HISTORIA KOMPUTERÓW 2015/16. Bartosz Klin.
|
|
- Henryk Barański
- 9 lat temu
- Przeglądów:
Transkrypt
1 HISTORIA KOMPUTERÓW 2015/16 Bartosz Klin
2 XVIII wiek - wiele konstrukcji, głównie ułomne kopie maszyn Pascala i Leibniza - usprawnienia: - Leupold-Braun-Vayringe (1736): na planie koła (obrót inputu zamiast przesunięcia) - Stanhope (1777): działające przeniesienie
3 Theatrum arithmetico geometricum - Jacob Leupold ( ) - Napisał 8-tomową książkę o maszynach - zaprojektował m.in. maszynę parową - Jeden tom o urządzeniach liczących: -- kości Napiera -- maszyna Leibniza -- autorski projekt Leupolda
4 Jewna Jakobson Zegarmistrz u Radziwiłłów w Nieświeżu (17??-1???) Machina Mechaniszna do Rachunku (przed 1793): Konstrukcja jak u Schickarda, trochę usprawniona Maszyna się zachowała, jest w muzeum w Petersburgu
5 Abraham Stern ( ) - zegarmistrz z Hrubieszowa - po 1800 r. sprowadzony do Warszawy przez St. Staszica - mieszkał przy ul. Królewskiej 45 - zrazu miał problemy z czytaniem... - a od 1817 członek Towarzystwa Przyjaciół Nauk - także rektor Warszawskiej Szkoły Rabinów - wynalazł m.in. dalmierz, automatyczną młockarnię, i kilka machin arytmetycznych.
6 Pierwsza maszyna Sterna (1813) - cztery działania Machina Sterna jest prosta, jest już w modelu wyexekwowana, jest w składzie swego mechanizmu od [Pascala i Leibniza] różna, dość pojedyncza do zrobienia i używania łatwa i pełna dowcipu. Rapport o machinie arytmetyczney pana Abrahama Szterna, trzy rzędy kółek, nad nimi tabliczki z otworami Z dwóch rzędów skraynych jeden przeznaczony jest na wypadki dodawania i mnożenia, drugi na wypadki odejmowania i dzielenia. W rzędzie śrzednim odbywa się działanie za pomocą obrotu korby ze strony lewey w prawą.
7 Pierwsza maszyna Sterna (1813) Obrót korby porusza w średnim rzędzie pierwsze kółko zębate będące w związku z wielu innemi kółkami rozmaicie, a zawsze dowcipnie z sobą połączonemi [...]. Dalszy opis zewnętrznego składu nie jest potrzebny [...]. Możliwe zarzuty wobec maszyny: 1) że mnożenie w machinie często zabiera nie mało czasu, co zdarza się wtedy, gdy cyfry czynników są bliskie 9ciu, 2) że dodawanie jest tylko na dwa rzędy liczb, 3) że liczby ilorakie i ułamkowe [...] nie maią mieysca, 4) że za zepsuciem się machiny wypadki działań muszą bydź fałszywe, 5) że machina arytmetyczna mieysce uwagi całkowicie zastępująca, doprowadzona z czasem do takiey doskonałości, iżby mogła bydź powszechnie przyiętą, pod względem pedagogii [...] by przyniosła szkodę [...]
8 Kolejne maszyny : maszyna pierwiastkująca : połączenie obu mechanizmów Mechanizm [...] zamykający w sobie kółka różnego gatunku, obroty nowego rodzaju, sprężyny i dźwignie, [...] obszernego opisu i wielu figur wymaga, co będzie przedmiotem późniey ułożyć się mającego dziełka [...] Rozprawa o machinie arytmetyczney, A. Stern, dwa nieruchome rzędy kółek (13 pozycji) - kolejne dwa na ruchomym wózku (7 pozycji) - i piąty, nieruchomy rząd (7 pozycji) - przełącznik trybu pracy (5 ustawień)
9 Instrukcja obsługi - Dodawanie/odejmowanie: -- jedna liczba w rzędzie 1, druga w rzędzie 3 -- jeden obrót korby - Mnożenie: -- jedna liczba w rzędzie 3, druga w rzędzie 5 -- przesuwamy wózek i kręcimy korbą -- dzwonek powie kiedy przestać - Dzielenie: -- jedna liczba w rzędzie 1, druga w rzędzie 3 -- przesuwamy wózek i kręcimy korbą -- wynik będzie w rzędzie 5
10 Jak pierwiastkować? - Prosta (i powolna) idea: (2n 1) = n 2 - Z opisu Sterna wynika, że używał metody pisemnej. - Żadna z maszyn się nie zachowała. - Ostatnia zaginęła podczas wojny w Krakowie.
11 Morał Sterna Kończę tę rozprawę tę uwagą - że gdy Mechanika iest Klucznicą naszych potrzeb, tak dalece, iż nie tylko siłę fizyczną, ale nawet i władz umysłowych zastępować może, nayusilnieyszem przeto staraniem naszym bydź powinno, przemysł w iey tak obszernem i użytecznem polu rozkrzewiać; [...] takie bowiem postępowanie, drogę do pomyślności i chwały Kraiu toruie. Rozprawa o machinie arytmetyczney, A. Stern, Stern był pochowany na cmentarzu na Bródnie
12 Chaim Słonimski ( ) - zięć Abrahama Sterna - dziadek Antoniego Słonimskiego - matematyk, astronom, wynalazca - wymyślił maszynę mnożącą - więcej na ćwiczeniach 24 listopada
13 Izrael Staffel ( ) - warszawski zegarmistrz - warsztat przy ul. Marszałkowskiej 125 (dziś pl. Defilad) - później przy ul. Grzybowskiej / Gnojnej (dziś park Mirowski) - z pewnością znał A. Sterna - zbudował m.in.: -- anemometr, wentylator -- maszynę zapobiegającą fałszowaniu banknotów -- prasę drukarską do dwukolorowych znaczków -- kilka maszyn liczących
14 Maszyna Staffela (1845) - 4 działania i pierwiastkowanie - akumulator (13 cyfr) - dwa wejścia po 7 cyfr - korba jak u Leibniza - dzwonek przy przekroczeniu zakresu - mnożenie: -- ustaw czynniki w dwóch wejściach -- kręć korbą aż w drugim wejściu (?) pojawią się zera - konstrukcja nieznana, być może tzw. wiatraczki
15 Sukcesy Staffela : Wystawa Przemysłowa w Warszawie srebrny medal : Prezentacja w Rosyjskiej Akademii Nauk świetna recenzja, potencjał masowej produkcji : Wystawa Światowa w Londynie srebrny medal, wraz z maszyną de Colmara - W 1876 r. podarował maszynę Akademii Nauk - Zaginęła po upadku caratu
16 Inna maszyna Staffela - prostsza, tylko dodawanie i odejmowanie i przeliczanie złotych na ruble (1.5 rubla = 10zł) - można ją oglądać w Muzeum Techniki w Warszawie - Staffel jest pochowany na cmentarzu przy Okopowej
17 Xavier Thomas de Colmar ( ) - kwatermistrz wojskowy - przedsiębiorca ubezpieczeniowy - czytał książkę Leupolda, znał maszynę Leibniza i jej ulepszenia - w 1820 opatentował arytmometr, który ulepszał przez całe życie - pierwsza maszyna, która odniosła sukces komercyjny
18 Historia arytmometru : prototyp i patent : targi w Paryżu, bez sukcesu : targi w Paryżu, brązowy medal : Wystawa Światowa, Londyn, srebrny medal (wraz ze Staffelem) : Wystawa Światowa, Paryż, bez sukcesu - od 1851: seryjna produkcja - ok sprzedanych egzemplarzy
19 Wczesne arytmometry - oparte na kołach Leibniza - zamiast korby taśma (potem znowu korba) - wejście: suwaki zamiast kółek - specjalny suwak do mnożenia: za jednym obrotem korby, do akumulatora dodaje się wejście pomnożone przez cyfrę na tym suwaku
20 Suwak mnożący - obrót korby = 10 obrotów kół Leibniza - dodatkowe koło przerywa te obroty
21 Suwak mnożący - późniejsza wersja - koło ze spiralnym rowkiem - suwak zjeżdża do zera
22 Wersja seryjna - bez suwaka mnożącego - zamiast taśmy korba - ruchomy akumulator - nieruchome wejście - osobne liczniki obrotów korby na każdej pozycji
23 Arytmometr w akcji film:
24 Charles Babbage ( ) - matematyk, wynalazca - absolwent Cambridge - członek Royal Society od 1816 r. - bezskutecznie szukał pracy, aż... - w 1827 r. odziedziczył fortunę po ojcu : Lucasian Prof. of Mathematics (inni: Newton, Dirac, Hawking) - wynalazł: -- cow catcher -- maszynę do grania w kółko i krzyżyk -- prędkościomerz kolejowy -- klimatyzację (chłodzoną lodem z piwnicy)
25 Tablice matematyczne - Babbage miał obsesję szukania błędów w tablicach - od tablic zależało bardzo dużo, a błędów była masa - w 1827 opublikował tablice logarytmów: 1. Skopiował tablice Calleta z 1795 r. 2. Porównał z tablicami Huttona z 1804 r i z tablicami Vegi z 1794 r. 4. Gotowe matryce porównał z Vegą i z Calletem 5. Po wydrukowaniu znowu z Vegą i z tablicami Gardinera (1742 r.) i Taylora (1792 r.) - wykryto 9 błędów, poprawionych w 1831 r. - tablice miały opinię bezbłędnych, ale po 1915 r. znaleziono kolejne błędy
HISTORIA KOMPUTERÓW 2015/16. Bartosz Klin. klin@mimuw.edu.pl http://www.mimuw.edu.pl/~klin/
HISTORIA KOMPUTERÓW 2015/16 Bartosz Klin klin@mimuw.edu.pl http://www.mimuw.edu.pl/~klin/ Oś czasu Pascal Leibniz de Colmar Babbage 1600 1700 1800 1900 Pinwheel (wiatraczek) - alternatywa dla kół Leibniza
HISTORIA KOMPUTERÓW 2015/16. Bartosz Klin.
HISTORIA KOMPUTERÓW 2015/16 Bartosz Klin klin@mimuw.edu.pl http://www.mimuw.edu.pl/~klin/ Wczesne zegary mechaniczne - koniec XIII w.: wychwyt film: http://www.youtube.com/watch?v=uhfpb-zztyi Wczesne zegary
Jak liczono dawniej? 1
Jak liczono dawniej? 1 SPIS TREŚCI PALCE... 3 KAMIENIE... 4 SYSTEM KARBOWY... 5 ABAKUS:... 6 MECHANICZNY KALKULATOR LEONARDA DA VINCI:... 7 TABLICE NAPIERA:... 8 SUWAK LOGARYTMICZNY:... 9 MECHANICZNY KALKULATOR
Jako pierwszych do liczenia używano palców.
Jako pierwszych do liczenia używano palców. Kolejnymi przedmiotami do liczenia były kamienie. Małe, okrągłe kamyki mogły być używane do wyrażania większych liczb niż starcza na to palców, a posiadały one
1. Logarytm 2. Suwak logarytmiczny 3. Historia 4. Budowa suwaka 5. Działanie suwaka 6. Jak mnożyć na suwaku 7. Jak dzielić na suwaku 8.
1. Logarytm 2. Suwak logarytmiczny 3. Historia 4. Budowa suwaka 5. Działanie suwaka 6. Jak mnożyć na suwaku 7. Jak dzielić na suwaku 8. Jak podnosić do kwadratu liczby na suwaku 9. Dokładność obliczeń
Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu
Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu P. Strzelecki pawelst@mimuw.edu.pl Instytut Matematyki, Uniwersytet Warszawski MISH UW, semestr zimowy 2011-12 P.
HISTORIA KOMPUTERÓW 2015/16. Bartosz Klin.
HISTORIA KOMPUTERÓW 2015/16 Bartosz Klin klin@mimuw.edu.pl http://www.mimuw.edu.pl/~klin/ Oś czasu Napier Schickard Pascal Leibniz de Colmar Babbage 1500 1600 1700 1800 Metoda różnicowa - kolejne wartości
Działania na liczbach przybliżonych. Janusz Sławiński
Działania na liczbach przybliżonych Janusz Sławiński Łódź, czerwiec 2016 Matematyka ma wiele wspólnego z kobietami. Kobieta jest jak matematyka: Prof. dr Włodzimierz Krysicki, Źródło: W. Szymański Fabryka
PRZELICZANIE JEDNOSTEK MIAR
PRZELICZANIE JEDNOSTEK MIAR Kompleks zajęć dotyczący przeliczania jednostek miar składa się z czterech odrębnych zajęć, które są jednak nierozerwalnie połączone ze sobą tematycznie w takiej sekwencji,
HISTORIA KOMPUTERÓW 2014/15. Bartosz Klin.
HISTORIA KOMPUTERÓW 04/5 Bartosz Klin klin@mimuw.edu.pl http://www.mimuw.edu.pl/~klin/ Zaliczenie ćwiczeń - każdy uczestnik przygotuje prezentację -- ok. 30-45 minut -- można wygłaszać w parach, ale dłuższe
1. Operacje logiczne A B A OR B
1. Operacje logiczne OR Operacje logiczne są operacjami działającymi na poszczególnych bitach, dzięki czemu można je całkowicie opisać przedstawiając jak oddziałują ze sobą dwa bity. Takie operacje logiczne
qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq
qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq Izrael Abraham Staffel (maszyny liczące) wertyuiopasdfghjklzxcvbnmqwertyui
Mini komputer Papy'ego
Mini komputer Papy'ego Bartłomiej Zemlik Grzegorz Pieczara Klasa Va Szkoła Podstawowa im. Bohaterów Monte Cassino w Kętach ul. Wyspiańskiego, 32-650 Kęty Opiekun- dr Katarzyna Wadoń-Kasprzak Spis Treści
CZERWIEC klasa 2 MATEMATYKA. Obliczenia na podstawie kalendarza, określanie i zapisywanie dat (Moja matematyka, kl. II, cz. 2, s ).
34. tydzień nauki Powtórki przez pagórki Temat: Powtórki przez pagórki Obliczenia na podstawie kalendarza (Moja matematyka, kl. II, cz. 2, s. 12-13). Liczby, miary, plany, czas. Rozwiązywanie prostych
Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego
Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia
HISTORIA KOMPUTERÓW 2014/15. Bartosz Klin.
HISTORIA KOMPUTERÓW 2014/15 Bartosz Klin klin@mimuw.edu.pl http://www.mimuw.edu.pl/~klin/ Obliczenia Cyfrowe: Analogowe 756 * 32 24192 Liczby jako ciągi cyfr, bitów Liczby jako wielkości fizyczne Mezolabium
B.B. 2. Sumowanie rozpoczynamy od ostatniej kolumny. Sumujemy cyfry w kolumnie zgodnie z podaną tabelką zapisując wynik pod kreską:
Dodawanie dwójkowe Do wykonywania dodawania niezbędna jest znajomość tabliczki dodawania, czyli wyników sumowania każdej cyfry z każdą inną. W systemie binarnym mamy tylko dwie cyfry 0 i 1, zatem tabliczka
W przyszłość bez barier
Program zajęć dla dzieci z trudnościami w zdobywaniu umiejętności matematycznych w klasach I III w Szkole Podstawowej w Łysowie realizowany w ramach projektu W przyszłość bez barier PO KL.09.01.02-14-071/13
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 7
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 7 Zadanie domowe 0 = 4 4 + 4 4, 2 = 4: 4 + 4: 4, 3 = 4 4: 4 4, 4 = 4 4 : 4 + 4, 6 = 4 + (4 + 4): 4, 7 =
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 7
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 7 Zadanie domowe Zadanie domowe Liczby naturalne (Sztuka nauczania matematyki w szkole podstawowej i gimnazjum,
PRZEWODNIK DLA NAUCZYCIELI
11 PRZEWODNIK DLA NAUCZYCIELI Zabawki jako pomoce dydaktyczne Proponowane ćwiczenia Cyfry MATEMATYKA: cyfry ĆWICZENIA PSYCHOMOTORYCZNE: znajomość cyfr we wczesnym wieku ŚRODEK WYRAZU: muzyka koordynacja
PRZEKSZTAŁCANIE WZORÓW!
PRZEKSZTAŁCANIE WZORÓW! Przekształcanie wzorów sprawia na początku kłopoty. Wielu uczniów omija zadania gdzie trzeba to zrobić, albo uczy się niepotrzebnie na pamięć tych samych wzorów w innych postaciach.
algorytm przepis rozwiązania przedstawionego zadania komputer urządzenie, za pomocą którego wykonywane są algorytmy
Podstawowe pojęcia związane z informatyką: informatyka dziedzina wiedzy i działalności zajmująca się gromadzeniem, przetwarzaniem i wykorzystywaniem informacji, czyli różnego rodzaju danych o otaczającej
Zamiana ułamków na procenty oraz procentów na ułamki
Zamiana ułamków na procenty oraz procentów na ułamki Przedmowa Opracowanie to jest napisane z myślą o uczniach szkół podstawowych którzy całkowicie nie rozumieją o co chodzi w procentach. Prawie wszystko
HISTORIA KOMPUTERÓW 2015/16. Bartosz Klin.
HISTORIA KOMPUTERÓW 2015/16 Bartosz Klin klin@mimuw.edu.pl http://www.mimuw.edu.pl/~klin/ Zaliczenie ćwiczeń - każdy uczestnik przygotuje prezentację -- ok. 30-45 minut -- można wygłaszać w parach, ale
ARCHITEKTURA KOMPUTERÓW Systemy liczbowe
ARCHITEKTURA KOMPUTERÓW Systemy liczbowe 20.10.2010 System Zakres znaków Przykład zapisu Dziesiętny ( DEC ) 0,1,2,3, 4,5,6,7,8,9 255 DEC Dwójkowy / Binarny ( BIN ) 0,1 11111 Ósemkowy ( OCT ) 0,1,2,3, 4,5,6,7
Jak nie zostać niewolnikiem kalkulatora? Obliczenia pamięciowe i pisemne.
Jak nie zostać niewolnikiem kalkulatora? Obliczenia pamięciowe i pisemne. W miarę postępu techniki w niepamięć odeszły nawyki do wykonywania pisemnych albo pamięciowych obliczeń. O suwaku logarytmicznym,
ARCHITEKTURA KOMPUTERÓW Liczby zmiennoprzecinkowe
ARCHITEKTURA KOMPUTERÓW 17.11.2010 Liczby zmiennoprzecinkowe Sprawa bardzo podobna jak w systemie dziesiętnym po przecinku mamy kolejno 10-tki do ujemnych potęg, a w systemie binarnym mamy 2-ki w ujemnych
Kilka prostych programów
Ćwiczenie 1 Kilka prostych programów Ćwiczenie to poświęcone jest tworzeniu krótkich programów, pozwalających na zapoznanie się z takimi elementami programowania jak: definiowanie stałych, deklarowanie
Rozkład materiału z matematyki dla II klasy liceum i technikum zakres podstawowy (37 tyg. 3 godz. = 111 godz.)
Rozkład materiału z matematyki dla II klasy liceum i technikum zakres podstawowy (37 tyg. 3 godz. = godz.) Ramowy rozkład materiału I. Podstawowe własności figur geometrycznych na płaszczyźnie, cz. 2...
wolniejsze uczenie wypowiadanych sekwencji językowych, trudności w odczytaniu liczb (szczególnie zawierających zera), trudności w pisaniu liczb (np.
wolniejsze uczenie wypowiadanych sekwencji językowych, trudności w odczytaniu liczb (szczególnie zawierających zera), trudności w pisaniu liczb (np. opuszczanie, dodawanie, zamiana cyfr w liczbach), trudności
LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q
LABORAORIUM PROCESORY SYGAŁOWE W AUOMAYCE PRZEMYSŁOWEJ Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q 1. Zasady arytmetyki stałoprzecinkowej. Kody stałopozycyjne mają ustalone
Zdolności arytmetyczne
Zdolności arytmetyczne Zdolności arytmetyczne Nabywanie, przechowywanie i wydobywanie z pamięci długotrwałej wiedzy o faktach arytmetycznych Trwałe opanowywanie wiedzy proceduralnej i jej stosowanie Koncepcyjna
Mechanik warszawski Abraham Izrael Staffel (1814-1885) i jego wynalazki
Mechanik warszawski Abraham Izrael Staffel (1814-1885) i jego wynalazki Ewa Wyka, Muzeum Uniwersytetu Jagiellońskiego, Kraków, Polska W historii rozwoju i wytwórczości przyrządów pomiarowych, polscy mechanicy
12. ILE TO KOSZTUJE CZYLI OD ZAGADKI DO ZADANIA TEKSTOWEGO, CZ. I
56 Mirosław Dąbrowski 12. ILE TO KOSZTUJE CZYLI OD ZAGADKI DO ZADANIA TEKSTOWEGO, CZ. I Cele ogólne w szkole podstawowej: zdobycie przez uczniów umiejętności wykorzystywania posiadanych wiadomości podczas
SPRAWOZDANIE Z ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI DLA KLAS IV-VII
Tytuł projektu: Lokata w dziecięce umysły Zadanie nr 3 : Zajęcia wyrównawcze z matematyki dla klas IV-VII Imię i nazwisko osoby prowadzącej zajęcia: Dorota Siejkowska SPRAWOZDANIE Z ZAJĘĆ WYRÓWNAWCZYCH
SCENARIUSZ ZAJĘĆ KOŁA NAUKOWEGO z MATEMATYKI. prowadzonego w ramach projektu Uczeń OnLine
SCENARIUSZ ZAJĘĆ KOŁA NAUKOWEGO z MATEMATYKI 1. Autor: Anna Wołoszyn prowadzonego w ramach projektu Uczeń OnLine 2. Grupa docelowa: klasa 1 Gimnazjum 3. godzin: 1 4. Temat zajęć: Obliczanie wartości liczbowej
A) 0,84; B) 8,4; C) 0,084; D) 0,0084; jest równa: ; C) 1; D) 0;
MATEMATYKA kl. VI Liczby wymierne Wersja A 1. Wynikiem dodawania ułamków i 4 jest: A) 7 ; B) 1 ; C) 1 1 ; D) 6 7 ;. Liczbę 0,1 można zapisać w postaci ułamka: A) 1,; B). Wynikiem mnożenia 0,7 0,1 jest:
Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne
Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)
Przeszłość i Przyszłość Informatyki
Przeszłość i Przyszłość Informatyki Maciej M. Sysło Uniwersytet Wrocławski syslo@ii.uni.wroc.pl Łączą nas ludzie nie maszyny Plan Nie rozstrzygnę : Kto jest ojcem komputerów: Który komputer był pierwszy:
ZADANIA DOMOWE STYCZNIA
ZADANIA DOMOWE 21-22 STYCZNIA Szkoła Podstawowa Klasa 0a Klasa 0b Klasa Ia Klasa Ib Klasa Ic ZESZYT ĆWICZEŃ CZ. 3- zad. 4 str. 4, zad. 4 str. 5 Dokończyć str. 21 z karty pracy. Klasa Id Dokończyć str.
MAJ klasa 2 MATEMATYKA. Temat: Jak dodajemy? Jak odejmujemy?
30. tydzień nauki Jak dodajemy? Jak odejmujemy? Temat: Jak dodajemy? Jak odejmujemy? Zapisywanie liczby dwucyfrowej jako sumy liczb. Praca samodzielna zapisywanie liczby 100 jako sumy różnych składników
Wymagania edukacyjne z matematyki na poszczególne śródroczne oceny klasyfikacyjne dla klasy IV w roku 2019/2020.
Wymagania edukacyjne z matematyki na poszczególne śródroczne oceny klasyfikacyjne dla klasy IV w roku 2019/2020. Ocenę niedostateczną otrzymuje uczeń, który nie spełnia wymagań edukacyjnych niezbędynych
HISTORIA KOMPUTERÓW 2014/15. Bartosz Klin. klin@mimuw.edu.pl http://www.mimuw.edu.pl/~klin/
HISTORIA KOMPUTERÓW 2014/15 Bartosz Klin klin@mimuw.edu.pl http://www.mimuw.edu.pl/~klin/ Elektryczność - Michael Faraday (1831): indukcja elektromagnetyczna, silnik - Thomas Edison: żarówka (1879), pierwsza
DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH.
DZIAŁANIA NA UŁAMKACH DZIESIĘTNYCH. Dodawanie,8 zwracamy uwagę aby podpisywać przecinek +, pod przecinkiem, nie musimy uzupełniać zerami z prawej strony w liczbie,8. Pamiętamy,że liczba to samo co,0, (
Logarytmy. Historia. Definicja
Logarytmy Historia Logarytmy po raz pierwszy pojawiły się w książce szkockiego matematyka - Johna Nepera "Opis zadziwiających tablic logarytmów" z 1614 roku. Szwajcarski astronom i matematyk Jost Burgi
Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych. Opiekun stypendystki: mgr Jerzy Mil
Katarzyna Bereźnicka Zastosowanie arkusza kalkulacyjnego w zadaniach matematycznych Opiekun stypendystki: mgr Jerzy Mil 1 Działania na ułamkach Wyłączanie całości z dodatnich ułamków niewłaściwych Formuła
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 2
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 2 Zadanie domowe Rozwiązanie zadania: o rozumowanie ucznia ( wzroczne, wycięcie i nałożenie, złożenie) o
Kod U2 Opracował: Andrzej Nowak
PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał Ludzki Priorytet 9 Działanie 9.1 Poddziałanie
2014-10-15. Historia komputera. Architektura komputera Historia komputera. Historia komputera. Historia komputera. Historia komputera
Architektura komputera dr inż. Tomasz Łukaszewski 1 2 500 p.n.e: pierwsze liczydło (abakus) Babilonia. 1614kostkiJohnaNapiera szkockiego matematyka pozwalające dodawać i odejmować 3 4 1621suwak logarytmicznyopracowany
Co to jest niewiadoma? Co to są liczby ujemne?
Co to jest niewiadoma? Co to są liczby ujemne? Można to łatwo wyjaśnić przy pomocy Edukrążków! Witold Szwajkowski Copyright: Edutronika Sp. z o.o. www.edutronika.pl 1 Jak wyjaśnić, co to jest niewiadoma?
Ocenę wyższą otrzymuje uczeń, który spełnia wszystkie wymagania ocen niższych pozytywnych.
KRYTERIA WYMAGAŃ NA POSZCZEGÓLNE OCENY SZKOLNE Przedmiot: matematyka Klasa: 4 Ocenę wyższą otrzymuje uczeń, który spełnia wszystkie wymagania ocen niższych pozytywnych. OCENA CELUJĄCA Doskonale opanował
Wakacje z robotami RoboCAMP Opis zajęć dla dzieci w wieku 9-14 lat
Wakacje dla dzieci 2012 Łódź 30 lipca 3 sierpnia 6 sierpnia - 10 sierpnia Wakacje z robotami RoboCAMP Opis zajęć dla dzieci w wieku 9-14 lat Uniwersytet Łódzki i RoboNET - Wspólnie zmieniamy edukację w
Scenariusz zajęć z wykorzystaniem TIK klasa IIc Temat dnia: Jak to się zaczęło?
Scenariusz zajęć z wykorzystaniem TIK klasa IIc Temat dnia: Jak to się zaczęło? Cel: 1. Uczeń potrafi opowiedzieć historię powstania alfabetu; 2. Układa i pisze zdania; 3. Odczytuje hasło z zaszyfrowanych
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
Wszystkie znaki występujące w tekście są zastrzeżonymi znakami firmowymi bądź towarowymi ich właścicieli.
Wszelkie prawa zastrzeżone. Nieautoryzowane rozpowszechnianie całości lub fragmentu niniejszej publikacji w jakiejkolwiek postaci jest zabronione. Wykonywanie kopii metodą kserograficzną, fotograficzną,
Dodawanie liczb binarnych
1.2. Działania na liczbach binarnych Liczby binarne umożliwiają wykonywanie operacji arytmetycznych (ang. arithmetic operations on binary numbers), takich jak suma, różnica, iloczyn i iloraz. Arytmetyką
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 2 Teoria liczby rzeczywiste cz.2
1 POTĘGI Definicja potęgi ł ę ę > a 0 = 1 (każda liczba różna od zera, podniesiona do potęgi 0 daje zawsze 1) a 1 = a (każda liczba podniesiona do potęgi 1 dają tą samą liczbę) 1. Jeśli wykładnik jest
Kryteria ocen z matematyki w klasie IV
Kryteria ocen z matematyki w klasie IV odejmuje liczby w zakresie 100 z przekroczeniem progu dziesiętnego, zna kolejność wykonywania działań, gdy nie występuję nawiasy, odczytuje współrzędne punktu na
Historia komputerów. Szkoła Podstawowa nr 8 im. Jana Wyżykowskiego w Lubinie
Historia komputerów Informatyka - dziedzina nauki, która zajmuje się przetwarzaniem informacji przy pomocy komputerów i odpowiedniego oprogramowania. Historia informatyki: Pierwszymi narzędziami, które
... Dyrekcja ... Uzasadnienie. wniosku: * wypełnia rodzic/prawny opiekun lub pełnoletni uczeń
Dyrekcja (nazwa i adres szkoły) Wniosek o przeprowadzenie badań diagnostycznych w celu wydania opinii w sprawie specyficznych trudności w uczeniu się matematyki u ucznia gimnazjum/ szkoły ponadgimnazjalnej
Matematyka Fragmenty programu nauczania dla szkoły podstawowej klasy 4
Matematyka Fragmenty programu nauczania dla szkoły podstawowej klasy 4 Anna Konstantynowicz, Adam Konstantynowicz, Bożena Kiljańska, Małgorzata Pająk, Grażyna Ukleja [ ] 2. Szczegółowe cele kształcenia
LISTA 1 ZADANIE 1 a) 41 x =5 podnosimy obustronnie do kwadratu i otrzymujemy: 41 x =5 x 5 x przechodzimy na system dziesiętny: 4x 1 1=25 4x =24
LISTA 1 ZADANIE 1 a) 41 x =5 podnosimy obustronnie do kwadratu i otrzymujemy: 41 x =5 x 5 x przechodzimy na system dziesiętny: 4x 1 1=25 4x =24 x=6 ODP: Podstawą (bazą), w której spełniona jest ta zależność
... Dyrekcja ... Uzasadnienie wniosku: * wypełnia rodzic/prawny opiekun lub pełnoletni uczeń
Dyrekcja (nazwa i adres szkoły) Wniosek o przeprowadzenie badań diagnostycznych w celu wydania opinii w sprawie ponadpodstawowej w Poradni Psychologiczno- Pedagogicznej Na podstawie 3 ust 2 i 3 rozporządzenia
Odejmowanie ułamków i liczb mieszanych o różnych mianownikach
Przedmowa Odejmowanie ułamków i liczb mieszanych o różnych mianownikach To opracowanie jest napisane z myślą o uczniach klas 4 szkół podstawowych którzy po raz pierwszy spotykają się z odejmowaniem ułamków
Nauka organizacji i zarządzania. ćwiczenia - mgr Barbara Zyzda
Nauka organizacji i zarządzania ćwiczenia - mgr Barbara Zyzda Zasady zaliczenia ćwiczeń z Nauki 1.Obecność na ćwiczeniach: organizacji i zarządzania dozwolona jest jedna nieusprawiedliwiona nieobecność,
Matematyka z plusem Klasa IV
Matematyka z plusem Klasa IV KLASA IV SZCZEGÓŁOWE CELE EDUKACYJNE KSZTAŁCENIE Rozwijanie sprawności rachunkowej Wykonywanie jednodziałaniowych obliczeń pamięciowych na liczbach naturalnych. Stosowanie
Algorytm Euklidesa. Największy wspólny dzielnik dla danych dwóch liczb całkowitych to największa liczba naturalna dzieląca każdą z nich bez reszty.
Algorytm Euklidesa Algorytm ten, jak wskazuje jego nazwa, został zaprezentowany przez greckiego matematyka - Euklidesa, żyjącego w w latach około 300r. p.n.e., w jego podstawowym dziele pt. Elementy. Algorytm
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV. Dział programowy: DZIAŁANIA W ZBIORZE LICZB NATURALNYCH
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: DZIAŁANIA W ZBIORZE LICZB NATURALNYCH dodawać w pamięci
Kompendium wiedzy dla gimnazjalisty. Matematyka
Kompendium wiedzy dla gimnazjalisty Matematyka Tekst: Anna Augustyn Konsultacja merytoryczna: Katarzyna Kabzińska Ilustracje: Maciej Maćkowiak Redakcja: Elżbieta Wójcik Korekta: Natalia Kawałko Projekt
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać
Ćwiczenia z ułamkami
Ćwiczenia z ułamkami Wstęp Ułamki występują w sytuacjach życia codziennego. Jeżeli na przykład chcemy podzielić między kilka osób tabliczkę czekolady, to każda osoba dostanie pewną jej część. Te części
Ułamki zwykłe. mgr Janusz Trzepizur
Ułamki zwykłe mgr Janusz Trzepizur Ułamek jako część całości W ułamku wyróżniamy licznik i mianownik. kreska ułamkowa licznik mianownik (czytamy: jedna druga) czyli połowa całości. Dwie takie połowy tworzą
ROZKŁAD MATERIAŁU DLA KLASY IV SZKOŁY PODSTAWOWEJ
ROZKŁAD MATERIAŁU DLA KLASY IV SZKOŁY PODSTAWOWEJ Prezentowany rozkład materiału jest zgodny z nową podstawą programową z 23 grudnia 2008 r., obowiązującą w klasie IV od roku szkolnego 202/203 oraz stanowi
Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)
Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby
Środki dydaktyczne Zestaw zadań/pytań z działu Mnożenie i dzielenie ułamków zwykłych. Każde pytanie znajduje się na osobnej karteczce.
Scenariusz lekcji I. Cele lekcji ) Wiadomości Uczeń zna: a) algorytm mnożenia ułamków zwykłych i liczb mieszanych przez liczby naturalne, b) sposób obliczania ułamka z liczby, c) algorytm mnożenia liczb
WYŚCIG MATEMATYCZNY BIG. zawartość pudełka: 1) tabliczki - 96 szt. 2) pionek - 1 szt. 3) plansza 4) kostka 5) instrukcja INSTRUKCJA
INSTRUKCJA WYŚCIG MATEMATYCZNY BIG gra edukacyjna dla 2 5 osób rekomendowany wiek: od lat 10 zawartość pudełka: 1) tabliczki - 96 szt. 2) pionek - 1 szt. 3) plansza 4) kostka 5) instrukcja 1 Po rozpakowaniu
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV Nauczyciel: Jacek Zoń WYMAGANIA EDUKACYJNE NA OCENĘ DOPUSZCZAJĄCĄ DLA KLASY IV : 1. przeczyta i zapisze liczbę wielocyfrową (do tysięcy) 2. zna nazwy rzędów
Matematyka, kl. 5. Konieczne umiejętności
Matematyka, kl. 5 Liczby i działania Program Matematyka z plusem Ocena Konieczne umiejętności Opanowane algorytmy pisemnego dodawania, odejmowania, mnożenia i dzielenia liczb naturalnych. Prawidłowe wykonywanie
Program zajęć wyrównawczych z zakresu edukacji polonistycznej i matematycznej w kształceniu zintegrowanym klasa III B
. Program zajęć wyrównawczych z zakresu edukacji polonistycznej i matematycznej w kształceniu zintegrowanym klasa III B Program powstał w celu wyrównania szans edukacyjnych dzieci z brakami w wiadomościach
Scenariusz zajęć nr 1
Autor scenariusza: Małgorzata Marzycka Blok tematyczny: Świat liczb Scenariusz zajęć nr 1 Temat dnia: Liczba 11. I. Czas realizacji: 2 jednostki lekcyjne. II. Czynności przed lekcyjne: przygotowanie sprzętu
Przedmiotowy System Oceniania. Kryteria oceniania uczniów w klasach I III. Szkoły Podstawowej. Zespołu Szkół im. H. Sienkiewicza w Grabowcu
Przedmiotowy System Oceniania Kryteria oceniania uczniów w klasach I III Szkoły Podstawowej Zespołu Szkół im. H. Sienkiewicza w Grabowcu Przedmiotowy System Oceniania jest zgodny z Rozporządzeniem MEN
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4
WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KL. 4 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne, tzn.: 1. posiada i
Operacje arytmetyczne
PODSTAWY TEORII UKŁADÓW CYFROWYCH Operacje arytmetyczne Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ Dodawanie dwójkowe Opracował: Andrzej Nowak Ostatni wynik
... Dyrekcja ... Uzasadnienie wniosku: * wypełnia rodzic/prawny opiekun lub pełnoletni uczeń
Dyrekcja (nazwa i adres szkoły) Wniosek o przeprowadzenie badań diagnostycznych w celu wydania opinii w sprawie ponadgimnazjalnej w Poradni Psychologiczno- Pedagogicznej Na podstawie 6 ust 2 i 3 rozporządzenia
Technologie Informacyjne
page.1 Technologie Informacyjne Wersja: 4 z drobnymi modyfikacjami! Wojciech Myszka 2013-10-14 20:04:01 +0200 page.2 Cel zajęć Cele zajęć: Uaktualnienie i ujednolicenie wiedzy/terminologii oraz zdobycie
Wymagania edukacyjne z matematyki : Matematyka z plusem GWO
klasy Ewy Pakulskiej Wymagania edukacyjne z matematyki : Matematyka z plusem GWO KLASA IV Rozwijanie sprawności rachunkowej Wykonywanie jednodziałaniowych obliczeń pamięciowych na liczbach naturalnych.
LUTY klasa 2 MATEMATYKA
20. tydzień nauki Jak dzielimy? Temat: Jak dzielimy? Dzielenie czynnościowe: jako podział na równe części i rozmieszczanie elementów 7.6 po tyle samo. Dzielenie w zakresie 30. Wprowadzenie znaku dzielenia.
LICZENIE NA LICZYDLE
www..pl LICZENIE NA LICZYDLE Liczydło polskie i zapis liczb Zaokrąglanie liczb na liczydle Dodawanie na liczydle Odejmowanie na liczydle Mnożenie na liczydle Dzielenie na liczydle Bibliografia LICZYDŁO
Indukcja matematyczna
Indukcja matematyczna Zadanie 1 Wykazać, że dla dowolnego prawdziwa jest równość: Do obu stron założenia indukcyjnego należy dodać brakujący wyraz. Sprawdzamy prawdziwość równości (1) dla. Prawa strona:.
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV Dostateczny LICZBY NATURALNE Wyjaśnianie znaczenia liczb w życiu codziennym. Tworzenie dowolnych liczb z podanych cyfr w zakresie 100. Wskazywanie rzędów: jedności,
Ekran tytułowy (menu główne)
Wstęp Ten multimedialny program edukacyjny przeznaczony jest dla uczniów szkół podstawowych. Oferując ciekawe zadania tekstowe, służy przede wszystkim doskonaleniu umiejętności matematycznych. Program
Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4
Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4 Kategorie zostały określone następująco: dotyczy wiadomości uczeń zna uczeń rozumie dotyczy przetwarzania
SCENARIUSZ LEKCJI MATEMATYKI W KLASIE 1 GIMNAZJUM
SCENARIUSZ LEKCJI MATEMATYKI W KLASIE GIMNAZJUM Temat: Ćwiczenia w dodawaniu i odejmowaniu liczb wymiernych Cele ogólne: - utrwalenie reguł dodawania i odejmowania liczb wymiernych, - wyrabianie sprawności
Analiza mechanizmu korbowo-suwakowego
Cel ćwiczenia: Metody modelowania i symulacji kinematyki i dynamiki z wykorzystaniem CAD/CAE Laboratorium I Analiza mechanizmu korbowo-suwakowego Celem ćwiczenia jest zapoznanie ze środowiskiem symulacji
SPECYFICZNE TRUDNOŚCI W UCZENIU SIĘ MATEMATYKI DYSKALKULIA
SPECYFICZNE TRUDNOŚCI W UCZENIU SIĘ MATEMATYKI DYSKALKULIA DEFINICJA DYSKALKULII Dyskalkulia rozwojowa jest strukturalnym zaburzeniem zdolności matematycznych, mającym swe źródło w genetycznych lub wrodzonych
Schematy blokowe I. 1. Dostępne bloki: 2. Prosty program drukujący tekst.
Schematy blokowe I Jeżeli po schematach blokowych będzie używany język C, to należy używać operatorów: '&&', ' ', '!=', '%' natomiast jeśli Ruby to 'and', 'or', '%', '!='. 1. Dostępne bloki: a) początek:
KRYTERIA OCENIANIA W KLASIE III. przygotowane teksty czyta płynnie, wyraziście i w pełni rozumie ich treść;
KRYTERIA OCENIANIA W KLASIE III wyraża myśli w formie wielozdaniowej wypowiedzi; słucha i w pełni rozumie wypowiedzi innych; przygotowane teksty czyta płynnie, wyraziście i w pełni rozumie ich treść; bezbłędnie
Podstawy informatyki. Informatyka stosowana - studia niestacjonarne. Grzegorz Smyk
Podstawy informatyki Informatyka stosowana - studia niestacjonarne Grzegorz Smyk Wydział Inżynierii Metali i Informatyki Przemysłowej Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie, Materiał