSS, satellite navigation system, signal LEX, service SLAS, service CLAS Obecnie (luty 2016 r.) w pełni operacyjne są dwa globalne nawigacyjne systemy satelitarne (NSS): amerykański GPS i rosyjski GLONASS, a ponadto cztery satelitarne systemy wspomagające SBAS (Satellite Based Augmentation System): EGNOS w Europie i północnej Afryce, WAAS w USA i Kanadzie, MSAS w Japonii i GAGAN w Indiach. W budowie są dwa kolejne NSS: Galileo w Europie i BeiDou w Chinach oraz jeden SBAS, SDCM w Federacji Rosyjskiej. Ponadto w Japonii w końcowej fazie budowy jest system QZSS (Quasi Zenith Satellite System), którego pierwszy satelita znajduje się na orbicie od września 2010 roku. Wszystkie wymienione systemy są powszechnie nazywane globalnymi GNSS (Global Navigation Satellite System). System QZSS będzie wykorzystywany zarówno jako klasyczny system nawigacyjny, umożliwiający określanie pozycji, jak i system wspomagający, dostarczający użytkownikowi różnego rodzaju poprawki i informacje o wiarygodności i dostępności innych NSS. Od drugiej wojny światowej obserwuje się nieprzerwany rozwój początkowo naziemnych systemów radionawigacyjnych, takich jak Decca Navigator, Omega, Loran C, a później nawigacyjnych systemów satelitarnych. W połowie lat 90. minionego stulecia oddano do eksploatacji dwa globalne NSS, a w XX wieku cztery systemy SBAS [1], [2], [8]. * Akademia Morska w Gdyni, Jednym z państw najbardziej zainteresowanych i jednocześnie znaczących na rynku naziemnych systemów radionawigacyjnych i satelitarnych systemów wspomagających jest Japonia. To na jej terytorium zlokalizowano stacje nadawcze systemu naziemnego Loran A, później Loran C oraz jedną z ośmiu stacji globalnego systemu naziemnego Omega. W pierwszej dekadzie obecnego wieku Japonia była drugim po USA państwem najbardziej zaangażowanym w tworzenie systemów SBAS. Pierwszego satelitę geostacjonarnego nowego systemu wspomagającego MSAS (Multi-functional Transport Satellite Based Augmentation System) wprowadzono na orbitę z własnego kosmodromu już w 1999 roku, ale po awarii jeszcze w tym samym roku wyłączono go z eksploatacji. Funkcjonowanie systemu przywrócono dopiero w 2005 roku. Obecnie system ten jest także wykorzystywany do kontroli ruchu lotniczego oraz prowadzenia obserwacji meteorologicznych. Dodatkowo należy też wspomnieć, że jest to kraj wielu renomowanych i jednocześnie bardzo znanych w świecie producentów różnego rodzaju urządzeń radionawigacyjnych, w tym również powszechnie stosowanych odbiorników systemów naziemnych i satelitarnych. Można tu chociażby wymienić takie koncerny, jak Furuno, Koden czy JRC. Licząca przeszło 120 milionów ludności Japonia leży na średnich szerokościach geograficznych. Zdecydowana większość terenów zamieszkałych znajduje się między 30 a 45 O N. Jest to kraj górzysty, a w kilkunastu wielkich miastach i kilkudziesięciu 106 WIADOMOŚCI TELEKOMUNIKACYJNE ROCZNIK LXXXV nr 4/2016

2 aglomeracjach zabudowa ma charakter tzw. miejskich kanionów (urban canyon). Kilkadziesiąt milionów obywateli korzysta od lat z telefonii komórkowej, współpracującej z systemem GPS. Wszyscy ci użytkownicy muszą się liczyć z następującymi ograniczeniami: wysokość topocentryczna satelitów geostacjonarnych MSAS wynosi około 40 O, co oznacza, że w kanionach miejskich i terenach górzystych satelity te są najczęściej rzadko widziane; liczba satelitów systemu GPS w czasie jazdy w miastach z użyciem nawigacji satelitarnej może ulec znacznemu zmniejszeniu, dodatkowo sygnały z satelitów mogą być obarczone błędem tzw. wielodrogowości (multipath error). Władze Japonii postanowiły więc stworzyć od podstaw taki system satelitarny, w którym co najmniej jeden satelita będzie widoczny nad ich krajem na wystarczająco dużej wysokości topocentrycznej. Ponadto satelity te powinny użytkownikowi systemu GPS dostarczać zarówno różnego rodzaju poprawki, jak i sygnały wykorzystywane w procesie określania pozycji. Celem było więc zbudowanie systemu o dwojakim charakterze, z jednej strony wspomagającym, a z drugiej regionalnym, poprawiającym dostępność systemu globalnego. Badania wykazały, że wymienione wymagania może spełnić jedynie system, w którym segment kosmiczny będzie obejmować satelity okrążające Ziemię po orbitach geosynchronicznych nachylonych IGSO (Inclined GeoSynchronous Orbit), zwanych też Quasi-Zenitalnymi QZO (Quasi Zenith Orbit). Taki też rodzaj orbity został przyjęty, a system nazwano QZSS (Quasi Zenith Satellite System). W 2002 roku zatwierdzono projekt budowy od podstaw tego systemu. Realizacją zajęło się konsorcjum ASBC (Avanced Space Business Corporation) zrzeszające takie firmy, jak Mitsubishi Electric, Hitachi czy też GNSS Technologies Inc. W 2007 roku projekt przejęła Japońska Agencja Kosmiczna (JAXA Japan Aerospace Exploration Agency) wraz z centrum badawczym SPAC (Satellite Positioning Research and Application Center). Publikuje ona cyklicznie szczegółową dokumentację na temat bieżącego stanu systemu w serii oznaczonej symbolem IS-QZSS Draft V1. Pierwsza wersja 1.0 ukazała się w 2008 roku [4], ostatnia zaś 1.6, licząca 248 stron i obowiązująca po dzień dzisiejszy, 28 listopada 2014 roku [5]. Od 2007 roku informacje o stanie budowy, zasadzie działania i przewidywanych zastosowaniach systemu QZSS zaczęły być przedstawiane w tak renomowanych wydawnictwach specjalistycznych o zasięgu światowym, jak GPSWorld [16] czy Insidegnss [18]. W podręcznikach o systemach satelitarnych systemowi temu zaczęto poświęcać co najmniej jeden podrozdział [1], [2]. Zagadnienia związane z QZSS stały się też jednym ze stałych tematów międzynarodowych konferencji poświęconych systemom satelitarnym, takich jak największa w Europie organizowana corocznie w Monachium (Satellite Navigation Summit), np. [11], [12], [13] czy też tzw. szczyty komitetu do spraw GNSS, np. Saint-Petersburg w 2009 r. [9] i Pekinie w 2012 r. [10]. STRUKTURA SYSTEMU W systemie QZSS, tak jak w każdym NSS czy też SBAS, można wyróżnić trzy segmenty: kosmiczny, naziemny i użytkownika. SEGMENT KOSMICZNY Według ostatnich ustaleń (luty 2016 r.) segment kosmiczny systemu QZSS będzie liczył cztery satelity, trzy na trzech nachylonych orbitach geosynchronicznych IGSO (po jednym na każdej z trzech) i jeden na orbicie geostacjonarnej na długości geograficznej 135 O E. Orbita IGSO to orbita o kształcie eliptycznym o okresie obiegu Ziemi przez satelitę równym dobie gwiazdowej. W systemie QZSS kąt inklinacji orbit IGSO wynosi 43 O (odchyłka ± 4 O ), apogeum km znajduje się nad Japonią, zaś perygeum o wysokości km nad Australią. Satelity poruszające się po takiej orbicie przelatują nad równikiem na wysokości około WIADOMOŚCI TELEKOMUNIKACYJNE ROCZNIK LXXXV nr 4/ km mniejszej niż wysokość orbity geostacjonarnej. Przy takich parametrach ślad satelitów IGSO na powierzchni Ziemi ma kształt asymetrycznej ósemki (rys. 1). Satelita, poruszając się na północ, będzie zwiększał swoją odległość od powierzchni Ziemi, zaś czas jego widzialności nad półkulą północną będzie większy niż nad półkulą południową. Każdy, pojawiający się w odstępach ośmiogodzinnych, satelita obserwowany z okolic Japonii będzie widoczny przez około 8 godzin na wysokości topocentrycznej co najmniej 70 O i około 12 godzin na nie mniejszej niż 50 O. Ze względu na to, że system QZSS zalicza się do systemów wspomagających SBAS, jego satelity są identyfikowane przez stosowany w systemie GPS niepowtarzalny kod PRN (Pseudo Range Noise) [5]. Rys. 1. System QZSS ślad satelity IGSO na powierzchni Ziemi [5] Pierwszy satelita IGSO, oznaczony symbolem QZS 1, o nazwie Michibiki, został wyniesiony na orbitę 11 września 2010 r. za pomocą rakiety nośnej H2A202, wystrzelonej z japońskiego kosmodromu Tanegashima; długość geograficzna węzła wstępującego to około 135 O (wartość bezwzględna odchyłki może wynieść 5 O, a nawet i więcej). Kod PRN tego satelity wynosi 183. Jest to nadal jedyny funkcjonujący satelita systemu [5], [15]. W języku japońskim słowo michibiki oznacza wyznaczać drogę, prowadzić. Przewiduje się, że w najbliższych dwóch latach segment kosmiczny powiększy się o dwa satelity IGSO i jeden GEO (Geostationary Earth Orbit) zlokalizowany na długości około 135 O E. Docelowo trzem satelitom IGSO zostaną przyporządkowane numery PRN od 193 do 195 [5]. SEGMENT NAZIEMNY Struktura i funkcjonowanie segmentu naziemnego systemu QZSS nie różni się zasadniczo od wszystkich innych NSS i SBAS. Segment ten liczy łącznie 11 stacji, w tym jedną stację główną MCS (Master Control Station), dziewięć stacji monitorujących MS (Monitoring Station), jedną stację korygującą TCS (Tracking Control Station) oraz dwie kontroli czasu TMS (Time Management Station). Jedna z tych stacji znajduje się w instytucie NICT (National Institute of Information and Communication Technology). Stacja Okinawa odgrywa rolę trzech stacji MS, TCS i TMS (tabela 1). Sześć stacji zlokalizowano na terenie Japonii, pozostałe pięć, na mocy odpowiednich porozumień międzynarodowych o wzajemnej współpracy, w ośrodkach naukowych czterech państw. 107

3 Tabela 1. System QZSS, stacje segmentu naziemnego (opracowanie autora na podstawie [5] Miejsce, państwo Współrzędne geograficzne główna Rodzaj stacji monitorująca korygująca kontroli czasu Koganei, Japonia 35 O 42,5 N 139 O 29,3 E + Sarobetsu, Japonia 45 O 09,8 N 141 O 44,9 E + Okinawa, Japonia 26 O 29,9 N 127 O 50,7 E Chichi-Jima, Japonia 27 O 04,8 N 142 O 12,9 E + Hawaje, USA 22 O 07,6 N 159 O 39,9 W + Guam, USA 13 O 28,7 N 144 O 47,7 E + Bangkok, Tajlandia 14 O 04,9 N 100 O 36,8 E + Bangalore, Indie 13 O 02,1 N 077 O 30,7 E + Canberrra, Australia 35 O 19,0 S 149 O 00,6 E + Tsukuba, Japonia 36 O 06,7 N 140 O 03,6 E + Tokio, Japonia 35 O 48,3 N 139 O 48,5 E + pierwszego satelity QZSS Michibiki, model BNC 4751 firmy Broadcom [16]. W tabeli 2 zestawiono, opracowaną przez autora na podstawie zamieszczanych corocznie w styczniowym numerze renomowanego miesięcznika GPSWorld, liczbę producentów oraz wytwarzanych przez nich modeli odbiorników/modułów/chipsetów dostępnych na rynku w latach W kolejnych latach zarówno liczba producentów, jak i modeli, systematycznie rosła, w 2015 roku było to już ponad 37% wszystkich uwzględnionych w miesięczniku producentów i blisko 36% wszystkich modeli. W tabeli 3 przedstawiono natomiast wykaz producentów odbiorników/modułów/chipsetów systemu QZSS wraz z liczbą oferowanych przez nich modeli w 2015 r.. Liderem jest tu, i to od lat, znany na całym świecie koncern JAVAD GNSS, na drugim miejscu wielka firma japońska Furuno [16]. Wszystkie depesze nawigacyjne są obliczane w MCS, a następnie za pośrednictwem TCS przesyłane do satelitów systemu [5]. Współpraca międzynarodowa obejmuje również śledzenie satelity Michibiki przez stacje sieci CONGO (Cooperative Network for GIOVE Observations), stworzonej na potrzeby systemu Galileo. Stacje te, zarządzane i eksploatowane przez niemiecki Instytut Astronomii i Geodezji Fizycznej (IAPG), znajdują się w Chofu (Japonia), Singapurze, Sydney, Maui na Hawajach i francuskiej wyspie Tahiti. Wykorzystywane są do śledzenia tegoż satelity oraz obliczania parametrów jego orbity i zegara pokładowego [14]. Zadaniem wszystkich stacji monitorujących jest odbieranie sygnałów nie tylko od satelitów QZSS, ale również satelitów systemu GPS. Umożliwia to obliczenie parametrów orbit satelitów QZSS oraz wzorca czasu tegoż systemu i następnie porównywanie tych parametrów z parametrami otrzymywanymi z systemu GPS. SEGMENT UŻYTKOWNIKA Pierwszym urządzeniem dostępnym od pierwszego kwartału 2009 roku dla użytkowników cywilnych, współpracującym z nieistniejącym wówczas segmentem kosmicznym systemu QZSS, był symulator konstelacji satelitów NavX NCS RF firmy IfEN GmbH. Wkrótce pojawiły się pierwsze wzmianki o modułach współpracujących z systemem QZSS. Można tu wymienić wprowadzony w 2011 roku, czyli już w kilka miesięcy po wprowadzeniu na orbitę, Tabela 2. Zestawienie liczbowe producentów odbiorników /modułów/chipsetów systemu QZSS dostępnych na rynku w latach (opracowanie autora na podstawie [16]) Rok (liczba wszystkich producentów/ wszystkich odbiorników) Producenci odbiorników/ modułów/chipsetów liczba % (ogółu) liczba Odbiorniki/ moduły/chipsety % (ogółu) 2011 (61 / 450) 1 1,6 1 0, (58 / 483) 5 8,6 46 9, (55 / 502) 10 18, , (47 / 380) 14 29, , (48 / 434) 18 37, ,7 Tabela 3. Wykaz producentów odbiorników /modułów/chipsetów systemu QZSS dostępnych na rynku w roku 2015 [16] Producent Liczba modeli odbiorników / modułów/chipsetów systemu QZSS Ashtech/Boards & Sensors 3 CHC 2 CSR 12 Furuno 14 Jackon Labs Technologies 1 Japan Radio Co 2 JAVAD GNSS 39 Leica Geosystems AG 5 NovAtel 11 Ralelogic 3 Septentrio 6 SkyTraq Technology 8 Sokkia 3 Spectra Precision 1 STMicroelectronics 8 Topcon 7 Trimble 23 u-blox 7 W zdecydowanej większości są to profesjonalne moduły i chipsety, zawsze jednak wchodzą w skład odbiornika czy też specjalnego zestawu zintegrowanego, umożliwiającego wykorzystywanie sygnałów z kilku nawigacyjnych systemów satelitarnych i systemów wspomagających, zarówno już funkcjonujących, jak i dopiero budowanych. Można tu wymienić odbiornik TRIUMPH- -LS firmy JAVAD GNSS, odbierający sygnały QZSS na trzech częstotliwościach L1, L2 i L5 oraz sygnały z satelitów systemu GPS, GLONASS, Galileo, BeiDou oraz systemów SBAS czy też moduł GN86 firmy Furuno, odbierający sygnały QZSS na częstotliwości L1 oraz sygnały systemów GPS, Galileo oraz SBAS [16]. SYGNAŁY I DEPESZE NAWIGACYJNE Według założeń z 2014 roku [5], satelity systemu QZSS będą emitować docelowo siedem sygnałów na czterech częstotliwo- 108 WIADOMOŚCI TELEKOMUNIKACYJNE ROCZNIK LXXXV nr 4/2016

4 Tabela 4. System QZSS, częstotliwości, sygnały, przeznaczenie i depesze (opracowanie autora na podstawie [5]) Częstotliwość [MHz] f o = 10,23 MHz 1 575, ) 1 278, ) 1 227, ) 1 176, ) Sygnał Przeznaczenie Depesza L1 C/A L1 C L1 SAIF L6 (LEX) L2 C L5 L5 S kompatybilny z GPS kompatybilny z przyszłym blokiem III satelitów GPS Sygnał wspomagający SLAS, wykorzystywany w systemie DC Report Sygnał wspomagający CLAS kompatybilny z GPS kompatybilny z satelitami bloku IIF GPS Sygnał eksperymentalny, planowany dla przyszłych satelitów QZSS ściach nośnych. Obecnie (sierpień 2015 r.) satelita Michibiki emituje sześć sygnałów z wyjątkiem L5S (tabela 4). Wszystkie cztery częstotliwości są pełną wielokrotnością częstotliwości 10,23 MHz, trzy z nich (L1, L2 i L5) są takie same, jak w systemie GPS, czwarta L6 jest natomiast zgodna z częstotliwością E6 systemu Galileo, na której emitowane są sygnały o numerach 5, 6 i 7 [6], [7]. Dodatkowo częstotliwości L1 i L5 są, bądź będą, tożsame z częstotliwościami systemów Galileo i GLONASS. CHARAKTERYSTYKA SYGNAŁÓW Wszystkie sześć sygnałów, obecnie emitowanych, określanych według [5] mianem pozycyjnych, przy czym cztery L1 C/A, L1C, L2C i L5, dzięki wspólnym z innymi NSS częstotliwościom, wykorzystuje się w celu poprawy dostępności, zaś dwa pozostałe, L1 SAIF (Submeter-class Augmentation with Integrity Function) i LEX, dzięki emisji odpowiednich poprawek i różnego rodzaju informacji, jako wspomagające. Segment naziemny monitoruje nieprzerwanie wszystkie sygnały transmitowane przez satelitę oraz jego status i co sekundę sprawdza, czy dokładność SIS (Signal In Space) któregokolwiek z sygnałów jest gorsza niż 9,65 m oraz czy wykryto jakikolwiek problem z tym satelitą. W razie wykrycia nieprawidłowości użytkownicy przez odpowiedni alarm zostają ostrzeżeni w czasie nie dłuższym niż 30 s dla sygnału L1 C/A, 90 s dla sygnału L1C, 40 s dla L2C i 30 s dla L5. Podczas okresowych prac konserwacyjnych satelity generowany jest stosowny alarm o nieprzydatności do użytku sygnałów przez niego emitowanych. Taki satelita emituje wówczas depeszę awaryjną zamiast standardowej [5], [21]. PARAMETRY DEPESZ Dla każdego z sześciu emitowanych przez satelitę sygnałów depesza nawigacyjna wygląda inaczej. W przypadku czterech sygnałów L1 C/A, L1C, L2C i L5 depesza ta, tak jak w każdym NSS, składa się z efemeryd i almanachu oraz danych charakterystycznych jedynie dla systemu QZSS. Do danych tych można zaliczyć między innymi alarmy dotyczące jakości sygnału ( Alert flag), parametr URA (User Range Accuracy), dane o zdrowiu satelity oraz poprawki orbitalne. WIADOMOŚCI TELEKOMUNIKACYJNE ROCZNIK LXXXV nr 4/2016 NAV CNAV-2 SAIF LEX CNAV CNAV brak danych Depesze czterech wymienionych sygnałów są aktualizowane w stałych odstępach czasowych. I tak na przykład efemerydy co 900 s, zaś parametr URA co 30 s dla sygnału L1 C/A, co 18 s dla sygnału L1, co 48 s dla L2C i co 24 s dla L5 [5]. Struktura każdej z tych depesz jest tożsama z odpowiadającą jej o tej samej nazwie depeszą emitowaną na tej samej częstotliwości przez satelity systemu GPS [6], [7]. Informacje o parametrach orbity zawarte w efemerydach są ważne minimum przez 2 godziny, zaś parametry zegara satelity przez minimum 30 minut [5]. DEPESZA NAV, SYGNAŁ L1 C/A Depesza NAV, transmitowana na sygnale L1 C/A, ma tę samą strukturę, co depesza o tej samej nazwie emitowana przez satelity systemu GPS [3], [6]. Istnieją jednak między nimi pewne różnice, z których najważniejsza dotyczy odmiennej struktury czasowej. O ile bowiem w systemie GPS ramy czasowe emisji są związane z istnieniem 25 ramek almanachu (12,5 minuty), to w systemie QZSS nie ma takiego ograniczenia. Satelity QZSS identyfikowane są przez swój unikatowy numer SV ID (Space Vehicle Identification Number). Dlatego też liczba 30-sekundowych ramek może zostać zwiększona do 30, a nawet i więcej, a informacje w nich zawarte mogą dotyczyć również innych NSS [5]. DEPESZA SAIF, SYGNAŁ L1 SAIF Depesza przesyłana na sygnale L1 SAIF, zwana wiadomością nawigacyjną SAIF, składa się z pojedynczej ramki głównej liczącej 250 bitów [13]. Ze względu na to, że prędkość transmisji danych wynosi 250 bit/s, czas jej trwania to 1 s. Ramkę tę tworzą następujące elementy [5]. Preambuła, bity o numerach od 1 do 8, powtarzająca się cyklicznie w trzech kolejnych sekwencjach A, B i C. Początek sekwen- cji A zsynchronizowany jest z czasem emisji każdej sześciosekundowej podramki depeszy NAV (sygnał L1 C/A). Oznacza to, że podczas transmisji jednej takiej podramki wiadomość SAIF zostanie wysłana sześć razy, a każda z trzech sekwencji powtórzona dwukrotnie w zadanej kolejności. Identyfikator typu wiadomości, bity o numerach od 9 do 14, przedstawiany jako binarny numer z przedziału 0 63 (2 6 = 64). Wskazuje on rodzaj właściwej informacji przesyłanej w kolejnych bitach. Informacje te są bardzo zróżnicowane, gdyż obejmują wiadomości testowe, informacje o wiarygodności, poprawki krótkoi długoterminowe, poprawki jonosferyczne i troposferyczne, efemerydy satelitów QZSS, almanach tego systemu, wiadomości puste i zarezerwowane itd. W jednej ramce mogą być przesyłane tylko wiadomości jednego typu, ale kolejność transmisji poszczególnych typów wiadomości nie została dotychczas ustalona. Wiadomość właściwa, bity o numerach od 15 do 226, typ wiadomości określony wcześniej przez identyfikator. Bity sprawdzające, o numerach od 227 do 250. W przypadku każdej ramki odbiornik użytkownika weryfikuje prawidłowość ich odbioru. DEPESZA CNAV, SYGNAŁ L2C Depesza CNAV, bezpośredni następca pierwszej cywilnej depeszy NAV, została stworzona na potrzeby systemu GPS [3], [7]. W systemie QZSS konfiguracja depeszy CNAV, również transmitowanej wraz z sygnałem L2C, jest taka sama, z wyjątkiem treści wiadomości właściwej. Pojedyncza ramka liczy 300 bitów, czas jej trwania to 12 s, zaś prędkość transmisji danych wynosi 250 bit/s. Ramkę tę tworzą [5]: preambuła, bity o numerach od 1 do 8; numer PRN satelity, bity o numerach od 9 do 14; identyfikator typu wiadomości, bity o numerach od 15 do 20, przedstawiany jako binarny numer z przedziału 0 63 (2 6 = 64); wskazuje on rodzaj właściwej informacji przesyłanej w kolejnych bitach; czas tygodnia (TOW Time of Week), bity o numerach od 21 do 37; wartość liczbowa wyrażona przez owe bity pomnożona 109

5 przez 6 definiuje czas (w sekundach) rozpoczęcia przez satelitę emisji kolejnej ramki CNAV; ostrzeżenie (flag), bit o numerze 38; jest to informacja dla użytkownika o możliwości wystąpienia błędu większego niż wcześniej założono, dalsze korzystanie z takiej wiadomości odbywa się już na własne ryzyko; wiadomość właściwa, bity o numerach od 39 do 276, typ wiadomości określony wcześniej przez identyfikator; dla każdego typu ustalono maksymalne przedziały czasu, po upływie którego dana wiadomość powinna być emitowana ponownie, i tak w przypadku efemeryd satelity przedział ten wynosi 28 s, poprawki jonosferycznej, odchyłki czasu i parametrów UTC jest to 288 s, zredukowanego i pełnego almanachu QZSS odpowiednio 20 minut i 120 minut; wiadomość typu zero jest emitowana w razie awarii generatora depeszy; bity sprawdzające, o numerach od 277 do 300; w przypadku każdej ramki odbiornik użytkownika weryfikuje prawidłowość ich odbioru. DEPESZA CNAV, SYGNAŁ L5 Depesza CNAV transmitowana na sygnale L5 ma tę samą strukturę co depesza CNAV na częstotliwości L2 [5], [7], z jedną tylko, ale bardzo istotną różnicą. Emisja jednej, pełnej ramki trwa 6 s, gdyż prędkość transmisji danych na częstotliwości L5 wynosi 50 bit/s, czyli jest dwukrotnie większa niż na częstotliwości L2. Z tego też powodu skróceniu o połowę, w porównaniu z CNAV na L2, uległy maksymalne przedziały czasu, po upływie którego dana wiadomość powinna być emitowana ponownie [5]. DEPESZA CNAV 2, SYGNAŁ L1C Depesza CNAV 2, przesyłana na sygnale L1C, kolejna wersja depeszy z serii CNAV, będzie tożsama z depeszą o tej samej nazwie, która będzie emitowana przez satelity przyszłego bloku III systemu GPS również na sygnale L1C. Strukturę depeszy CNAV 2 systemu GPS szczegółowo opisano w [3] i [7]. W depeszy transmitowanej przez satelity QZSS w trzeciej podramce wśród 250 bitów danych można wyróżnić [5]: numer PRN satelity, bity o numerach od 1 do 8; typ strony, bity o numerach od 9 do 14; spośród 64 (26 = 64) możliwych typów strony obecnie jest wysyłanych 11 stron, o numerach od 1 do 7 ( dotyczą systemu QZSS) i od 17 do 20 (dotyczą systemu GPS); wiadomość właściwą, bity o numerach od 15 do 250; które strony i z jaką częstością są wysyłane jest ściśle określone, gdyż niektóre dane muszą być wysyłane nie rzadziej niż co ustaloną liczbę sekund czy też minut i tak na przykład poprawki jonosferyczne nie rzadziej niż co 288 sekund, zaś uproszczony almanach nie rzadziej niż co 20 minut. DEPESZA LEX, SYGNAŁ L6 Depesza LEX, stworzona z myślą o kompatybilności systemów QZSS i Galileo, jest transmitowana na częstotliwości L6, tożsamej z częstotliwością E6 systemu Galileo. Prędkość przesyłania danych jest kilkanaście, a w niektórych przypadkach nawet kilkadziesiąt, razy większa niż we wszystkich wymienionych depeszach, gdyż wynosi 2000 bit/s. Transmisja jednej pełnej ramki trwa tym samym jedną sekundę. Struktura depeszy jest znana od kilku lat [7]. O ile jednak jeszcze w 2012 roku spośród 256 typów wiadomości były zdefiniowane zaledwie trzy (10, 11 i 20), to obecnie znane jest już przeznaczenie wszystkich [5]: typ od 0 do 9; zapasowe (do użytku zewnętrznego), typ 10; zdrowie sygnału dla 35 satelitów (32 GPS i 3 QZSS IGSO), efemerydy i dane zegara dla trzech spośród nich; obecne zastosowanie w pomiarach agencji JAXA, typ 11; zdrowie sygnału dla 35 satelitów (32 GPS i 3 QZSS), efemerydy i dane zegara dla dwóch spośród nich, poprawki jonosferyczne; obecne zastosowanie w pomiarach agencji JAXA, typ 12; poprawki zegara oraz orbit, MADOCA-LEX (Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis), typ 13; MADOCA-LEX, typ od 14 do 19; zapasowe, typ od 20 do 155; do celów eksperymentalnych, typ od 156 do 250; do celów demonstracyjnych i eksperymentalnych w sektorze prywatnym. EKSPLOATACJA SYSTEMU Układem odniesienia systemu QZSS jest JGS (Japan Satellite Navigation Geodetic System), zaś elipsoidą odniesienia elipsoida GRS80 (duża półoś m, biegunowe spłaszczenie 1/298, ). Czas systemu QZSST (QZSS Time) jest związany z czasem TAI (Time Atomic International) przez czas systemu GPS (GPST), uwzględnia też tę samą co GPS liczbę sekund przestępnych. Docelowo odchyłka między czasami GPS i QZSS będzie przekazywana w depeszach nawigacyjnych obydwu tych systemów [1], [5]. Obecnie (luty 2016) system QZSS jest wykorzystywany przede wszystkim jako system wspomagający, pozycja użytkownika dysponującego odbiornikiem zintegrowanym QZSS + GPS, określona za pomocą systemu GPS korygowana jest poprawkami odbieranymi z satelity QZSS (Michibiki). Jednocześnie, dzięki wymienionym sygnałom i depeszom docierającym z tego satelity, liczba satelitów wykorzystywanych w procesie określania pozycji, a w praktyce liczba zmierzonych pseudoodległości, może zostać zwiększona. W każdym zintegrowanym (QZSS + NSS) odbiorniku użytkownika wysokość topocentryczna satelity QZSS, od którego odbierane są różnego rodzaju poprawki, powinna wynosić co najmniej 5 O. Ten sam warunek obowiązuje również w przypadku wykorzystywania podczas określania pozycji sygnałów docierających z satelitów NSS [5]. Wyniki pierwszych pomiarów przeprowadzonych w Japonii w aglomeracjach miejskich o wąskich ulicach i wysokiej zabudowie, z wykorzystaniem systemu GPS wspomaganego sygnałami L1 SAIF i LEX z satelity Michibiki, wykazały, że kiedy satelita ów znajduje się w apogeum lub jego pobliżu (przez około 8 godzin jest na wysokości topocentrycznej 70 O lub większej), prawdopodobieństwo określenia pozycji użytkownika wzrasta do niemal 100 %, a jej błąd znacząco maleje, zarówno w płaszczyźnie horyzontalnej, jak i pionowej, z około jednego i czterech metrów do kilkudziesięciu centymetrów [13], [17], [19]. Zapowiedź wprowadzenia na orbitę dwóch kolejnych satelitów IGSO oznacza, że użytkownicy japońscy będą mogli określać tak dokładną pozycję w sposób nieprzerwany. SERWISY SLAS I CLAS W serwisie SLAS (Sub-meter Level Augmentation Signal) wykorzystuje się sygnał L1 SAIF zawierający poprawki, uwzględniające między innymi błędy jonosfery, zegara satelity systemu GPS oraz jego efemeryd. Poprawki te wyliczane są na bieżąco przez znajdującą się w Tokio stację L1SMS (L1 SAIF Master Station) połączoną ze stacją główną systemu QZSS w Tsukubie. W obliczeniach brane są pod uwagę różnego rodzaju dane pozyskiwane z 14 zlokalizowanych na terenie Japonii stacji sieci GEONET (GPS Earth Observation Network System). Z tego też powodu zasięg SLAS ogranicza się jedynie do wysp japońskich. Dokładność pozycji horyzontalnej (95%) określonej za pomocą odbiornika systemu GPS i skorygowanej odpowiednimi poprawkami z satelity QZSS jest rzędu 1 m [13]. W serwisie CLAS (Centimeter Level Augmentation Signal) wykorzystuje się z kolei sygnał LEX, za pomocą którego w wiadomościach o numerach 10 i 11 w czasie rzeczywistym są przesyłane poprawki zegara oraz efemerydy satelitów systemu GPS. Umożliwia to określanie pozycji użytkownika z dokładnością rzędu centymetrów w płaszczyźnie horyzontalnej (95%), tzw. Precise Point Positioning (PPP) [19], [20]. 110 WIADOMOŚCI TELEKOMUNIKACYJNE ROCZNIK LXXXV nr 4/2016

6 PERSPEKTYWY WYKORZYSTANIA SYSTEMU Ze względu na fakt, że wyspy japońskie leżą na styku czterech płyt tektonicznych, kraj ten narażony jest na częste występowanie trzęsień Ziemi i innych katastrof naturalnych, takich jak na przykład tsunami. Dlatego też Japonia zdecydowała o zbadaniu możliwości szybkiego powiadamiania swych obywateli o nadchodzącym niebezpieczeństwie za pomocą własnego systemu satelitarnego. W tym celu powstanie nowy, oparty na QZSS, system o nazwie DC Report (Satellite Report for Disaster and Crisis Management). Jego głównym zadaniem będzie rozpowszechnianie wiadomości o zbliżającym się zagrożeniu za pomocą sprzężonych z systemem telefonów komórkowych oraz wszystkich odbiorników QZSS zainstalowanych w wybranych miejscach publicznych. Wiadomość ta będzie zawierała informację o rodzaju zagrożenia oraz wskazówki dotyczące przebiegu i miejsca ewakuacji. W przyszłości planowane jest także włączenie w system DC Report licznych portali, co zapewni zwiększenie dostępności rozsyłanych ostrzeżeń [12], [20]. Biorąc pod uwagę korzyści, jakie może przynieść system QZSS, w szczególności sygnały L1 SAIF i LEX, można stwierdzić, że system ten znajdzie szerokie zastosowanie w wielu dziedzinach gospodarki. I tak na przykład w przypadku transportu drogowego zakłada się, może zbyt optymistycznie, że każdy pojazd lądowy znajdujący się w Japonii w zasięgu systemu będzie wyposażony w jego odbiornik. Dzięki temu wymiana informacji o wzajemnym położeniu przemieszczających się pojazdów umożliwi automatyczne prowadzenie samochodu [20]. Sygnał LEX zapewni możliwość wykonywania różnego rodzaju prac związanych z geodezją czy też operowaniem maszynami budowlanymi z dokładnością do kilku centymetrów. Korzystanie z systemu będzie także możliwe za pośrednictwem telefonu komórkowego, wystarczy jedynie umieścić w nim odbiornik sygnałów L1 C/A i L1 SAIF, rozmiaru karty pamięci wewnętrznej. Dzięki użyciu kompatybilnych aplikacji użytkownik będzie mógł korzystać z nawigacji satelitarnej z dodatkowymi funkcjami. Aplikacje te umożliwią między innymi wyświetlanie opisu danego miejsca, na podstawie współrzędnych określonych za pośrednictwem satelitów, w tym QZSS [17], [22]. WNIOSKI Pełna zdolność operacyjna systemu QZSS, tzw. FOC (Full Operational Capability), zostanie ogłoszona w 2018 roku, gdy segment kosmiczny będzie liczył 4 satelity (3 IGSO, 1 GEO). Przewiduje się jednak, że liczba ta już w niedalekiej przyszłości będzie zwiększona do siedmiu. System QZSS jest pierwszym w historii systemem satelitarnym, w którym jeden z emitowanych sygnałów będzie w pełni kompatybilny z sygnałem o tej samej częstotliwości i nazwie innego systemu. Sygnałem takim jest i będzie sygnał L1C, zaś tym innym systemem GPS. System QZSS to pierwszy i jak dotychczas jedyny nawigacyjny system satelitarny, który kwalifikowany jest przez jednych jako przyszłościowy autonomiczny system regionalny (zasięg ograniczony do dalekowschodniej Azji i Australii), wykorzystywany do określania pozycji w wersji QZSS non SBAS, a przez innych, jako wspomagający (poprawki otrzymywane z satelitów systemu), wykorzystywany już obecnie w wersji QZSS SBAS. Dlatego też część użytkowników i publicystów (wśród nich również autor) traktuje ten system jako regionalny i jednocześnie wspomagający. System QZSS, dzięki swym nachylonym orbitom geosynchronicznym, jest dotychczas jedynym satelitarnym systemem wspomagającym, który umożliwi w przyszłości nieprzerwany odbiór sygnałów z satelitów również w rejonach o ograniczonej widzialności, w szczególności w wielkich aglomeracjach miejskich o wysokiej zabudowie, tzw. miejskich kanionach i rejonach górzystych. O ile w porównaniu ze wszystkimi NSS i SBAS, zarówno już funkcjonującymi, jak i dopiero planowanymi, liczba sygnałów i częstotliwości, na których są one emitowane przez satelity, jest w systemie QZSS praktycznie tego samego rzędu, to w przypadku depesz, których już sześć zostało zdefiniowanych, jest ona największa. Każda z czterech częstotliwości nośnych QZSS jest zgodna z częstotliwością co najmniej jednego NSS. System QZSS i budowany obecnie system BeiDou to, jak do tej pory, jedyne systemy satelitarne, w których znalazła zastosowanie orbita IGSO. Dotychczas bowiem segment kosmiczny tych systemów tworzyły wyłącznie satelity NSS okrążające Ziemię po średnich orbitach kołowych (MEO) oraz satelity SBAS na orbicie geostacjonarnej (GEO). LITERATURA [1] Hofmann-Wellenhof B. et al GNSS Global Navigation Satellite Systems GPS, GLONASS, Galileo & more. Wien NewYork: Springer. [2] Groves P.D Principles of GNSS Applications and Methods. Boston/London: Artech House. [3] IS-GPS-800D, Interface Specification, Revision D, Global Positioning Systems Directorate, USA, 2014 [4] IS-QZSS, Interface Specification, Draft V1.0, Japan Aerospace Exploration Agency, Japonia, 2008 [5] IS-QZSS, Interface Specification, Draft V1.6, Japan Aerospace Exploration Agency, Japonia, 2014 [6] Januszewski Jacek Depesza nawigacyjna systemów satelitarnych obecnie i w przyszłości. Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne. 82 (10). [7] Januszewski Jacek Nowe depesze nawigacyjne systemu satelitarnego GPS oraz budowanych systemów Galileo i QZSS. Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne. 85 (10) [8] Januszewski Jacek Perspektywy rozwoju nawigacyjnych i wspomagających systemów satelitarnych w bliskiej i dalszej przyszłości. Przegląd Telekomunikacyjny i Wiadomości Telekomunikacyjne. 87 (5). [9] Japan Aerospace Exploration Agency, QZSS Project Team: Current status of Quasi-Zenith Satellite System, 4 International Committee on GNSS, Saint-Petersburg, 2009 [10] Kishimoto M., S. Kogure Michibiki (QZSS-1) and Space Service Volume 7 International Committee on GNSS, Pekin. [11] Nomura E Japan s New Space Policy and the Importance of QZSS in the Policy. W Munich Satellite Navigation Summit. [12] Nomura E Project Overview of Quasi-Zenith Satellite System. W Munich Satellite Navigation Summit. [13] Sakai T Quasi-Zenith Satellite System L1-SAIF Augmentation Signal. W Munich Satellite Navigation Summit. [14] [15] [16] [17] [18] [19] [20] [21] [22] WIADOMOŚCI TELEKOMUNIKACYJNE ROCZNIK LXXXV nr 4/

Powierzchniowe systemy GNSS

Powierzchniowe systemy GNSS Systemy GNSS w pomiarach geodezyjnych 1/58 Powierzchniowe systemy GNSS Jarosław Bosy Instytut Geodezji i Geoinformatyki Uniwersytet Przyrodniczy we Wrocławiu e-mail: jaroslaw.bosy@up.wroc.pl Systemy GNSS

Bardziej szczegółowo

CHARAKTERYSTYKA SYSTEMU WSPOMAGANIA POZYCJONOWANIA QZSS-ZENITH

CHARAKTERYSTYKA SYSTEMU WSPOMAGANIA POZYCJONOWANIA QZSS-ZENITH 58 IAPGOŚ 4/2016 p-issn 2083-0157, e-issn 2391-6761 DOI: 10.5604/01.3001.0009.5191 CHARAKTERYSTYKA SYSTEMU WSPOMAGANIA POZYCJONOWANIA QZSS-ZENITH Kamil Krasuski 1,2 1 Zespół Technik Satelitarnych, Dęblin;

Bardziej szczegółowo

GNSS ROZWÓJ SATELITARNYCH METOD OBSERWACJI W GEODEZJI

GNSS ROZWÓJ SATELITARNYCH METOD OBSERWACJI W GEODEZJI GNSS ROZWÓJ SATELITARNYCH METOD OBSERWACJI W GEODEZJI Dr inż. Marcin Szołucha Historia nawigacji satelitarnej 1940 W USA rozpoczęto prace nad systemem nawigacji dalekiego zasięgu- LORAN (Long Range Navigation);

Bardziej szczegółowo

Globalny Nawigacyjny System Satelitarny GLONASS. dr inż. Paweł Zalewski

Globalny Nawigacyjny System Satelitarny GLONASS. dr inż. Paweł Zalewski Globalny Nawigacyjny System Satelitarny GLONASS dr inż. Paweł Zalewski Wprowadzenie System GLONASS (Global Navigation Satellite System lub Globalnaja Nawigacjonnaja Sputnikowaja Sistiema) został zaprojektowany

Bardziej szczegółowo

Systemy przyszłościowe. Global Navigation Satellite System Globalny System Nawigacji Satelitarnej

Systemy przyszłościowe. Global Navigation Satellite System Globalny System Nawigacji Satelitarnej Systemy przyszłościowe Global Navigation Satellite System Globalny System Nawigacji Satelitarnej 1 GNSS Dlaczego GNSS? Istniejące systemy satelitarne przeznaczone są do zastosowań wojskowych. Nie mają

Bardziej szczegółowo

GEOMATYKA program podstawowy. dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu

GEOMATYKA program podstawowy. dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu GEOMATYKA program podstawowy 2017 dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu W 1968 roku Departament Obrony USA podjął decyzję o połączeniu istniejących programów, w

Bardziej szczegółowo

GPS Global Positioning System budowa systemu

GPS Global Positioning System budowa systemu GPS Global Positioning System budowa systemu 1 Budowa systemu System GPS tworzą trzy segmenty: Kosmiczny konstelacja sztucznych satelitów Ziemi nadających informacje nawigacyjne, Kontrolny stacje nadzorujące

Bardziej szczegółowo

PROBLEMY EKSPLOATACYJNE NAWIGACYJNYCH SYSTEMÓW SATELITARNYCH, ICH KOMPATYBILNOŚĆ I MIĘDZYOPERACYJNOŚĆ

PROBLEMY EKSPLOATACYJNE NAWIGACYJNYCH SYSTEMÓW SATELITARNYCH, ICH KOMPATYBILNOŚĆ I MIĘDZYOPERACYJNOŚĆ PRACE WYDZIAŁU NAWIGACYJNEGO nr 22 AKADEMII MORSKIEJ W GDYNI 2008 JACEK JANUSZEWSKI Akademia Morska w Gdyni Katedra Nawigacji PROBLEMY EKSPLOATACYJNE NAWIGACYJNYCH SYSTEMÓW SATELITARNYCH, ICH KOMPATYBILNOŚĆ

Bardziej szczegółowo

przygtowała: Anna Stępniak, II rok DU Geoinformacji

przygtowała: Anna Stępniak, II rok DU Geoinformacji przygtowała: Anna Stępniak, II rok DU Geoinformacji system nawigacji składa się z satelitów umieszczonych na orbitach okołoziemskich, kontrolnych stacji naziemnych oraz odbiorników satelity wysyłają sygnał

Bardziej szczegółowo

Wykorzystanie systemu EGNOS w nawigacji lotniczej w aspekcie uruchomienia serwisu Safety-of-Life

Wykorzystanie systemu EGNOS w nawigacji lotniczej w aspekcie uruchomienia serwisu Safety-of-Life UNIWERSYTET WARMIŃSKO-MAZURSKI w Olsztynie Wydział Geodezji i Gospodarki Przestrzennej Katedra Geodezji Satelitarnej i Nawigacji Wyższa Szkoła Oficerska Sił Powietrznych w Dęblinie Wykorzystanie systemu

Bardziej szczegółowo

Nawigacja satelitarna

Nawigacja satelitarna Paweł Kułakowski Nawigacja satelitarna Nawigacja satelitarna Plan wykładu : 1. Zadania systemów nawigacyjnych. Zasady wyznaczania pozycji 3. System GPS Navstar - architektura - zasady działania - dokładność

Bardziej szczegółowo

Sieci Satelitarne. Tomasz Kaszuba 2013 kaszubat@pjwstk.edu.pl

Sieci Satelitarne. Tomasz Kaszuba 2013 kaszubat@pjwstk.edu.pl Sieci Satelitarne Tomasz Kaszuba 2013 kaszubat@pjwstk.edu.pl Elementy systemu Moduł naziemny terminale abonenckie (ruchome lub stacjonarne), stacje bazowe (szkieletowa sieć naziemna), stacje kontrolne.

Bardziej szczegółowo

Ultra szybkie pozycjonowanie GNSS z zastosowaniem systemów GPS, GALILEO, EGNOS i WAAS

Ultra szybkie pozycjonowanie GNSS z zastosowaniem systemów GPS, GALILEO, EGNOS i WAAS Ultra szybkie pozycjonowanie GNSS z zastosowaniem systemów GPS, GALILEO, EGNOS i WAAS Jacek Paziewski Paweł Wielgosz Katarzyna Stępniak Katedra Astronomii i Geodynamiki Uniwersytet Warmińsko Mazurski w

Bardziej szczegółowo

Nowe depesze nawigacyjne systemu satelitarnego gps oraz budowanych systemów Galileo i qzss

Nowe depesze nawigacyjne systemu satelitarnego gps oraz budowanych systemów Galileo i qzss CZASOPISMO STOWARZYSZENIA ELEKTRYKÓW POLSKICH ODZNACZONE ZŁOTĄ HONOROWĄ ODZNAKĄ SEP ORAZ DWUKROTNIE ODZNACZONE HONOROWĄ ZŁOTĄ ODZNAKĄ ZASŁUŻONEGO PRACOWNIKA ŁĄCZNOŚCI ROK LXXXI październik 2012 NR 10 Jacek

Bardziej szczegółowo

Patronat nad projektem objęły: ESA (Europejska Agencja Kosmiczna), Komisja Europejska (KE),

Patronat nad projektem objęły: ESA (Europejska Agencja Kosmiczna), Komisja Europejska (KE), Początki Dynamiczny rozwój systemów nawigacji satelitarnej i ich wykorzystania w bardzo wielu dziedzinach życia codziennego, przyczynił się do faktu, że także w Europie zaczęto myśleć nad stworzeniem własnego

Bardziej szczegółowo

1. Wstęp. 2. Budowa i zasada działania Łukasz Kowalewski

1. Wstęp. 2. Budowa i zasada działania Łukasz Kowalewski 01.06.2012 Łukasz Kowalewski 1. Wstęp GPS NAVSTAR (ang. Global Positioning System NAVigation Signal Timing And Ranging) Układ Nawigacji Satelitarnej Określania Czasu i Odległości. Zaprojektowany i stworzony

Bardziej szczegółowo

Milena Rykaczewska Systemy GNSS : stan obecny i perspektywy rozwoju. Acta Scientifica Academiae Ostroviensis nr 35-36,

Milena Rykaczewska Systemy GNSS : stan obecny i perspektywy rozwoju. Acta Scientifica Academiae Ostroviensis nr 35-36, Milena Rykaczewska Systemy GNSS : stan obecny i perspektywy rozwoju Acta Scientifica Academiae Ostroviensis nr 35-36, 191-199 2011 A c t a Sc ie n t if ic a A c a D e m ia e O s t r o y ie n s is 191 Milena

Bardziej szczegółowo

GLOBALNE SYSTEMY NAWIGACJI SATELITARNEJ

GLOBALNE SYSTEMY NAWIGACJI SATELITARNEJ GLOBALNE SYSTEMY NAWIGACJI SATELITARNEJ 27 Władysław Góral GLOBALNE SYSTEMY NAWIGACJI SATELITARNEJ Wprowadzenie W roku 2007 mija 50 lat od wprowadzenia na orbitę okołoziemską pierwszego sztucznego satelity.

Bardziej szczegółowo

Cospa Cos s pa - Sa - Sa a rs t

Cospa Cos s pa - Sa - Sa a rs t Od 1982 r. system centrów koordynacji ratownictwa Re Center (RCC), punktów kontaktowyc Rescue Points Of Contacts (SPOC) i koordynacji. satelity na orbitach geo tworzące system GEOSA przeszkody mogące

Bardziej szczegółowo

Wykorzystanie nowoczesnych technologii w zarządzaniu drogami wojewódzkimi na przykładzie systemu zarządzania opartego na technologii GPS-GPRS.

Wykorzystanie nowoczesnych technologii w zarządzaniu drogami wojewódzkimi na przykładzie systemu zarządzania opartego na technologii GPS-GPRS. Planowanie inwestycji drogowych w Małopolsce w latach 2007-2013 Wykorzystanie nowoczesnych technologii w zarządzaniu drogami wojewódzkimi na przykładzie systemu zarządzania opartego na technologii GPS-GPRS.

Bardziej szczegółowo

PODSTAWOWE DANE SYSTEMU GPS

PODSTAWOWE DANE SYSTEMU GPS NAWIGACJA GNSS NAWIGACJA GNSS GNSS Global Navigation Satellite System jest to PODSTAWOWY sensor nawigacji obszarowej. Pojęcie to obejmuje nie tylko GPS NAVSTAR (pierwszy w pełni funkcjonujący globalny

Bardziej szczegółowo

Przegląd metod zwiększania precyzji danych GPS. Mariusz Kacprzak

Przegląd metod zwiększania precyzji danych GPS. Mariusz Kacprzak Przegląd metod zwiększania precyzji danych GPS Mariusz Kacprzak Plan prezentacji: 1) Omówienie podstaw funkcjonowania GPS 2) Zasada wyznaczenie pozycji w GPS 3) Błędy wyznaczania pozycji 4) Sposoby korekcji

Bardziej szczegółowo

Podstawowe pojęcia związane z pomiarami satelitarnymi w systemie ASG-EUPOS

Podstawowe pojęcia związane z pomiarami satelitarnymi w systemie ASG-EUPOS GŁÓWNY URZĄD GEODEZJI I KARTOGRAFII Departament Geodezji, Kartografii i Systemów Informacji Geograficznej Podstawowe pojęcia związane z pomiarami satelitarnymi w systemie ASG-EUPOS Szymon Wajda główny

Bardziej szczegółowo

ZAŁOŻENIA I STAN AKTUALNY REALIZACJI

ZAŁOŻENIA I STAN AKTUALNY REALIZACJI ZAŁOŻENIA I STAN AKTUALNY REALIZACJI PROJEKTU ASG+ Figurski M., Bosy J., Krankowski A., Bogusz J., Kontny B., Wielgosz P. Realizacja grantu badawczo-rozwojowego własnego pt.: "Budowa modułów wspomagania

Bardziej szczegółowo

Systemy satelitarne wykorzystywane w nawigacji

Systemy satelitarne wykorzystywane w nawigacji Systemy satelitarne wykorzystywane w nawigacji Transit System TRANSIT był pierwszym systemem satelitarnym o zasięgu globalnym. Navy Navigation Satellite System NNSS, stworzony i rozwijany w latach 1958-1962

Bardziej szczegółowo

GEOMATYKA program podstawowy. dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu

GEOMATYKA program podstawowy. dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu GEOMATYKA program podstawowy 2017 dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu Wyznaczenie pozycji anteny odbiornika może odbywać się w dwojaki sposób: na zasadzie pomiarów

Bardziej szczegółowo

NAWIGACYJNE SYSTEMY SATELITARNE, STAN DZISIEJSZY I PERSPEKTYWY

NAWIGACYJNE SYSTEMY SATELITARNE, STAN DZISIEJSZY I PERSPEKTYWY PRACE WYDZIAŁU NAWIGACYJNEGO nr 21 AKADEMII MORSKIEJ W GDYNI 2008 JACEK JANUSZEWSKI Akademia Morska w Gdyni Katedra Nawigacji NAWIGACYJNE SYSTEMY SATELITARNE, STAN DZISIEJSZY I PERSPEKTYWY Streszczenie:

Bardziej szczegółowo

NAWIGACYJNY SYSTEM SATELITARNY GPS DZISIAJ I W PRZYSZŁOŚCI

NAWIGACYJNY SYSTEM SATELITARNY GPS DZISIAJ I W PRZYSZŁOŚCI JACEK JANUSZEWSKI Akademia Morska w Gdyni Katedra Nawigacji NAWIGACYJNY SYSTEM SATELITARNY GPS DZISIAJ I W PRZYSZŁOŚCI Pod koniec pierwszej dekady trzeciego tysiąclecia jedynym w pełni operacyjnym nawigacyjnym

Bardziej szczegółowo

Nawigacja satelitarna

Nawigacja satelitarna Nawigacja satelitarna Warszawa, 17 lutego 2015 Udział systemów nawigacji w wybranych działach gospodarki - aspekty bezpieczeństwa i ekonomiczne efekty Ewa Dyner Jelonkiewicz ewa.dyner@agtes.com.pl Tel.607459637

Bardziej szczegółowo

WIELOFUNKCYJNY SYSTEM PRECYZYJNEGO POZYCJONOWANIA SATELITARNEGO ASG-EUPOS

WIELOFUNKCYJNY SYSTEM PRECYZYJNEGO POZYCJONOWANIA SATELITARNEGO ASG-EUPOS GŁÓWNY URZĄD GEODEZJI I KARTOGRAFII DEPARTAMENT GEODEZJI KARTOGRAFII I SYSTEMÓW INFORMACJI GEOGRAFICZNEJ WIELOFUNKCYJNY SYSTEM PRECYZYJNEGO POZYCJONOWANIA SATELITARNEGO ASG-EUPOS SATELITARNE TECHNIKI POMIAROWE

Bardziej szczegółowo

SATELITARNE TECHNIKI POMIAROWE WYKŁAD 5

SATELITARNE TECHNIKI POMIAROWE WYKŁAD 5 SATELITARNE TECHNIKI POMIAROWE WYKŁAD 5 1 K. Czarnecki, Geodezja współczesna w zarysie, Wiedza i Życie/Gall, Warszawa 2000/Katowice 2010. 2 Obserwacje fazowe satelitów GPS są tym rodzajem pomiarów, który

Bardziej szczegółowo

GIS MOBILNY 3. Pozycjonowanie satelitarne

GIS MOBILNY 3. Pozycjonowanie satelitarne GIS MOBILNY 3. Pozycjonowanie satelitarne Dr inż. Jan Blachowski Politechnika Wrocławska Instytut Górnictwa Zakład Geodezji i GIS Pl. Teatralny 2 tel (71) 320 68 73 GIS MOBILNY WYKŁAD.3 - SYLLABUS Parametry

Bardziej szczegółowo

Geodezja i Kartografia I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Geodezja i Kartografia I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Systemy pozycjonowania i nawigacji Nazwa modułu w języku angielskim Navigation

Bardziej szczegółowo

GEOMATYKA program rozszerzony

GEOMATYKA program rozszerzony GEOMATYKA program rozszerzony 2015-2016 dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu 1. Układ wysokości tworzą wartości geopotencjalne podzielone przez przeciętne wartości

Bardziej szczegółowo

OPRACOWANIE DANYCH GPS CZĘŚĆ I WPROWADZENIE DO GPS

OPRACOWANIE DANYCH GPS CZĘŚĆ I WPROWADZENIE DO GPS OPRACOWANIE DANYCH GPS CZĘŚĆ I WPROWADZENIE DO GPS Bernard Kontny Katedra Geodezji i Fotogrametrii Akademia Rolnicza we Wrocławiu ZAGADNIENIA Ogólny opis systemu GPS Struktura sygnału Pomiar kodowy i fazowy

Bardziej szczegółowo

roku system nawigacji satelitarnej TRANSIT. System ten wykorzystywano

roku system nawigacji satelitarnej TRANSIT. System ten wykorzystywano System nawigacji K U R S satelitarnej GPS, część 1 Od historii do przyszłości Wiele osób zajmujących się amatorsko, a nieraz i profesjonalnie elektroniką nie zdaje sobie w pełni sprawy z ogromnego postępu,

Bardziej szczegółowo

Aplikacje Systemów. 1. System zarządzania flotą pojazdów 2. Nawigacja samochodowa GPS. Gdańsk, 2015

Aplikacje Systemów. 1. System zarządzania flotą pojazdów 2. Nawigacja samochodowa GPS. Gdańsk, 2015 Aplikacje Systemów Wbudowanych 1. System zarządzania flotą pojazdów 2. Nawigacja samochodowa GPS Gdańsk, 2015 Schemat systemu SpyBox Komponenty systemu SpyBox Urządzenie do lokalizacji pojazdów Odbiornik

Bardziej szczegółowo

Aplikacje Systemów. System zarządzania flotą pojazdów Nawigacja samochodowa GPS. Gdańsk, 2016

Aplikacje Systemów. System zarządzania flotą pojazdów Nawigacja samochodowa GPS. Gdańsk, 2016 Aplikacje Systemów Wbudowanych System zarządzania flotą pojazdów Nawigacja samochodowa GPS Gdańsk, 2016 Schemat systemu SpyBox 2 Komponenty systemu SpyBox Urządzenie do lokalizacji pojazdów Odbiornik sygnału

Bardziej szczegółowo

System nawigacji satelitarnej Galileo oferta biznesowa

System nawigacji satelitarnej Galileo oferta biznesowa System nawigacji satelitarnej Galileo oferta biznesowa Forum Satelitarne Marta Krywanis-Brzostowska European GNSS Agency Europejska Agencja GNSS (GSA) MISJA: wspomaganie UE w uzyskaniu możliwie wysokiego

Bardziej szczegółowo

Rozwój satelitarnych metod obserwacji w geodezji

Rozwój satelitarnych metod obserwacji w geodezji Szkolenie nt. Wykorzystanie systemu wspomagania pomiarów satelitarnych i nawigacji ASG-EUPOS, Wrocław 7 października 2014 Rozwój satelitarnych metod obserwacji w geodezji dr inż. Jan Kapłon Instytut Geodezji

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE. Instytut Inżynierii Ruchu Morskiego Zakład Urządzeń Nawigacyjnych. Ćwiczenie nr 3

AKADEMIA MORSKA W SZCZECINIE. Instytut Inżynierii Ruchu Morskiego Zakład Urządzeń Nawigacyjnych. Ćwiczenie nr 3 AKADEMIA MORSKA W SZCZECINIE Instytut Inżynierii Ruchu Morskiego Zakład Urządzeń Nawigacyjnych Ćwiczenie nr 3 Kontrola poprawności pracy odbiorników systemów nawigacyjnych Opracował: Zatwierdził: Obowiązuje

Bardziej szczegółowo

Systemy Telekomunikacji Satelitarnej

Systemy Telekomunikacji Satelitarnej Systemy Telekomunikacji Satelitarnej część 1: Podstawy transmisji satelitarnej mgr inż. Krzysztof Włostowski Instytut Telekomunikacji PW chrisk@tele.pw.edu.pl Systemy telekomunikacji satelitarnej literatura

Bardziej szczegółowo

Rozwój systemów GNSS

Rozwój systemów GNSS Uniwersytet Warmińsko-Mazurski w Olsztynie Wydział Geodezji i Gospodarki Przestrzennej Rozwój systemów GNSS dr inż. hab. Paweł Wielgosz, prof. UWM Wykorzystanie systemu wspomagania pomiarów satelitarnych

Bardziej szczegółowo

Narzędzia wspierające system EGNOS Paweł Seliga

Narzędzia wspierające system EGNOS Paweł Seliga Narzędzia wspierające system EGNOS Paweł Seliga 17 luty 2015 2 EGNOS Miasto, dnia 3 EGNOS - European Geostationary Navigation Overlay System Europejski system satelitarny wspomagający działanie systemów

Bardziej szczegółowo

Wykorzystanie satelitarnego systemu Galileo oraz innych systemów nawigacyjnych w badaniach geodezyjnych i geofizycznych

Wykorzystanie satelitarnego systemu Galileo oraz innych systemów nawigacyjnych w badaniach geodezyjnych i geofizycznych Wykorzystanie satelitarnego systemu Galileo oraz innych systemów nawigacyjnych w badaniach geodezyjnych i geofizycznych Krzysztof Sośnica, Grzegorz Bury, Radosław Zajdel, Tomasz Hadaś, Kamil Kaźmierski,

Bardziej szczegółowo

Techniki różnicowe o podwyższonej dokładności pomiarów

Techniki różnicowe o podwyższonej dokładności pomiarów Techniki różnicowe o podwyższonej dokładności pomiarów Adam Ciećko, Bartłomiej Oszczak adam.ciecko@uwm.edu.pl bartek@uw.pl Zastosowanie nowoczesnych satelitarnych metod pozycjonowania i nawigacji w rolnictwie

Bardziej szczegółowo

Systemy odniesienia pozycji w odbiornikach nawigacyjnych. dr inż. Paweł Zalewski

Systemy odniesienia pozycji w odbiornikach nawigacyjnych. dr inż. Paweł Zalewski Systemy odniesienia pozycji w odbiornikach nawigacyjnych dr inż. Paweł Zalewski Wprowadzenie Terestryczne systemy odniesienia (terrestrial reference systems) lub systemy współrzędnych (coordinate systems)

Bardziej szczegółowo

Przyswojenie wiedzy na temat serwisów systemu GPS i charakterystyk z nimi związanych

Przyswojenie wiedzy na temat serwisów systemu GPS i charakterystyk z nimi związanych C C2 C C C5 C6 C7 C8 C9 C0 C C2 C C C5 C6 C7 C8 C9 I. KARTA PRZEDMIOTU. Nazwa przedmiotu: SATELITARNE SYSTEMY NAWIGACYJNE 2. Kod przedmiotu: Vd. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego.

Bardziej szczegółowo

GEOMATYKA program rozszerzony. dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu

GEOMATYKA program rozszerzony. dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu GEOMATYKA program rozszerzony 2017 dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu SPUTNIK 1 (4 października 1957, ZSRR) pierwszy sztuczny satelita. MINITRACK (1958, NAVSPASUR

Bardziej szczegółowo

PORÓWNANIE PARAMETRÓW RUCHU PŁYT TEKTONICZNYCH WYZNACZONYCH NA PODSTAWIE STACJI WYKONUJĄCYCH POMIARY TECHNIKĄ LASEROWĄ I TECHNIKĄ DORIS

PORÓWNANIE PARAMETRÓW RUCHU PŁYT TEKTONICZNYCH WYZNACZONYCH NA PODSTAWIE STACJI WYKONUJĄCYCH POMIARY TECHNIKĄ LASEROWĄ I TECHNIKĄ DORIS PORÓWNANIE PARAMETRÓW RUCHU PŁYT TEKTONICZNYCH WYZNACZONYCH NA PODSTAWIE STACJI WYKONUJĄCYCH POMIARY TECHNIKĄ LASEROWĄ I TECHNIKĄ DORIS Katarzyna Kraszewska, Marcin Jagoda, Miłosława Rutkowska STRESZCZENIE

Bardziej szczegółowo

Satelity użytkowe KOSMONAUTYKA

Satelity użytkowe KOSMONAUTYKA Satelity użytkowe KOSMONAUTYKA Wykład nr. 14 Wykład jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego SATELITY METEOROLOGICZNE Satelita meteorologiczny jest sztucznym

Bardziej szczegółowo

System informacji przestrzennej w Komendzie Miejskiej w Gdańsku. Rysunek 1. Centrum monitoringu w Komendzie Miejskiej Policji w Gdańsku.

System informacji przestrzennej w Komendzie Miejskiej w Gdańsku. Rysunek 1. Centrum monitoringu w Komendzie Miejskiej Policji w Gdańsku. System informacji przestrzennej w Komendzie Miejskiej w Gdańsku. W Gdańsku tworzony jest obecnie miejski System Informacji Przestrzennej, który będzie stanowił podstawę m.in. Systemu Ratownictwa Miejskiego

Bardziej szczegółowo

Obszar badawczy i zadania geodezji satelitarnej

Obszar badawczy i zadania geodezji satelitarnej Obszar badawczy i zadania geodezji satelitarnej [na podstawie Seeber G., Satellite Geodesy ] dr inż. Paweł Zalewski Akademia Morska w Szczecinie cirm.am.szczecin.pl Literatura: 1. Januszewski J., Systemy

Bardziej szczegółowo

Kartografia - wykład

Kartografia - wykład prof. dr hab. inż. Jacek Matyszkiewicz KATEDRA ANALIZ ŚRODOWISKOWYCH, KARTOGRAFII I GEOLOGII GOSPODARCZEJ Kartografia - wykład Systemy nawigacji satelitarnej i ich wykorzystanie w kartografii Systemy nawigacji

Bardziej szczegółowo

Czy da się zastosować teorię względności do celów praktycznych?

Czy da się zastosować teorię względności do celów praktycznych? Czy da się zastosować teorię względności do celów praktycznych? Witold Chmielowiec Centrum Fizyki Teoretycznej PAN IX Festiwal Nauki 24 września 2005 Mapa Ogólna Teoria Względności Szczególna Teoria Względności

Bardziej szczegółowo

4π 2 M = E e sin E G neu = sin z. i cos A i sin z i sin A i cos z i 1

4π 2 M = E e sin E G neu = sin z. i cos A i sin z i sin A i cos z i 1 1 Z jaką prędkością porusza się satelita na orbicie geostacjonarnej? 2 Wiedząc, że doba gwiazdowa na planecie X (stała grawitacyjna µ = 500 000 km 3 /s 2 ) trwa 24 godziny, oblicz promień orbity satelity

Bardziej szczegółowo

System nawigacji satelitarnej GPS, część 2 Budowa systemu i struktura sygnałów

System nawigacji satelitarnej GPS, część 2 Budowa systemu i struktura sygnałów System nawigacji satelitarnej GPS, część 2 Budowa systemu i struktura sygnałów Osoby, które choćby przez chwilę korzystały z typowego nawigacyjnego odbiornika GPS wiedzą, że posługiwanie się nim jest bardzo

Bardziej szczegółowo

Sieciowe Pozycjonowanie RTK używając Virtual Reference Stations (VRS)

Sieciowe Pozycjonowanie RTK używając Virtual Reference Stations (VRS) Sieciowe Pozycjonowanie RTK używając Virtual Reference Stations (VRS) Mgr inż. Robert Dudek GEOTRONICS KRAKÓW GSI Japan - 21st of June 1999 Wprowadzenie u Dlaczego Sieci stacji referencyjnych GPS? u Pomysł

Bardziej szczegółowo

kpt. Mirosław Matusik Brzeźnica, dnia 24.02.2012 roku

kpt. Mirosław Matusik Brzeźnica, dnia 24.02.2012 roku kpt. Mirosław Matusik Brzeźnica, dnia 24.02.2012 roku GPS Global Positioning System System Globalnej Lokalizacji Satelitarnej System GPS zrewolucjonizował nawigację lądową, morską, lotniczą a nawet kosmiczną.

Bardziej szczegółowo

Analiza dokładności pozycjonowania statku powietrznego na podstawie obserwacji GLONASS

Analiza dokładności pozycjonowania statku powietrznego na podstawie obserwacji GLONASS PROBLEMY MECHATRONIKI UZBROJENIE, LOTNICTWO, INŻYNIERIA BEZPIECZEŃSTWA ISSN 2081-5891 5, 4 (18), 2014, 33-44 Analiza dokładności pozycjonowania statku powietrznego na podstawie obserwacji GLONASS Kamil

Bardziej szczegółowo

SATELITARNE SYSTEMY NAWIGACJI

SATELITARNE SYSTEMY NAWIGACJI SATELITARNE SYSTEMY NAWIGACJI GNSS Global Navigation Satellite Systems Wiadomości ogólne Piotr MIELNIK 22.02.1978 wystrzelono pierwszego satelitę systemu NAVSTAR GPS Nikt wówczas w wczas nie przewidywał,,

Bardziej szczegółowo

Satelitarny system nawigacyjny Galileo, przeznaczenie, struktura i perspektywy realizacji.

Satelitarny system nawigacyjny Galileo, przeznaczenie, struktura i perspektywy realizacji. Satelitarny system nawigacyjny Galileo, przeznaczenie, struktura i perspektywy realizacji. Cezary Specht Instytut Nawigacji i Hydrografii Morskiej Akademia Marynarki Wojennej w CSpecht@amw.gdynia.pl Satelitarny

Bardziej szczegółowo

AKTUALNY STAN REALIZACJI PROJEKTU ASG+

AKTUALNY STAN REALIZACJI PROJEKTU ASG+ AKTUALNY STAN REALIZACJI PROJEKTU ASG+ Figurski Mariusz Centrum Geomatyki Stosowanej WAT Wydział Inżynierii Lądowej i Geodezji WAT Realizacja grantu badawczo-rozwojowego własnego pt.: "Budowa modułów wspomagania

Bardziej szczegółowo

Za szczególne zaangażowanie i wkład w opracowanie raportu autorzy dziękują:

Za szczególne zaangażowanie i wkład w opracowanie raportu autorzy dziękują: Foresight Przyszłość technik satelitarnych w Polsce to realizowany przez Polskie Biuro ds. Przestrzeni Kosmicznej projekt, którego celem jest ocena perspektyw i korzyści z wykorzystania technik satelitarnych

Bardziej szczegółowo

Naziemne systemy nawigacyjne. Wykorzystywane w nawigacji

Naziemne systemy nawigacyjne. Wykorzystywane w nawigacji Naziemne systemy nawigacyjne Wykorzystywane w nawigacji Systemy wykorzystujące radionamiary (CONSOL) Stacja systemu Consol składała się z trzech masztów antenowych umieszczonych w jednej linii w odległości

Bardziej szczegółowo

Moduły ultraszybkiego pozycjonowania GNSS

Moduły ultraszybkiego pozycjonowania GNSS BUDOWA MODUŁÓW WSPOMAGANIA SERWISÓW CZASU RZECZYWISTEGO SYSTEMU ASG-EUPOS Projekt rozwojowy MNiSW nr NR09-0010-10/2010 Moduły ultraszybkiego pozycjonowania GNSS Paweł Wielgosz Jacek Paziewski Katarzyna

Bardziej szczegółowo

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) (96) Data i numer zgłoszenia patentu europejskiego:

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) (96) Data i numer zgłoszenia patentu europejskiego: PL/EP 1887379 T3 RZECZPOSPOLITA POLSKA (12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 1887379 Urząd Patentowy Rzeczypospolitej Polskiej (96) Data i numer zgłoszenia patentu europejskiego: 04.07.2007

Bardziej szczegółowo

ANALIZA SZEREGÓW CZASOWYCH OBSERWACJI SATELITARNYCH WYKONYWANYCH Z WYKORZYSTANIEM SERWISU EGNOS

ANALIZA SZEREGÓW CZASOWYCH OBSERWACJI SATELITARNYCH WYKONYWANYCH Z WYKORZYSTANIEM SERWISU EGNOS INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH INFRASTRUCTURE AND ECOLOGY OF RURAL AREAS Analiza szeregów czasowych... Nr 3/20, POLSKA AKADEMIA NAUK, Oddział w Krakowie, s. 25 258 Komisja Technicznej Infrastruktury

Bardziej szczegółowo

WYBRANE PRZYKŁADY ZASTOSOWAŃ SYSTEMU NAWIGACJI GPS SELECTED APPLICATION OF GPS NAVIGATION SYSTEM

WYBRANE PRZYKŁADY ZASTOSOWAŃ SYSTEMU NAWIGACJI GPS SELECTED APPLICATION OF GPS NAVIGATION SYSTEM KONRAD NERING WYBRANE PRZYKŁADY ZASTOSOWAŃ SYSTEMU NAWIGACJI GPS SELECTED APPLICATION OF GPS NAVIGATION SYSTEM Streszczenie Abstract System nawigacji satelitarnej GPS staje się coraz bardziej powszechny.

Bardziej szczegółowo

Janusz Śledziński. Technologie pomiarów GPS

Janusz Śledziński. Technologie pomiarów GPS Janusz Śledziński Technologie pomiarów GPS GPS jest globalnym wojskowym systemem satelitarnym, a jego głównym użytkownikiem są siły zbrojne USA. Udostępniono go również cywilom, ale z pewnymi dość istotnymi

Bardziej szczegółowo

(c) KSIS Politechnika Poznanska

(c) KSIS Politechnika Poznanska Wykład 5 Lokalizacja satelitarna 1 1 Katedra Sterowania i Inżynierii Systemów, Politechnika Poznańska 6 listopada 2011 Satelitarny system pozycjonowania wprowadzenie Charakterystyka systemu GPS NAVSTAR

Bardziej szczegółowo

Zagadnienia: stotliwości. Sygnały y na E5. - Modulacje sygnałów w i ich charakterystyka. - Budowa depeszy nawigacyjnej

Zagadnienia: stotliwości. Sygnały y na E5. - Modulacje sygnałów w i ich charakterystyka. - Budowa depeszy nawigacyjnej Zagadnienia: Założone one częstotliwo stotliwości Przegląd d sygnałów w systemu Sygnały y na L1 Sygnały y na E6 Sygnały y na E5 - Modulacje sygnałów w i ich charakterystyka - Budowa depeszy nawigacyjnej

Bardziej szczegółowo

Wyposażenie Samolotu

Wyposażenie Samolotu P O L I T E C H N I K A R Z E S Z O W S K A im. Ignacego Łukasiewicza Wydział Budowy Maszyn i Lotnictwa Katedra Awioniki i Sterowania Wyposażenie Samolotu Instrukcja do laboratorium nr 3 Lotniczy odbiornik

Bardziej szczegółowo

Pomiary statyczne GNSS i serwisy postprocessingu: POZGEO, POZGEO D i POZGEO DF

Pomiary statyczne GNSS i serwisy postprocessingu: POZGEO, POZGEO D i POZGEO DF GŁÓWNY URZĄD GEODEZJI I KARTOGRAFII Departament Geodezji, Kartografii i Systemów Informacji Geograficznej Pomiary statyczne GNSS i serwisy postprocessingu: POZGEO, POZGEO D i POZGEO DF Marcin Ryczywolski

Bardziej szczegółowo

Typowe konfiguracje odbiorników geodezyjnych GPS. dr hab. inż. Paweł Zalewski Akademia Morska w Szczecinie

Typowe konfiguracje odbiorników geodezyjnych GPS. dr hab. inż. Paweł Zalewski Akademia Morska w Szczecinie Typowe konfiguracje odbiorników geodezyjnych GPS dr hab. inż. Paweł Zalewski Akademia Morska w Szczecinie 1) RTK (Real Time Kinematics) Wymaga dwóch pracujących jednocześnie odbiorników oraz łącza radiowego

Bardziej szczegółowo

Nie tylko GPS. Nie tylko GPS. Wydział Fizyki i Astronomii Uniwersytetu Zielonogórskiego. WFiA UZ 1 / 34

Nie tylko GPS. Nie tylko GPS. Wydział Fizyki i Astronomii Uniwersytetu Zielonogórskiego. WFiA UZ 1 / 34 Nie tylko GPS Wydział Fizyki i Astronomii Uniwersytetu Zielonogórskiego WFiA UZ 1 / 34 Satelity Satelitą nazywamy ciało niebieskie krążące wokół planety (np. Ziemi) o masie o wiele mniejszej od masy planety.

Bardziej szczegółowo

ASG-EUPOS wielofunkcyjny system precyzyjnego pozycjonowania i nawigacji w Polsce

ASG-EUPOS wielofunkcyjny system precyzyjnego pozycjonowania i nawigacji w Polsce ASG-EUPOS wielofunkcyjny system precyzyjnego pozycjonowania i nawigacji w Polsce Jarosław Bosy, Marcin Leończyk Główny Urząd Geodezji i Kartografii 1 Projekt współfinansowany przez Unię Europejską Europejski

Bardziej szczegółowo

Praktyczne aspekty zastosowania telekomunikacji satelitarnej przez administrację publiczną

Praktyczne aspekty zastosowania telekomunikacji satelitarnej przez administrację publiczną Praktyczne aspekty zastosowania telekomunikacji satelitarnej przez administrację publiczną H e r t z S y s t e m s Lt d Sp. z o. o. A l. Z j e d n o c z e n i a 1 1 8 A 65-1 2 0 Z i e l o n a G ó r a Te

Bardziej szczegółowo

Sensory i systemy pomiarowe Prezentacja Projektu SYNERIFT. Michał Stempkowski Tomasz Tworek AiR semestr letni 2013-2014

Sensory i systemy pomiarowe Prezentacja Projektu SYNERIFT. Michał Stempkowski Tomasz Tworek AiR semestr letni 2013-2014 Sensory i systemy pomiarowe Prezentacja Projektu SYNERIFT Michał Stempkowski Tomasz Tworek AiR semestr letni 2013-2014 SYNERIFT Tylne koła napędzane silnikiem spalinowym (2T typu pocket bike ) Przednie

Bardziej szczegółowo

Patrycja Kryj Ogólne zasady funkcjonowania Globalnego Systemu Pozycyjnego GPS. Acta Scientifica Academiae Ostroviensis nr 30, 19-32

Patrycja Kryj Ogólne zasady funkcjonowania Globalnego Systemu Pozycyjnego GPS. Acta Scientifica Academiae Ostroviensis nr 30, 19-32 Patrycja Kryj Ogólne zasady funkcjonowania Globalnego Systemu Pozycyjnego GPS Acta Scientifica Academiae Ostroviensis nr 30, 19-32 2008 Ogólne Zasady Funkcjonowania Globalnego Systemu Pozycyjnego GPS 19

Bardziej szczegółowo

ANALIZA DOKŁADNOŚCI WYZNACZENIA POZYCJI PRZEZ WYBRANE ODBIORNIKI GPS W FUNKCJI LICZBY ŚLEDZONYCH SATELITÓW

ANALIZA DOKŁADNOŚCI WYZNACZENIA POZYCJI PRZEZ WYBRANE ODBIORNIKI GPS W FUNKCJI LICZBY ŚLEDZONYCH SATELITÓW Andrzej Miszkiewicz Wydział Transportu Politechniki Warszawskiej ANALIZA DOKŁADNOŚCI WYZNACZENIA POZYCJI PRZEZ WYBRANE ODBIORNIKI GPS W FUNKCJI LICZBY ŚLEDZONYCH SATELITÓW Streszczenie: W referacie przedstawiono

Bardziej szczegółowo

Obszar badawczy i zadania geodezji satelitarnej. dr hab. inż. Paweł Zalewski, prof. AM Centrum Inżynierii Ruchu Morskiego

Obszar badawczy i zadania geodezji satelitarnej. dr hab. inż. Paweł Zalewski, prof. AM Centrum Inżynierii Ruchu Morskiego Obszar badawczy i zadania geodezji satelitarnej dr hab. inż. Paweł Zalewski, prof. AM Centrum Inżynierii Ruchu Morskiego http://cirm.am.szczecin.pl Literatura: 1. Curtis H. : Orbital Mechanics for Engineering

Bardziej szczegółowo

PRZYKŁADY ZASTOSOWAŃ TECHNOLOGII GNSS W INŻYNIERII LĄDOWEJ

PRZYKŁADY ZASTOSOWAŃ TECHNOLOGII GNSS W INŻYNIERII LĄDOWEJ ARCHIWUM INSTYTUTU INŻ YNIERII LĄ DOWEJ Nr 20 ARCHIVES OF INSTITUTE OF CIVIL ENGINEERING 2015 PRZYKŁADY ZASTOSOWAŃ TECHNOLOGII GNSS W INŻYNIERII LĄDOWEJ Katarzyna CZARNECKA Politechnika Poznańska, Instytut

Bardziej szczegółowo

Wykorzystanie systemów satelitarnych w bezpiecznej nawigacji powietrznej

Wykorzystanie systemów satelitarnych w bezpiecznej nawigacji powietrznej CIEĆKO Adam 1,2 GRZEGORZEWSKI Marek 2 ĆWIKLAK Janusz 2 OSZCZAK Stanisław 2 GRUNWALD Grzegorz 1 BABER Krzysztof 2 Wykorzystanie systemów satelitarnych w bezpiecznej nawigacji powietrznej WSTĘP Nawigacja

Bardziej szczegółowo

Pomiary różnicowe GNSS i serwisy czasu rzeczywistego: NAWGEO, KODGIS, NAWGIS

Pomiary różnicowe GNSS i serwisy czasu rzeczywistego: NAWGEO, KODGIS, NAWGIS Pomiary różnicowe GNSS i serwisy czasu rzeczywistego: NAWGEO, KODGIS, NAWGIS Artur Oruba specjalista administrator systemu ASG-EUPOS Plan prezentacji Techniki DGNSS/ RTK/RTN Przygotowanie do pomiarów Specyfikacja

Bardziej szczegółowo

Wybrane zagadnienia z urządzania lasu moduł: GEOMATYKA

Wybrane zagadnienia z urządzania lasu moduł: GEOMATYKA Wybrane zagadnienia z urządzania lasu moduł: GEOMATYKA 2014-2015 dr inż. Paweł Strzeliński Katedra Urządzania Lasu Wydział Leśny UP w Poznaniu Katedra Urządzania Lasu Kolegium Cieszkowskich, parter, p.

Bardziej szczegółowo

Dwa podstawowe układy współrzędnych: prostokątny i sferyczny

Dwa podstawowe układy współrzędnych: prostokątny i sferyczny Lokalizacja ++ Dwa podstawowe układy współrzędnych: prostokątny i sferyczny r promień wodzący geocentrycznych współrzędnych prostokątnych //pl.wikipedia.org/ system geograficzny i matematyczny (w geograficznym

Bardziej szczegółowo

Pomiary różnicowe GNSS i serwisy czasu rzeczywistego: NAWGEO, KODGIS, NAWGIS. Artur Oruba specjalista administrator systemu ASG-EUPOS

Pomiary różnicowe GNSS i serwisy czasu rzeczywistego: NAWGEO, KODGIS, NAWGIS. Artur Oruba specjalista administrator systemu ASG-EUPOS Pomiary różnicowe GNSS i serwisy czasu rzeczywistego: NAWGEO, KODGIS, NAWGIS Artur Oruba specjalista administrator systemu ASG-EUPOS Plan prezentacji Techniki DGNSS/ RTK/RTN Przygotowanie do pomiarów Specyfikacja

Bardziej szczegółowo

TREŚĆ PYTAŃ Z WYJAŚNIENIAMI

TREŚĆ PYTAŃ Z WYJAŚNIENIAMI PS/1/08/2017 Katowice, dnia 16 sierpnia 2017r. TREŚĆ PYTAŃ Z WYJAŚNIENIAMI Dotyczy: postępowania o udzielenie zamówienia w trybie zapytania ofertowego na podstawie 64 Regulaminu Udzielania Zamówień przez

Bardziej szczegółowo

Pomiary statyczne GNSS i serwisy postprocessingu: POZGEO, POZGEO D i POZGEO DF

Pomiary statyczne GNSS i serwisy postprocessingu: POZGEO, POZGEO D i POZGEO DF GŁÓWNY URZĄD GEODEZJI I KARTOGRAFII Departament Geodezji, Kartografii i Systemów Informacji Geograficznej Pomiary statyczne GNSS i serwisy postprocessingu: POZGEO, POZGEO D i POZGEO DF Szymon Wajda główny

Bardziej szczegółowo

GPS BUDOWA I ZASTOSOWANIE SYSTEMU NAWIGACJI SATELITARNEJ

GPS BUDOWA I ZASTOSOWANIE SYSTEMU NAWIGACJI SATELITARNEJ POLITECHNIKA RZESZOWSKA im. Ignacego Łukasiewicza Wydział Budowy Maszyn i Lotnictwa Katedra Awioniki i Sterowania GPS BUDOWA I ZASTOSOWANIE SYSTEMU NAWIGACJI SATELITARNEJ Mikołaj KSIĘŻAK Seminarium Dyplomowe

Bardziej szczegółowo

Analiza współrzędnych środka mas Ziemi wyznaczanych technikami GNSS, SLR i DORIS oraz wpływ zmian tych współrzędnych na zmiany poziomu oceanu

Analiza współrzędnych środka mas Ziemi wyznaczanych technikami GNSS, SLR i DORIS oraz wpływ zmian tych współrzędnych na zmiany poziomu oceanu Analiza współrzędnych środka mas Ziemi wyznaczanych technikami GNSS, SLR i DORIS oraz wpływ zmian tych współrzędnych na zmiany poziomu oceanu Agnieszka Wnęk 1, Maria Zbylut 1, Wiesław Kosek 1,2 1 Wydział

Bardziej szczegółowo

Znaczenie telekomunikacji we współdziałaniu z systemami nawigacyjnymi. Ewa Dyner Jelonkiewicz. ewa.dyner@agtes.com.pl Tel.

Znaczenie telekomunikacji we współdziałaniu z systemami nawigacyjnymi. Ewa Dyner Jelonkiewicz. ewa.dyner@agtes.com.pl Tel. TELEKOMUNIKACJA SATELITARNA-GOSPODARCZE I STRATEGICZNE KORZYŚCI DLA ADMINISTRACJI PUBLICZNEJ Warszawa, 12 grudnia 2014 Znaczenie telekomunikacji we współdziałaniu z systemami nawigacyjnymi Ewa Dyner Jelonkiewicz

Bardziej szczegółowo

Istnieje wiele sposobów przedstawiania obrazów Ziemi lub jej fragmentów, należą do nich plany, mapy oraz globusy.

Istnieje wiele sposobów przedstawiania obrazów Ziemi lub jej fragmentów, należą do nich plany, mapy oraz globusy. Współrzędne geograficzne Istnieje wiele sposobów przedstawiania obrazów Ziemi lub jej fragmentów, należą do nich plany, mapy oraz globusy. Najbardziej wiernym modelem Ziemi ukazującym ją w bardzo dużym

Bardziej szczegółowo

Budowa infrastruktury użytkowej systemu pozycjonowania satelitarnego w województwie mazowieckim

Budowa infrastruktury użytkowej systemu pozycjonowania satelitarnego w województwie mazowieckim Budowa infrastruktury użytkowej systemu pozycjonowania satelitarnego w województwie mazowieckim Paweł Tabęcki Biuro Geodety Województwa Mazowieckiego Dział Katastralnej Bazy Danych sierpień 2006 Plan prezentacji

Bardziej szczegółowo

DO CELU PROWADZI TRAFFIC TOMTOM NAJSZYBCIEJ TOMTOM TRAFFIC PROWADZI DO CELU SZYBCIEJ

DO CELU PROWADZI TRAFFIC TOMTOM NAJSZYBCIEJ TOMTOM TRAFFIC PROWADZI DO CELU SZYBCIEJ TOMTOM TRAFFIC PROWADZI DO CELU SZYBCIEJ TomTom to wiodący dostawca usług informujących o ruchu drogowym. Firma TomTom monitoruje, przetwarza i dostarcza informacje o ruchu drogowym z wykorzystaniem opracowanych

Bardziej szczegółowo

Zastosowanie wysokoczęstotliwościowych odbiorników GNSS do badania scyntylacji sygnałów satelitarnych w jonosferze.

Zastosowanie wysokoczęstotliwościowych odbiorników GNSS do badania scyntylacji sygnałów satelitarnych w jonosferze. Zastosowanie wysokoczęstotliwościowych odbiorników GNSS do badania scyntylacji sygnałów satelitarnych w jonosferze. R. Sieradzki, A. Krankowski, Krypiak-Gregorczyk A., Zakharenkova I., Kapcia J. Uniwersytet

Bardziej szczegółowo

AGROCOM system jazdy równoległej

AGROCOM system jazdy równoległej AGROCOM system jazdy równoległej Jerzy Koronczok Agrocom Polska. Oprogramowanie i nowe możliwości dla rolnictwa. 47-120 Żędowice GPS systemy prowadzenia równoległego Agrocom E-DRIVE: Nowości Baseline HD

Bardziej szczegółowo

ARCHITEKTURA GSM. Wykonali: Alan Zieliński, Maciej Żulewski, Alex Hoddle- Wojnarowski.

ARCHITEKTURA GSM. Wykonali: Alan Zieliński, Maciej Żulewski, Alex Hoddle- Wojnarowski. 1 ARCHITEKTURA GSM Wykonali: Alan Zieliński, Maciej Żulewski, Alex Hoddle- Wojnarowski. SIEĆ KOMÓRKOWA Sieć komórkowa to sieć radiokomunikacyjna składająca się z wielu obszarów (komórek), z których każdy

Bardziej szczegółowo

GPS module based on Google Maps and LabView environment Rejestrator GPS wykorzystujący Google Maps i środowisko LabView

GPS module based on Google Maps and LabView environment Rejestrator GPS wykorzystujący Google Maps i środowisko LabView Maciej Krzanowski, Mateusz Mrozowski, Mateusz Oszajca V rok Koło Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy GPS module based on Google Maps and LabView environment Rejestrator GPS wykorzystujący

Bardziej szczegółowo