Jako pierwszych do liczenia używano palców.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Jako pierwszych do liczenia używano palców."

Transkrypt

1 Jako pierwszych do liczenia używano palców. Kolejnymi przedmiotami do liczenia były kamienie. Małe, okrągłe kamyki mogły być używane do wyrażania większych liczb niż starcza na to palców, a posiadały one jeszcze dodatkową zaletę - możliwość przechowywania wyników pośrednich późniejszego wykorzystania.

2 System Karbowy Najstarszymi znanymi przedmiotami używanymi do przedstawiania liczb są kości z wyrytymi karbami. Kości te zostały odkryte w Zachodniej Europie, i pochodzą z okresu od do lat p.n.e. System ten przetrwał do dziś, np. wśród więźniów odliczających dni pobytu w zakładach penitencjarnych. Rząd angielski używał drewnianych, karbowanych patyków w celu zapisu transakcji finansowych aż do początku lat Patyki te pełniły też rolę pokwitowań i zapełniały piwnice Izb Parlamentu po brzegi starym drewnem. W 1834 postanowiono o zniszczeniu karbowanych patyków. Jako ściśle tajne miały zostać spalone na podwórzu Izb Parlamentu. Niestety podczas podmuchy wiatru spowodowały, iż ogień wymknął się spod kontroli i spalił do szczętu Izbę Gmin! KARBY

3 Abakus Jest to pierwowzór liczydła, używano go w starożytnej Grecji i Rzymie od 440 roku p.n.e, a być może także w starożytnym Egipcie i Babilonii. Abakus wykorzystywany był także przez Chińczyków a Japończycy używali go od około VI-VIII wieku. W Europie znany był od X wieku. W starożytności i średniowieczu abakus był prostokątną tabliczką z zaznaczonymi na niej równoległymi liniami lub rowkami. Linie oraz rowki w zależności od typu tego urządzenia oznaczały różne rzędy liczb, np. jednostki, piątki, dziesiątki, pięćdziesiątki, setki. Między linie wkładało się odpowiednią liczbę kamyków, żetonów lub krążków. Współczesną wersję abakusa zwiemy potocznie liczydłem, zostało ono zaprojektowane (w formie,którą znamy obecnie) przez Gerberta z Aurillac, późniejszego papieża Sylwestra II, w 976 roku.

4 Mechaniczny kalkulator Leonarda da Vinci Był to pierwszy mechaniczny kalkulator. Został on obmyślony przez Leonarda da Vincio koło 1500 n.e. Tablice Napiera Na początku XVII w. szkocki matematyk John Napier opisał logarytmy, a następnie opracował tablice mnożenia, wyryte na pasach z drewna lub kości.

5 Suwak logarytmiczny W 1621 roku angielski matematyk i duchowny William Oughtred użył logarytmów Napiera jako podstawy działania suwaka logarytmicznego (Oughtred wynalazł zarówno standardowy, prosty suwak logarytmiczny oraz mniej znany suwak okrągły). Jednakże pomimo faktu, iż suwak był wyjątkowo przydatnym narzędziem pozostającym w powszechnym użyciu przez ponad trzysta lat, to, podobnie jak abakus, nie kwalifikuje się on jako mechaniczny kalkulator.

6 Mechaniczny kalkulator Wilhelma Schickarda W swoim liście Schickard napisał, iż zbudował maszynę, która "...natychmiast wylicza automatycznie podane liczby, dodaje, odejmuje, mnoży i dzieli...". Niestety nie istnieją żadne oryginalne kopie maszyny Schickarda, lecz na podstawie jego notatek zbudowano działające modele, które są w posiadaniu firmy IBM. Pomysł Schickarda był błyskotliwy. Do mnożenia użył on zbioru obracających się, cylindrycznych Kości Napiera. Dodawanie wykonywane było poprzez obracanie tarcz cyfrowych umieszczonych w dolnej części maszyny. Tarcze te połączone były z wewnętrznymi kołami za pomocą zębów umieszczonych na obwodzie i powodujących powstawanie przeniesień podczas przejścia tarczy z 9 na 0. Odejmowanie wykonywało się obracając tarcze wstecz.

7 Maszyna Arytmetyczna W roku 1642, we Francji, Blaise Pascal skonstruował mechaniczną maszynę do dodawania, którą nazwano Pascaline. Miała pomóc jego ojcu, poborcy podatkowemu, w wykonywaniu swojej pracy. Ograniczeniem maszyny było to, że wykonywała obliczenia na liczbach składających się maksymalnie z ośmiu cyfr. Wynalazek Pascala jest uważany za pierwszą dodającą maszynę, mimo że już w roku 1623 niemiecki profesor, Wilhelm Schickard, zbudował kalkulator o większych możliwościach. Niestety wynalazek został zapomniany i nikt nie zwrócił na niego uwagi. Rachmistrz Krokowy Gottfrieda von Leibniza Niemiecki baron Gottfried von Leibniz rozwinął pomysły Pascala i w roku 1671 przedstawił Rachmistrza Krokowego, urządzenie, które oprócz dodawania, odejmowania mogło mnożyć, dzielić oraz obliczać pierwiastki kwadratowe przy pomocy serii dodawań. Na założeniach urządzenia Leibniza opierano się przy wytwarzanie arytmometrów mechanicznych aż do początku lat 1970.

8 Maszyna Różnicowa Charlesa Babbage Pierwsze urządzenie, które można nazwać komputerem we współczesnym znaczeniu tego słowa, zostało obmyślone w 1822 roku przez ekscentrycznego, angielskiego matematyka i wynalazcę, Charlesa Babbage. W czasach Babbage tablice matematyczne, takie jak tablice logarytmów i funkcji trygonometrycznych, były tworzone przez zespoły matematyków, pracujących dzień i noc przy pomocy prymitywnych kalkulatorów. W 1822 Babbage zaproponował zbudowanie maszyny zwanej Maszyną Różnicową, która automatycznie wyliczała by te tablice. Maszyna Różnicowa została tylko częściowo ukończona, gdy Babbage wpadł na pomysł innej, bardziej zaawansowanej maszyny, którą nazwał Maszyną Analityczną. Interesujące jest to, iż po ponad 150 latach od narodzin tej koncepcji zespół naukowców z Londyńskiego Muzeum Nauki w końcu zbudował według oryginalnych planów jedną z pierwszych Maszyn Różnicowych Babbage. Ostateczna maszyna, zbudowana z kutego żelaza, brązu i stali, składała się z 4000 komponentów, ważyła trzy tony oraz miała 10 stóp szerokości i 6 wysokości. Urządzenie to wykonało pierwszą serię obliczeń na początku lat 1990 i dało wyniki z dokładnością do 31 cyfr, co daleko wykracza poza dokładność zwykłego, kieszonkowego kalkulatora. Jednakże każde obliczenie wymaga, aby użytkownik kręcił korbą kilkaset razy, czasem nawet kilka tysięcy razy, więc osoba używająca tego urządzenia do czegokolwiek poza podstawowymi obliczeniami, stałaby się najbardziej wysportowanym operatorem komputera na powierzchni naszej planety.

9 Maszyny tablicujące Hermana Holleritha W USA, według konstytucji, co 10 lat wykonywany ma być spis powszechny ludności. Ponieważ populacja kraju była coraz większa, spodziewano się, że ten planowany na rok 1890, nie zostanie skończony w ciągu dekady. Rząd Stanów Zjednoczonych postanowił znaleźć sposób na przyspieszenie całego procesu. Zorganizowano konkurs na urządzenie, które tego dokona. Wygrał go Herman Hollerith ze swoją maszyną tabulacyjną. Służyła ona do wprowadzania, sortowania i podliczania danych i wykorzystywała do tego celu dziurkowane karty. Dzięki urządzeniu wyniki spisu udało się opracować w ciągu niecałych 3 lat. Hollerith dzięki swojemu wynalazkowi stał się sławny i bogaty, założył w roku 1896 firmę Tabulating Machine Company, która po połączeniu z kilkoma innymi stworzyła International Business Machines, czyli po prostu IBM. Marta Hoffmann 2a

10 ŹRÓDŁA : l78m%3a&imgrefurl=http%3a%2f%2fpl.wikiquote.org%2fwiki%2fd%25c5%2582o%25 C5%2584&docid=V0WeSl0oDyeaAM&imgurl=http%3A%2F%2Fupload.wikimedia.org%2F wikipedia%2fcommons%2fthumb%2f5%2f52%2flamh.jpg%2f220px- Lamh.JPG&w=220&h=235&ei=qhIrUutIYOa7Qbs64GoAw&zoom=1&ved=0CH8QhBwwBw&iact=rc&dur=511&page=1&start= 0&ndsp=

Jak liczono dawniej? 1

Jak liczono dawniej? 1 Jak liczono dawniej? 1 SPIS TREŚCI PALCE... 3 KAMIENIE... 4 SYSTEM KARBOWY... 5 ABAKUS:... 6 MECHANICZNY KALKULATOR LEONARDA DA VINCI:... 7 TABLICE NAPIERA:... 8 SUWAK LOGARYTMICZNY:... 9 MECHANICZNY KALKULATOR

Bardziej szczegółowo

HISTORIA KOMPUTERÓW 2015/16. Bartosz Klin.

HISTORIA KOMPUTERÓW 2015/16. Bartosz Klin. HISTORIA KOMPUTERÓW 2015/16 Bartosz Klin klin@mimuw.edu.pl http://www.mimuw.edu.pl/~klin/ Wczesne zegary mechaniczne - koniec XIII w.: wychwyt film: http://www.youtube.com/watch?v=uhfpb-zztyi Wczesne zegary

Bardziej szczegółowo

2014-10-15. Historia komputera. Architektura komputera Historia komputera. Historia komputera. Historia komputera. Historia komputera

2014-10-15. Historia komputera. Architektura komputera Historia komputera. Historia komputera. Historia komputera. Historia komputera Architektura komputera dr inż. Tomasz Łukaszewski 1 2 500 p.n.e: pierwsze liczydło (abakus) Babilonia. 1614kostkiJohnaNapiera szkockiego matematyka pozwalające dodawać i odejmować 3 4 1621suwak logarytmicznyopracowany

Bardziej szczegółowo

Wstęp do architektury komputerów

Wstęp do architektury komputerów Wstęp do architektury komputerów Podręczniki: Willians Stallings: Organizacja i architektura systemu komputerowego, WNT Notatki z wykładu: http://zefir.if.uj.edu.pl/planeta/wyklad_architektura.htm Egzamin:

Bardziej szczegółowo

Historia komputerów. Szkoła Podstawowa nr 8 im. Jana Wyżykowskiego w Lubinie

Historia komputerów. Szkoła Podstawowa nr 8 im. Jana Wyżykowskiego w Lubinie Historia komputerów Informatyka - dziedzina nauki, która zajmuje się przetwarzaniem informacji przy pomocy komputerów i odpowiedniego oprogramowania. Historia informatyki: Pierwszymi narzędziami, które

Bardziej szczegółowo

HISTORIA KOMPUTERÓW 2015/16. Bartosz Klin. klin@mimuw.edu.pl http://www.mimuw.edu.pl/~klin/

HISTORIA KOMPUTERÓW 2015/16. Bartosz Klin. klin@mimuw.edu.pl http://www.mimuw.edu.pl/~klin/ HISTORIA KOMPUTERÓW 2015/16 Bartosz Klin klin@mimuw.edu.pl http://www.mimuw.edu.pl/~klin/ Oś czasu Pascal Leibniz de Colmar Babbage 1600 1700 1800 1900 Pinwheel (wiatraczek) - alternatywa dla kół Leibniza

Bardziej szczegółowo

Historia informatyki

Historia informatyki Spis treści 1 CZYM JEST INFORMATYKA... - 2-1.1 DEFINICJE INFORMATYKI...- 2-1.2 POJĘCIA ZWIĄZANE Z INFORMATYKĄ...- 2-2 ELEMENTY HISTORII INFORMATYKI... - 2-2.1 OD STAROŻYTNOŚCI DO ŚREDNIOWIECZA...- 2-2.2

Bardziej szczegółowo

Przeszłość i Przyszłość Informatyki

Przeszłość i Przyszłość Informatyki Przeszłość i Przyszłość Informatyki Maciej M. Sysło Uniwersytet Wrocławski syslo@ii.uni.wroc.pl Łączą nas ludzie nie maszyny Plan Nie rozstrzygnę : Kto jest ojcem komputerów: Który komputer był pierwszy:

Bardziej szczegółowo

Przeszłość i przyszłość informatyki

Przeszłość i przyszłość informatyki Przeszłość i przyszłość informatyki Rodzaj zajęć: Wszechnica Popołudniowa Tytuł: Przeszłość i przyszłość informatyki Autor: prof. dr hab. Maciej M Sysło Redaktor merytoryczny: prof. dr hab. Maciej M Sysło

Bardziej szczegółowo

Architektura komputerów Historia systemów liczących

Architektura komputerów Historia systemów liczących Historia systemów liczących Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka bez ograniczeń - zintegrowany rozwój

Bardziej szczegółowo

O informatyce i jej historii. R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski

O informatyce i jej historii. R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski O informatyce i jej historii R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski www.il.pw.edu.pl/~rg s-rg@siwy.il.pw.edu.pl Informatyka (1) Informatyka to gałąź wiedzy związana z procesami:! projektowania,

Bardziej szczegółowo

algorytm przepis rozwiązania przedstawionego zadania komputer urządzenie, za pomocą którego wykonywane są algorytmy

algorytm przepis rozwiązania przedstawionego zadania komputer urządzenie, za pomocą którego wykonywane są algorytmy Podstawowe pojęcia związane z informatyką: informatyka dziedzina wiedzy i działalności zajmująca się gromadzeniem, przetwarzaniem i wykorzystywaniem informacji, czyli różnego rodzaju danych o otaczającej

Bardziej szczegółowo

Między przeszłością a przyszłością komputerów i informatyki

Między przeszłością a przyszłością komputerów i informatyki Między przeszłością a przyszłością komputerów i informatyki Uniwersytet Wrocławski, UMK w Toruniu syslo@ii.uni.wroc.pl Rozgrzewka, I Co ci dwaj Panowie, stojący na tle komputera ENIAC, trzymają w rękach?

Bardziej szczegółowo

HISTORIA KOMPUTERÓW 2015/16. Bartosz Klin.

HISTORIA KOMPUTERÓW 2015/16. Bartosz Klin. HISTORIA KOMPUTERÓW 2015/16 Bartosz Klin klin@mimuw.edu.pl http://www.mimuw.edu.pl/~klin/ Zaliczenie ćwiczeń - każdy uczestnik przygotuje prezentację -- ok. 30-45 minut -- można wygłaszać w parach, ale

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Jan Kazimirski 1 Opis zajęć Odrobina historii... Elementy techniki cyfrowej Maszynowa reprezentacja danych Budowa i zasady działania współczesnych komputerów Elementy programowania

Bardziej szczegółowo

Podstawy informatyki. dr inż. Izabela Szczęch Izabela.Szczech@cs.put.poznan.pl. www.cs.put.poznan.pl/iszczech

Podstawy informatyki. dr inż. Izabela Szczęch Izabela.Szczech@cs.put.poznan.pl. www.cs.put.poznan.pl/iszczech Podstawy informatyki dr inż. Izabela Szczęch Izabela.Szczech@cs.put.poznan.pl www.cs.put.poznan.pl/iszczech PP Plan przedmiotu Wprowadzenie Komputerowa reprezentacja informacji znaków liczb obrazów Budowa

Bardziej szczegółowo

Jak nie zostać niewolnikiem kalkulatora? Obliczenia pamięciowe i pisemne.

Jak nie zostać niewolnikiem kalkulatora? Obliczenia pamięciowe i pisemne. Jak nie zostać niewolnikiem kalkulatora? Obliczenia pamięciowe i pisemne. W miarę postępu techniki w niepamięć odeszły nawyki do wykonywania pisemnych albo pamięciowych obliczeń. O suwaku logarytmicznym,

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne page.1 Technologie Informacyjne Wersja: 4 z drobnymi modyfikacjami! Wojciech Myszka 2013-10-14 20:04:01 +0200 page.2 Cel zajęć Cele zajęć: Uaktualnienie i ujednolicenie wiedzy/terminologii oraz zdobycie

Bardziej szczegółowo

Komputery. Wersja: 5 z drobnymi modyfikacjami! Wojciech Myszka :08:

Komputery. Wersja: 5 z drobnymi modyfikacjami! Wojciech Myszka :08: Komputery Wersja: 5 z drobnymi modyfikacjami! Wojciech Myszka 2015-10-04 08:08:08 +0200 Odrobina historii matematyki Jak liczono kiedyś używając części ciała (na palcach), nacięcia (karby) na kiju, kości,...

Bardziej szczegółowo

PRACA ZALICZENIOWA Z WORDA

PRACA ZALICZENIOWA Z WORDA PRACA ZALICZENIOWA Z WORDA Wykonał: mgr Henryk Janeczek Olesno, 2011 Test zaliczeniowy z Worda spis treści Numerowanie, punktory.. 3 Tabela. 4 Tekst wielokolumnowy, grafika... 5 Tekst matematyczny, rysunki,

Bardziej szczegółowo

Dodajmy 96 i 77 1. Liczbę 96 układamy w kolumnie Liczba 1 a 77 w kolumnie Liczba 2. Liczba 1 Liczba 2 Wynik

Dodajmy 96 i 77 1. Liczbę 96 układamy w kolumnie Liczba 1 a 77 w kolumnie Liczba 2. Liczba 1 Liczba 2 Wynik Sala II - Nr 1 Abak pozycyjny zapis liczby Abak /gr. - płaska powierzchnia/ to pierwsza maszyna licząca, znana juŝ w staroŝytności. Wspominał o nim juŝ historyk grecki Herodot (V w. p.n.e). Abak w swej

Bardziej szczegółowo

12:00 1 MAJA 2015, CZWARTEK

12:00 1 MAJA 2015, CZWARTEK Mój wymarzony zawód: 12:00 1 MAJA 2015, CZWARTEK Kacper Bukowski, Uczeń klasy III B Gimnazjum nr 164 z Oddziałami Integracyjnymi i Dwujęzycznymi im. Polskich Olimpijczyków w Warszawie www.kto-to-informatyk.pl

Bardziej szczegółowo

Algorytm. Krótka historia algorytmów

Algorytm. Krótka historia algorytmów Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

Wstęp do Informatyki. dr inż. Paweł Pełczyński ppelczynski@swspiz.pl

Wstęp do Informatyki. dr inż. Paweł Pełczyński ppelczynski@swspiz.pl Wstęp do Informatyki dr inż. Paweł Pełczyński ppelczynski@swspiz.pl Literatura 1. Brookshear, J. G. (2003). Informatyka w ogólnym zarysie. WNT, Warszawa. 3. Małecki, R. Arendt D. Bryszewski A. Krasiukianis

Bardziej szczegółowo

Scenariusz lekcji. omówić dokonania w dziedzinie przetwarzania informacji do XIX wieku;

Scenariusz lekcji. omówić dokonania w dziedzinie przetwarzania informacji do XIX wieku; Scenariusz lekcji 1 TEMAT LEKCJI Historia informacji 2 CELE LEKCJI 2.1 Wiadomości Uczeń potrafi: omówić dokonania w dziedzinie przetwarzania informacji do XIX wieku; omówić działanie i zastosowanie pierwszych

Bardziej szczegółowo

Historia maszyn liczących

Historia maszyn liczących Historia maszyn liczących pierwsze potrzeby liczenia już w czasach, kiedy ludzie żyli w jaskiniach i lasach (religia, jesienne zbiory). Zaczęto liczyć nacięcia na drewnie, znaki na ścianach pierwszy kalendarz

Bardziej szczegółowo

1. Logarytm 2. Suwak logarytmiczny 3. Historia 4. Budowa suwaka 5. Działanie suwaka 6. Jak mnożyć na suwaku 7. Jak dzielić na suwaku 8.

1. Logarytm 2. Suwak logarytmiczny 3. Historia 4. Budowa suwaka 5. Działanie suwaka 6. Jak mnożyć na suwaku 7. Jak dzielić na suwaku 8. 1. Logarytm 2. Suwak logarytmiczny 3. Historia 4. Budowa suwaka 5. Działanie suwaka 6. Jak mnożyć na suwaku 7. Jak dzielić na suwaku 8. Jak podnosić do kwadratu liczby na suwaku 9. Dokładność obliczeń

Bardziej szczegółowo

Kod U2 Opracował: Andrzej Nowak

Kod U2 Opracował: Andrzej Nowak PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim

Bardziej szczegółowo

Powrót do przeszłości i przyszłości

Powrót do przeszłości i przyszłości Wykład 7 Powrót do przeszłości i przyszłości Krótka (bardzo) historia komputerów: ok. 2600 r. p.n.e. stosowano liczydła zwane abakusami IV w. p.n.e. Euklides w swoim fundamentalnym dziele Elementy podał

Bardziej szczegółowo

HISTORIA KOMPUTERÓW 2015/16. Bartosz Klin. klin@mimuw.edu.pl http://www.mimuw.edu.pl/~klin/

HISTORIA KOMPUTERÓW 2015/16. Bartosz Klin. klin@mimuw.edu.pl http://www.mimuw.edu.pl/~klin/ HISTORIA KOMPUTERÓW 2015/16 Bartosz Klin klin@mimuw.edu.pl http://www.mimuw.edu.pl/~klin/ XVIII wiek - wiele konstrukcji, głównie ułomne kopie maszyn Pascala i Leibniza - usprawnienia: - Leupold-Braun-Vayringe

Bardziej szczegółowo

Historia π (czyt. Pi)

Historia π (czyt. Pi) Historia liczby π Historia π (czyt. Pi) Już w czasach zamierzchłych starożytni rachmistrze zauważyli, że wszystkie koła mają ze sobą coś wspólnego, że ich średnica i obwód pozostają wobec siebie w takim

Bardziej szczegółowo

Temat: Liczby definicje, oznaczenia, własności. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1

Temat: Liczby definicje, oznaczenia, własności. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Temat: Liczby definicje, oznaczenia, własności A n n a R a j f u r a, M a t e m a t y k a s e m e s t r, W S Z i M w S o c h a c z e w i e Kody kolorów: pojęcie zwraca uwagę A n n a R a j f u r a, M a

Bardziej szczegółowo

Fascynujący świat komputerów

Fascynujący świat komputerów Barbara Szczepańska INFORMATYKA Barbara Szczepańska Fascynujący świat komputerów Kto wynalazł komputer? Komputery zmieniły ogromnie naszą cywilizację, wpływają bezpośrednio na wiele aspektów naszego życia,

Bardziej szczegółowo

Podstawy informatyki. Podstawowe pojęcia Historia informatyki

Podstawy informatyki. Podstawowe pojęcia Historia informatyki Podstawy informatyki Podstawowe pojęcia Historia informatyki Plan wykładu Historia, budowa i rodzaje komputerów Systemy operacyjne budowa i użytkowanie Oprogramowanie, licencje Przetwarzanie tekstów Arkusze

Bardziej szczegółowo

Historia rachowania ludzie, idee, maszyny Historia mechanicznych kalkulatorów

Historia rachowania ludzie, idee, maszyny Historia mechanicznych kalkulatorów Wydział Matematyki i Informatyki Uniwersytet Wrocławski Uniwersytet Mikołaja Kopernika w Toruniu Historia rachowania ludzie, idee, maszyny Historia mechanicznych kalkulatorów D la wielu osób informatyka

Bardziej szczegółowo

Czym jest liczba π? O liczbie π. Paweł Zwoleński. Studenckie Koło Naukowe Matematyków Wydział Matematyczno-Fizyczny Politechnika Śląska

Czym jest liczba π? O liczbie π. Paweł Zwoleński. Studenckie Koło Naukowe Matematyków Wydział Matematyczno-Fizyczny Politechnika Śląska Studenckie Koło Naukowe Matematyków Wydział Matematyczno-Fizyczny Politechnika Śląska 200.03.4 Motywacja wprowadzenia π Kluczowym momentem w historii liczby π było zauważenie przez starożytnych Babilończyków

Bardziej szczegółowo

Komputery. Komputery. Komputery PC i MAC Laptopy

Komputery. Komputery. Komputery PC i MAC Laptopy Komputery Komputery PC i MAC Laptopy 1 Spis treści: 1. Komputery PC i Mac...3 1.1 Komputer PC...3 1.2 Komputer Mac...3 2. Komputery przenośne...4 2.1 Laptop...4 2.2 Netbook...4 2.3 Tablet...5 3. Historia

Bardziej szczegółowo

Historia maszyn liczących

Historia maszyn liczących Historia maszyn liczących Krzysztof Grąbczewski Za początek rozwoju maszyn liczących uznaje się powszechnie XVII wiek. Jednak historia samego liczenia sięga zdecydowanie dawniejszych czasów. Pierwsze potrzeby

Bardziej szczegółowo

Wstęp do współczesnej inżynierii EKS i komputery sterowane myślami. Andrzej Materka, listopad 2010

Wstęp do współczesnej inżynierii EKS i komputery sterowane myślami. Andrzej Materka, listopad 2010 Politechnika Łódzka Instytut Elektroniki Wstęp do współczesnej inżynierii EKS i komputery sterowane myślami Andrzej Materka, listopad 2010 Jena Meeting, 12-14 December 2008 1/8 Plan wykładu - rozwój urządzeń

Bardziej szczegółowo

Logarytmy. Historia. Definicja

Logarytmy. Historia. Definicja Logarytmy Historia Logarytmy po raz pierwszy pojawiły się w książce szkockiego matematyka - Johna Nepera "Opis zadziwiających tablic logarytmów" z 1614 roku. Szwajcarski astronom i matematyk Jost Burgi

Bardziej szczegółowo

Algorytmy i schematy blokowe

Algorytmy i schematy blokowe Algorytmy i schematy blokowe Algorytm dokładny przepis podający sposób rozwiązania określonego zadania w skończonej liczbie kroków; zbiór poleceń odnoszących się do pewnych obiektów, ze wskazaniem porządku,

Bardziej szczegółowo

Technologia Informacyjna

Technologia Informacyjna Technologia Informacyjna dr inż. Paweł Myszkowski arkusz kalkulacyjny Microsoft Excel Arkusz kalkulacyjny Microsoft Excel Przechowywanie danych: Komórka autonomiczna jednostka organizacyjna, służąca do

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

07_Matematyka ZR_kalendarz-okl 2012_01_04 LOMzrKal_cover :58 Strona 1. Kalendarz przygotowań plan pracy na rok szkolny

07_Matematyka ZR_kalendarz-okl 2012_01_04 LOMzrKal_cover :58 Strona 1. Kalendarz przygotowań plan pracy na rok szkolny 07_Matematyka ZR_kalendarz-okl 2012_01_04 LOMzrKal_cover 11-06-17 11:58 Strona 1 Kalendarz przygotowań plan pracy na rok szkolny ISBN 978-83-7680-389-0 9 788376 803890 rogram Matura z Operonem Lista uczestników

Bardziej szczegółowo

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO:

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO: KRZYŻÓWKA.Wyznaczają ją dwa punkty.. Jego pole to π r² 3. Jego pole to a a 4.Figura przestrzenna, której podstawą jest dowolny wielokąt, a ściany boczne są trójkątami o wspólnym wierzchołku. 5.Prosta mająca

Bardziej szczegółowo

PODSTAWY INFORMATYKI. Historia

PODSTAWY INFORMATYKI. Historia PODSTAWY INFORMATYKI Historia Pierwszym znanym mechanizmem obliczeniowym był abakus, wynaleziony prawdopodobnie przez Babilończyków w latach pomiędzy 1000 a 500 p.n.e., 1 Użycie zera ok. 600 n.e. Indie,

Bardziej szczegółowo

Alan M. TURING. Matematyk u progu współczesnej informatyki

Alan M. TURING. Matematyk u progu współczesnej informatyki Alan M. TURING n=0 1 n! Matematyk u progu współczesnej informatyki Wykład 5. Alan Turing u progu współczesnej informatyki O co pytał Alan TURING? Czym jest algorytm? Czy wszystkie problemy da się rozwiązać

Bardziej szczegółowo

HISTORIA KOMPUTERÓW 2015/16. Bartosz Klin.

HISTORIA KOMPUTERÓW 2015/16. Bartosz Klin. HISTORIA KOMPUTERÓW 2015/16 Bartosz Klin klin@mimuw.edu.pl http://www.mimuw.edu.pl/~klin/ Oś czasu Napier Schickard Pascal Leibniz de Colmar Babbage 1500 1600 1700 1800 Metoda różnicowa - kolejne wartości

Bardziej szczegółowo

Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendystki: mgr Jerzy Mil

Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendystki: mgr Jerzy Mil Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych Opiekun stypendystki: mgr Jerzy Mil 1 Działania na ułamkach Wyłączanie całości z dodatnich ułamków niewłaściwych Formuła

Bardziej szczegółowo

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia

Bardziej szczegółowo

Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy

Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy Uniwersytet Kazimierza Wielkiego w Bydgoszczy Zespół Szkół nr 5 Mistrzostwa Sportowego XV Liceum Ogólnokształcące w Bydgoszczy Matematyka, królowa nauk Edycja X - etap 2 Bydgoszcz, 16 kwietnia 2011 Fordoński

Bardziej szczegółowo

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo

Informatyka zarys historii informatyki. dr hab. inż. Mikołaj Morzy

Informatyka zarys historii informatyki. dr hab. inż. Mikołaj Morzy Informatyka zarys historii informatyki dr hab. inż. Mikołaj Morzy kontakt dr hab. inż. Mikołaj Morzy tel. +61 665 2961 email Mikolaj.Morzy@put.poznan.pl skype mikolaj.morzy plan przedmiotu historia informatyki

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

RAPORT. Komputerowe wspomaganie nauczania matematyki-innowacja z matematyki z elementami informatyki. Z realizacji innowacji pedagogicznej

RAPORT. Komputerowe wspomaganie nauczania matematyki-innowacja z matematyki z elementami informatyki. Z realizacji innowacji pedagogicznej RAPORT Z realizacji innowacji pedagogicznej Komputerowe wspomaganie nauczania matematyki-innowacja z matematyki z elementami informatyki Autor: mgr Renata Ziółkowska Miejsce realizacji innowacji pedagogicznej:

Bardziej szczegółowo

Algorytm. Krótka historia algorytmów

Algorytm. Krótka historia algorytmów Algorytm znaczenie cybernetyczne Jest to dokładny przepis wykonania w określonym porządku skończonej liczby operacji, pozwalający na rozwiązanie zbliżonych do siebie klas problemów. znaczenie matematyczne

Bardziej szczegółowo

zdolny Ślązaсzek II ETAP - POWIATOWY TWÓJ KOD Skąd się wziął komputer?

zdolny Ślązaсzek II ETAP - POWIATOWY TWÓJ KOD Skąd się wziął komputer? 14.11.2012 r., godz. 12 00 Czas trwania 90 minut Przepisz tutaj Twój kod znajdujący się w karcie identyfikacyjnej zdolny Ślązaсzek X DOLNOŚLĄSKI KONKURS DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH II ETAP - POWIATOWY

Bardziej szczegółowo

Widoczność zmiennych Czy wartości każdej zmiennej można zmieniać w dowolnym miejscu kodu? Czy można zadeklarować dwie zmienne o takich samych nazwach?

Widoczność zmiennych Czy wartości każdej zmiennej można zmieniać w dowolnym miejscu kodu? Czy można zadeklarować dwie zmienne o takich samych nazwach? Część XVIII C++ Funkcje Widoczność zmiennych Czy wartości każdej zmiennej można zmieniać w dowolnym miejscu kodu? Czy można zadeklarować dwie zmienne o takich samych nazwach? Umiemy już podzielić nasz

Bardziej szczegółowo

Gra- Oblicz i zaznacz właściwy wynik- puzzle. matematyczno - przyrodnicze

Gra- Oblicz i zaznacz właściwy wynik- puzzle. matematyczno - przyrodnicze TYTUŁ AUTOR EDUKACJA Gra- Oblicz i zaznacz właściwy wynik- puzzle Aneta Kryszczak Uczeń wykonuje dzielenie, doskonali umiejętność posługiwanie się pojęciami matematycznymi; I WSKAZÓWKI AUTO dzielenie Uczeń

Bardziej szczegółowo

Wprowadzenie do informatyki Czym jest informatyka?

Wprowadzenie do informatyki Czym jest informatyka? Wprowadzenie do informatyki Czym jest informatyka? dr inż. Anna Kobusińska Anna.Kobusinska@cs.put.poznan.pl www.cs.put.poznan.pl/akobusinska Informatyka zajmuje się całokształtem przechowywania, przesyłania,

Bardziej szczegółowo

Dla wielu osób informatyka, określana w tej pracy mianem komputyka 2 (ang. computing),

Dla wielu osób informatyka, określana w tej pracy mianem komputyka 2 (ang. computing), Przeszłość i przyszłość informatyki Maciej M. Sysło 1, Instytut Informatyki, Uniwersytet Wrocławski, syslo@ii.uni.wroc.pl Skąd bierze się różnica między przeszłością i przyszłością? Dlaczego pamiętamy

Bardziej szczegółowo

Architektura komputerów wer. 7

Architektura komputerów wer. 7 Architektura komputerów wer. 7 Wojciech Myszka 2013-10-29 19:47:07 +0100 Karty perforowane Kalkulator IBM 601, 1931 IBM 601 kalkulator Maszyna czytała dwie liczby z karty, mnożyła je przez siebie i wynik

Bardziej szczegółowo

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy

Bardziej szczegółowo

wymagania programowe z matematyki kl. II gimnazjum

wymagania programowe z matematyki kl. II gimnazjum wymagania programowe z matematyki kl. II gimnazjum Umie obliczyć potęgę liczby wymiernej o wykładniku naturalnym. 1. Arytmetyka występują potęgi o wykładniku naturalnym. Umie zapisać i porównać duże liczby

Bardziej szczegółowo

Metrologia: obliczenia na liczbach przybliżonych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: obliczenia na liczbach przybliżonych. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: obliczenia na liczbach przybliżonych dr inż. Paweł Zalewski Akademia Morska w Szczecinie Cyfry znaczące reguły Kryłowa-Bradisa: Przy korzystaniu z przyrządów z podziałką przyjęto zasadę, że

Bardziej szczegółowo

Kształcenie w zakresie podstawowym. Klasa 1

Kształcenie w zakresie podstawowym. Klasa 1 Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

Historia sztucznej inteligencji. Przygotował: Konrad Słoniewski

Historia sztucznej inteligencji. Przygotował: Konrad Słoniewski Historia sztucznej inteligencji Przygotował: Konrad Słoniewski Prahistoria Mit o Pigmalionie Pandora ulepiona z gliny Talos olbrzym z brązu Starożytna Grecja System sylogizmów Arystotelesa (VI w. p.n.e.)

Bardziej szczegółowo

Spis treści. Wstęp... 11 CZĘŚĆ I SYSTEM EDUKACYJNY MARII MONTESSORI PODSTAWY PEDAGOGICZNE

Spis treści. Wstęp... 11 CZĘŚĆ I SYSTEM EDUKACYJNY MARII MONTESSORI PODSTAWY PEDAGOGICZNE Spis treści TOM PIERWSZY Wstęp... 11 CZĘŚĆ I SYSTEM EDUKACYJNY MARII MONTESSORI PODSTAWY PEDAGOGICZNE 1. Znaczenie aktywności dziecka w procesie jego rozwoju i uczenia się... 17 2. Pedagogicznie przygotowane

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV Nauczyciel: Jacek Zoń WYMAGANIA EDUKACYJNE NA OCENĘ DOPUSZCZAJĄCĄ DLA KLASY IV : 1. przeczyta i zapisze liczbę wielocyfrową (do tysięcy) 2. zna nazwy rzędów

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń:

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Klasa V Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI DZIAŁ I : LICZBY NATURALNE I UŁAMKI

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI DZIAŁ I : LICZBY NATURALNE I UŁAMKI WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI NA OCENĘ DOPUSZCZAJĄCĄ : UCZEŃ zna nazwy działań (K) DZIAŁ I : LICZBY NATURALNE I UŁAMKI zna algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10,

Bardziej szczegółowo

Podstawa programowa matematyki dla liceum i technikum (zakres podstawowy) podpisana przez Ministra Edukacji Narodowej 23 sierpnia 2007 roku

Podstawa programowa matematyki dla liceum i technikum (zakres podstawowy) podpisana przez Ministra Edukacji Narodowej 23 sierpnia 2007 roku Podstawa programowa matematyki dla liceum i technikum (zakres podstawowy) podpisana przez Ministra Edukacji Narodowej 23 sierpnia 2007 roku C e l e e d u k a c y j n e 1. Przygotowanie do świadomego i

Bardziej szczegółowo

Architektura Systemów Komputerowych. Paweł Pełczyński ppelczynski@swspiz.pl

Architektura Systemów Komputerowych. Paweł Pełczyński ppelczynski@swspiz.pl Architektura Systemów Komputerowych Paweł Pełczyński ppelczynski@swspiz.pl Program przedmiotu Struktura i zasada działania prostego systemu mikroprocesorowego Operacje wykonywane przez mikroprocesor i

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

SPRAWDZIAN. obowiązkowo

SPRAWDZIAN. obowiązkowo Komunikat dyrektora Centralnej Komisji Egzaminacyjnej z 7 września 2015 r. w sprawie materiałów i przyborów pomocniczych, z których mogą korzystać na sprawdzianie, egzaminie gimnazjalnym oraz egzaminie

Bardziej szczegółowo

Komputer historia i budowa. Technologia informatyczna WYKŁAD 1

Komputer historia i budowa. Technologia informatyczna WYKŁAD 1 Komputer historia i budowa Technologia informatyczna WYKŁAD 1 HISTORIA 4000-1200 p.n.e. - Sumerowie zaczynają zapisywać transakcje handlowe na glinianych tabliczkach. 3000 p.n.e. - Powstaje pierwsze liczydło

Bardziej szczegółowo

wagi cyfry 7 5 8 2 pozycje 3 2 1 0

wagi cyfry 7 5 8 2 pozycje 3 2 1 0 Wartość liczby pozycyjnej System dziesiętny W rozdziale opiszemy pozycyjne systemy liczbowe. Wiedza ta znakomicie ułatwi nam zrozumienie sposobu przechowywania liczb w pamięci komputerów. Na pierwszy ogień

Bardziej szczegółowo

DZIELENIE SIĘ WIEDZĄ I POMYSŁAMI SPOTKANIE ZESPOŁU SAMOKSZTAŁCENIOWEGO

DZIELENIE SIĘ WIEDZĄ I POMYSŁAMI SPOTKANIE ZESPOŁU SAMOKSZTAŁCENIOWEGO DZIELENIE SIĘ WIEDZĄ I POMYSŁAMI SPOTKANIE ZESPOŁU SAMOKSZTAŁCENIOWEGO Mariusz Pielucha nauczyciel nauczania początkowego Szkoła Podstawowa w Kaźmierzu. CEL: Wykorzystanie szablonów kratkowych do wprowadzenia

Bardziej szczegółowo

Mini komputer Papy'ego

Mini komputer Papy'ego Mini komputer Papy'ego Bartłomiej Zemlik Grzegorz Pieczara Klasa Va Szkoła Podstawowa im. Bohaterów Monte Cassino w Kętach ul. Wyspiańskiego, 32-650 Kęty Opiekun- dr Katarzyna Wadoń-Kasprzak Spis Treści

Bardziej szczegółowo

HISTORIA KOMPUTERÓW 2014/15. Bartosz Klin. klin@mimuw.edu.pl http://www.mimuw.edu.pl/~klin/

HISTORIA KOMPUTERÓW 2014/15. Bartosz Klin. klin@mimuw.edu.pl http://www.mimuw.edu.pl/~klin/ HISTORIA KOMPUTERÓW 2014/15 Bartosz Klin klin@mimuw.edu.pl http://www.mimuw.edu.pl/~klin/ Elektryczność - Michael Faraday (1831): indukcja elektromagnetyczna, silnik - Thomas Edison: żarówka (1879), pierwsza

Bardziej szczegółowo

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany.

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany. MATEMATYKA kurs uzupełniający dla studentów 1. roku PWSZ w ramach»europejskiego Funduszu Socjalnego«Adam Kolany rozkład materiału Projekt finansowany przez Unię Europejską w ramach Europejskiego Funduszu

Bardziej szczegółowo

1. Systemy liczbowe. addytywne systemy w których wartośd liczby jest sumą wartości jej znaków cyfrowych.

1. Systemy liczbowe. addytywne systemy w których wartośd liczby jest sumą wartości jej znaków cyfrowych. 1. Systemy liczbowe 1.1. System liczbowy zbiór reguł jednolitego zapisu, nazewnictwa i działao na liczbach. Do zapisywania liczb zawsze używa się pewnego skooczonego zbioru znaków, zwanych cyframi. Cyfry

Bardziej szczegółowo

Programowanie w języku C++ Agnieszka Nowak Brzezińska Laboratorium nr 2

Programowanie w języku C++ Agnieszka Nowak Brzezińska Laboratorium nr 2 Programowanie w języku C++ Agnieszka Nowak Brzezińska Laboratorium nr 2 1 program Kontynuujemy program który wczytuje dystans i ilości paliwa zużytego na trasie, ale z kontrolą danych. A więc jeśli coś

Bardziej szczegółowo

Marcin Różański Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendysty: mgr Jerzy Mil

Marcin Różański Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendysty: mgr Jerzy Mil Marcin Różański Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych Opiekun stypendysty: mgr Jerzy Mil 1 Działania na ułamkach Włączanie całości w dodatnich liczbach Obliczania licznika ułamka

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY. obowiązkowo

EGZAMIN GIMNAZJALNY. obowiązkowo Komunikat dyrektora Centralnej Komisji Egzaminacyjnej z 9 września 2016 r. w sprawie materiałów i przyborów pomocniczych, z których mogą korzystać na egzaminie gimnazjalnym i egzaminie maturalnym w 2017

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY VI

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY VI MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY VI WYMAGANIA EDUKACYJNE NA OCENĘ DOPUSZCZAJĄCĄ DLA KLASY VI : 1. zamieni ułamek zwykły na dziesiętny dowolnym sposobem 2. porówna ułamek zwykły i dziesiętny 3.

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne. Matematyka

Wymagania na poszczególne oceny szkolne. Matematyka Wymagania na poszczególne oceny szkolne Matematyka Klasa IV Wymagania Wymagania ponad Dział 1. Liczby naturalne Zbieranie i prezentowanie danych gromadzi dane (13.1); odczytuje dane przedstawione w tekstach,

Bardziej szczegółowo

Historia komputera. Narzędzia informatyki

Historia komputera. Narzędzia informatyki Historia komputera Narzędzia informatyki 12 października 2015 dr inż. Bartłomiej Prędki Bartlomiej.Predki@cs.put.poznan.pl http://zajecia.predki.com http://ni.predki.com tel. 61 665 2932 pok. 124 CW Konsultacje

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

OD ABAKUSA DO KOMPUTERA

OD ABAKUSA DO KOMPUTERA Agata Berdowska Gabriela Górecka-Berdowska Uniwersytet Ekonomiczny w Katowicach OD ABAKUSA DO KOMPUTERA Wprowadzenie Inspiracją do napisania tego artykułu były pytania stawiane (jednej z autorek) przez

Bardziej szczegółowo

Pytania do egzaminu część historyczna [Na podstawie: http://www.historiainformatyki.za.pl/kalendarium.html]

Pytania do egzaminu część historyczna [Na podstawie: http://www.historiainformatyki.za.pl/kalendarium.html] Pytania do egzaminu część historyczna [Na podstawie: http://www.historiainformatyki.za.pl/kalendarium.html] 1500 Leonardo da Vinci wykonuje szkic prostego kalkulatora mechanicznego. 1600 John Napier buduje

Bardziej szczegółowo

Świat przed erą cyfrową

Świat przed erą cyfrową Świat przed erą cyfrową Nowe życie dla starych kalkulatorów. Zapewnienie rozwoju w przyszłości przez zachowanie pamięci o przeszłości. Newton i von Braun posługiwali się takimi samymi mechanicznymi kalkulatorami

Bardziej szczegółowo

MATURA POPRAWKOWA Z MATEMATYKI 23 SIERPIEŃ 2011 R. PRZYKŁADOWE ODPOWIEDZI

MATURA POPRAWKOWA Z MATEMATYKI 23 SIERPIEŃ 2011 R. PRZYKŁADOWE ODPOWIEDZI MATURA POPRAWKOWA Z MATEMATYKI 23 SIERPIEŃ 2011 R. PRZYKŁADOWE ODPOWIEDZI OPRACOWANIE AKADEMIA MATEMATYKI 26 SIERPNIA 2011 mgr Marek Dębczyński CENTRUM NOWCZESNEJ EDUKACJI W KALISZU MAREK DEBCZYŃSKI Zadanie

Bardziej szczegółowo

(mniejszych od 10 9 ) podanych przez użytkownika, wypisze komunikat TAK, jeśli są to liczby bliźniacze i NIE, w przeciwnym przypadku.

(mniejszych od 10 9 ) podanych przez użytkownika, wypisze komunikat TAK, jeśli są to liczby bliźniacze i NIE, w przeciwnym przypadku. Zadanie 1 Już w starożytności matematycy ze szkoły pitagorejskiej, którzy szczególnie cenili sobie harmonię i ład wśród liczb, interesowali się liczbami bliźniaczymi, czyli takimi parami kolejnych liczb

Bardziej szczegółowo

Wprowadzenie do informatyki

Wprowadzenie do informatyki Wprowadzenie do informatyki dr inż.. Anna Kobusińska ska Anna.Kobusinska@cs.put.poznan.pl www.cs.put.poznan.pl/akobusinska akobusinska Czym jest informatyka? Informatyka zajmuje się całokształtem przechowywania,

Bardziej szczegółowo

Skrypt 23. Przygotowanie do egzaminu Pierwiastki

Skrypt 23. Przygotowanie do egzaminu Pierwiastki Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Przygotowanie do egzaminu Pierwiastki 1.

Bardziej szczegółowo

Wprowadzenie do współczesnej inżynierii. Rozwój komputerów i metod komunikacji człowieka z komputerem

Wprowadzenie do współczesnej inżynierii. Rozwój komputerów i metod komunikacji człowieka z komputerem Politechnika Łódzka Instytut Elektroniki http://amaterka.pl Wprowadzenie do współczesnej inżynierii Rozwój komputerów i metod komunikacji człowieka z komputerem Andrzej Materka, kwiecień 2013 Jena Meeting,

Bardziej szczegółowo