, to niepewność sumy x

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download ", to niepewność sumy x"

Transkrypt

1 Wydział Fizyi UW (wersja instrucji 04.04a) Pracownia fizyczna i eletroniczna dla Inżynierii Nanostrutur oraz Energetyi i Chemii Jądrowej Ćwiczenie 6 Elementy testowania hipotez (z błędami złożonymi) oraz statystycznej analizy wyniów, - propagacja małych błędów - test zgodności 3-sigma - histogram rozładu statystycznego parametrów serii diod. Cel Celem części (a) ćwiczenia jest zastosowanie metod rachunu błędów do wyznaczania błędów złożonych w przypadu, gdy zależność wyniu jest dowolną znaną funcją mierzonych wielości. Metoda propagacji małych błędów będzie zastosowana przy testowaniu zgodności hipotez metodą testu 3-sigma. Metoda propagacji małych błędów jest rozszerzeniem metody szacowania błędu złożonego poznanej w ćwiczeniu C jedynie dla sumy i różnicy wielości mierzonych. Celem części (b) ćwiczenia jest zbadanie statystycznego rozładu wartości napięcia przewodzenia U p dla diody półprzewodniowej w warunach stałego prądu dla długiej serii nominalnie identycznych diod. Poprawne wyonanie zadania wymaga starannego i szczegółowego zbadania efetów systematycznych związanych z doładnością przyrządów i metodą pomiarową. Wynii przedstawione zostaną na histogramie, tóry będzie następnie porównany z rozładem Gaussa o parametrach (wartości średniej i dyspersji) wyznaczonych z pomiarów serii diod. Przypomnienie. Propagacja małych błędów W ćwiczeniu C poznaliśmy zasadę obliczania niepewności dla sumy lub różnicy dwu niezależnie mierzonych wielości, tóra była następująca. Jeśli znane są wartości mierzone i ich niepewności x0 ± σ x oraz y0 ± σ y, to niepewność sumy x 0 + y0 lub różnicy x0 y0 wynosi σ = σ x + σ y, jeśli niepewności wielości mierzonych możemy tratować jao niezależne. Uogólnienie tego wzoru na dowolną funcję wielości mierzonych x oraz y daną wzorem z = f ( x, y) ma następującą postać: f f σ z σ = x + σ y, x x0, y y 0 x0, y0 i wyni wyznaczenia wartości funcji f wynosi: f ( x0, y0) ± σ z. I analogicznie dla więszej ilości zmiennych. Taa metoda obliczania niepewności pomiaru nosi nazwę metody propagacji małych błędów.. Test zgodności 3 σ Test 3 σ jest jedną z metod sprawdzania hipotez. otyczy sprawdzenia zgodności wyniów doświadczeń z przewidywaniami teoretycznymi lub sprawdzania wzajemnej zgodności wyniów różnych pomiarów. Test 3σ, spotyany w dwóch typach zagadnień:

2 Hipoteza teoretyczna głosi, że wielość mierzona ma wartość µ. Wyni pomiaru x tej wielości jest oreślony z dyspersją (niepewnością pomiaru) σ, gdzie σ jest pierwiastiem wadratowym z wariancji σ. Test prowadzimy w ten sposób, że wyznaczamy wartość x µ i sprawdzamy, ja uzysana wartość ma się do wartości 3σ. Jeśli x µ > 3σ, to odrzucamy hipotezę teoretyczną o wartości µ wielości mierzonej. Jeśli zaś x µ 3σ, to onludujemy, że hipoteza ta nie jest sprzeczna z danymi z pomiaru. Hipoteza teoretyczna głosi, że dwa pomiary uzysane różnymi metodami (w różnych warunach) dają tą samą wartość. Niech wyni x uzysany jedną metodą będzie oreślony z dyspersją σ x, zaś wyni y uzysany drugą metodą będzie oreślony z dyspersją σ y. Test prowadzimy w ten sposób, że wyznaczamy wartość x y i sprawdzamy, ja wartość ta ma się do wartości 3σ, gdzie σ = σ + σ. Jeśli x y x y > 3σ, to odrzucamy hipotezę, że oba pomiary dają tę samą wartość. Jeśli zaś spełniony jest warune x y 3σ, to onludujemy, że hipoteza ta nie jest sprzeczna z danymi. Przypominamy, że w przypadu, gdy test 3σ nie odrzuca hipotezy, nie oznacza to, że udowodniliśmy jej słuszność, a jedynie godzimy się z nią, gdyż nie jest sprzeczna z danymi z pomiaru. Jeśli pomiary opisywane się rozładem Gaussa, to testowi można nadać interpretację probabilistyczną: dopuszczamy odrzucenie prawdziwej hipotezy nie częściej niż 3 razy na 000 decyzji. Zastąpienie testu 3σ analogicznym testem σ oznacza odrzucanie prawdziwej hipotezy nie częściej niż raz na 0 decyzji. 3. Niepewności pomiarowe miernia uniwersalnego Brymen 805. Mierni uniwersalny Brymen 805 charateryzują następujące parametry dotyczące pomiarów natężenia prądu stałego, napięcia stałego i oporności (w temperaturze 3ºC ± 5ºC, wilgotności względnej poniżej 75% i miejscu użycia poniżej 000 m nad poziomem morza wpływ ciśnienia): Natężenie prądu stałego (C) zares amperomierza oładność: w + nc Oporność wejściowa 400,0 µa,0% + 5c 50 Ω 4000 µa,% + 3c 50 Ω 40,00 ma,0% + 5c 3,3 Ω 400,0 ma,% + 3c 3,3 Ω 4,000 A,0% + 5c 0,03 Ω 0,00 A,% + 3c 0,03 Ω Napięcie stałe (C) zares woltomierza oładność: w + nc Oporność wejściowa 400,0 mv 0,3% + 4c GΩ 4,000 V; 40,00 V; 400,0 V 0,5% + 3c 0 MΩ 000 V,0% + 4c 0 MΩ

3 Oporność zares omomierza oładność: w + nc 400,0 Ω 0,8% + 6c 4,000 Ω; 40,00 Ω; 400,0 Ω 0,6% + 4c 4,000 MΩ,0% + 4c 40,00 MΩ,0% + 4c Tabela. opuszczalny błąd graniczny wsazań miernia uniwersalnego Brymen 805. Zares pomiarowy miernia rozpoznajemy po formacie liczbowym wyświetlanego wyniu. Przypominamy: dopuszczalny błąd graniczny wsazania miernia na danym zaresie pomiarowym wyznacza się na podstawie wzoru: w = x + nc, 00 gdzie poszczególne wielości oznaczają: w doładność wsazanej wartości x wyrażona jao ułame wartości zmierzonej na wybranym zaresie pomiarowym (w tabeli powyżej uazana w formie procentu odczytu). Przyład. Jeśli producent podaje doładność w = 0,5% na wybranym zaresie pomiarowym, to dla wsazania 30,00 V wyniesie ona 30,00 V 0,005 = 0,5 V. nc doładność cyfrowa oreślana jao liczba n najmniej znaczących jednoste c odczytu zależy ona od wybranego zaresu pomiarowego i jaości przetwornia A/C, a nie zależy od wartości uzysanej w pomiarze. Przyład. Jeśli producent podaje, że na zaresie pomiarowym 40,00 V C doładność wynosi 3c, to znaczy, że wartość doładna może się różnić masymalnie dodatowo o ± 0,03 V od odczytanej wartości. Sumując obie wartości otrzymamy dopuszczalny błąd graniczny pomiaru przy wsazaniu 30 V równą: = 0,5V + 0,03V = 0,8 V (co stanowi 0,6%) dla zaresu 40,00 V C. Wyonując analogiczne obliczenia dla tej samej wartości mierzonej na niewłaściwie dobranym zaresie 400,0 V C, przy tych samych parametrach doładności, otrzymamy dopuszczalny błąd graniczny: = 0,5 V + 0,3 V = 0,45 V, co stanowi,5% wartości. Zestaw doświadczalny do dyspozycji Częśc (a): - płyta pomiarowa do badania diody (z lutowaniem) - zestaw 5 oporniów o wartościach iloomowych, w tym oporni Ω, - zasilacz stałego napięcia, - mierni uniwersalny Brymen 805, - acesoria pomocnicze: able łączeniowe, chwytai pomiarowe, cyna i olba lutowniczą. Częśc (b) - dodatowo zestaw 00 diod eletroluminescencyjnych (LE) (wspólny z innymi zespołami w sali) 3

4 Część (a) Zadanie. Niepewność napięcia wyjściowego w dzielniu napięć. W uładzie dzielnia napięć, gdzie w obwodzie wejściowym znajdują się połączone szeregowo opornii R i r, napięcie wyjściowe jest pobierane z opornia r. Znając niepewności napięcia wejściowego σ Uwe oraz niepewności oporności σ R i σ r wyprowadź wzór na niepewność napięcia wyjściowego σuwy stosując metodę propagacji małych błędów. r Napięcie wyjściowe dzielnia jest wyznaczone wzorem: U wy = U we R + r Wyprowadzenie wzoru na niepewność jest do wyonania w domu przed ćwiczeniami. Podczas ćwiczeń zbuduj uład dzielnia napięcia z dwu wybranych oporniów, wcześniej zmierz te opornii omomierzem ja najdoładniej oraz wyznacz niepewności pomiaru oporności. Ustaw na zasilaczu napięcie z przedziału 3-6V oraz zmierz je ja najdoładniej i wyznacz niepewność jego pomiaru. Zmierz napięcie wyjściowe U ze zbudowanego zmierzone wy dzielnia. Sprawdź przy użyciu testu hipotez 3 σ czy otrzymane wartości napięcia zmierzone wyjściowego obliczonego ± σ i zmierzonego U ± σ są ze sobą obliczone U wy obl zgodne. Oblicz też moc wydzielaną na oporniu r i niepewność tej wartości dla użytych wartości oporności i napięcia wejściowego orzystając z propagacji małych błędów. wy zm Zadanie. Przy łączeniu równoległym oporniów oporność wypadowa jest oreślona wzorem: R = + wyp R R. Oblicz z tego wzoru, orzystając z metody propagacji małych błędów, jaa jest niepewność oporności wypadowej znając niepewności wartości R i R. Wyprowadzenie wzoru na niepewność jest do wyonania w domu przed ćwiczeniami. Wybierz z zestawu oporniów dwa dowolne opornii, zmierz ja najdoładniej ich wartości oraz wyznacz niepewności ich pomiaru. Następnie połącz opornii równolegle i zmierz oporność wypadową oraz wyznacz niepewność pomiaru. Sprawdź przy użyciu testu 3 σ czy wartości oporności wypadowej obliczona i zmierzona są ze sobą zgodne. Zadanie 3. zielni napięcia z diodą LE. W dzielniu napięć wlutuj jao oporni wejściowy R oporni Ω oraz zastąp oporni wyjściowy r diodą LE włączoną w ierunu przewodzenia. Wiedząc, że napięcie przewodzenia dla diody LE świecącej w olorze czerwonym (wyonanej z GaAsP, typ diody L-53IT lub LI-53LI firmy Kingbright) wynosi:.7 V przy prądzie diody ma, dla opornia R= Ω dobierz przez obliczenie taie napięcie z zasilacza, aby prąd diody wynosił ± 0. ma. o oceny napięcia z zasilacza spełniającego ten warune przyjmij, że napięcie panujące na diodzie LE gdy płynie przez nią prąd ma jest równe powyższej wartości napięcia przewodzenia. Najpierw wyonaj obliczenia napięcia z zasilacza, potem zbuduj uład i dopiero włącz napięcie w zasilaczu. 4

5 Nie należy: () podłączać diody bezpośrednio (tj. bez opornia) do zasilacza, () podłączać diody do wyższego napięcia niż 5V w ierunu zaporowym, gdyż może spowodować to zniszczenie diody. Przepuszczenie przez diodę LE prądu o natężeniu zbyt dużym (dopuszczalne oreślane przez producenta diody LE typu L-53IT lub LI-53LI masymalne natężenie prądu w ierunu przewodzenia wynosi 30mA) powoduje zniszczenie diody. Zmierz amperomierzem ja najdoładniej jaie natężenie prądu płynie przez diodę oraz wyznacz niepewność zmierzonej wartości, pomiar wyonaj na zaresie amperomierza ma (na tym zaresie omomierz ma małą oporność wejściową). Zmierz taże ja najdoładniej wartość napięcia panującego na diodzie i wyznacz jego niepewność. Czy obliczenia załadające, że na diodzie panuje napięcie równe napięciu przewodzenia było poprawne? Załadamy słuszność dla badanej diody LE wzoru diodowego Shocley a e U M T I = I0 e, gdzie U napięcie panujące na diodzie, w wyładniu wartość e to T ładune elementarny, = R/N A to stała Boltzmanna, wartość = 5 mv dla temperatury e poojowej o C, I 0 to prąd wsteczny nasycenia diody, M to współczynni nieidealności diody, o tórym załadamy, że wynosi w przybliżeniu.3. Oblicz wartość prądu wstecznego nasycenia I 0 diody LE na podstawie zmierzonych wartości prądu diody i napięcia na diodzie. Wyznacz niepewność obliczonej wartości prądu I 0. W niepewności uwzględnij również niepewność współczynnia nieidealności diody, załadamy, że M =.3± 0.3. Oreśl tóra z niepewności uwzględnionych wielości ma najwięszy wpływ na niepewność wyznaczonej wartości I 0. Wzór na niepewność wartości I 0 wyprowadź w domu przed ćwiczeniami. Częśc (b) WSTĘP Celem tej części ćwiczenia jest zbadanie rozładu wartości napięcia przewodzenia U p w warunach stałego prądu dla długiej serii nominalnie identycznych diod. Poprawne wyonanie zadania wymaga starannego i szczegółowego zbadania efetów systematycznych związanych z doładnością przyrządów i metodą pomiarową. Pomiaru napięcia doonuje się za pomocą uładu zbudowanego z opornia wzorcowego oraz diody. Uład zasilany jest stałym napięciem. Uład jest zbudowany wg schematu z rysunu (źródłem napięcia U Z jest zasilacz napięcia stałego). U Z R U V Rys.. Uład do pomiaru napięcia przewodzenia diody. 5

6 Zależność napięcia U od natężenia, I, dla diody dana jest wzorem: = BT I U ln + () e I 0 Napięcie na diodzie jest rzędu V. Tymczasem wartość B T/e w temperaturze poojowej wynosi ooło 0.05 V. Jeżeli w uładzie nastąpi zmiana prądu np. z ma na. ma, to napięcie zmieni się o V, czyli bardzo nieznacznie. W tej sytuacji możemy przyjąć przybliżenie, że napięcie na diodzie jest pratycznie stałe. Ponieważ napięcie zasilania też jest stałe, możemy przyjąć, że na oporniu jest stałe napięcie U Z -U i płynie przez niego stały prąd I = (U Z -U )/R. Wyonanie pomiarów POMIARY. Montowanie uładu wymaga lutowania jego elementów szczegółowe wsazówi dotyczące lutowania otrzymasz na początu zajęć. Badane diody umieszczaj w zacisach na płytce montażowej. o pomiaru napięcia na diodzie U użyj abli zaończonych wtyczami bananowymi z chwytaami, tórymi należy chwycić przylutowane do płyti przewody.. Przy odłączonych ablach zasilania zmierz ja najdoładniej, za pomocą multimetru cyfrowego, wartość R oporności opornia referencyjnego o wartości ooło Ω. Czy wsazania miernia flutuują w czasie? Co to oznacza? Odnotuj zares, na tórym wyonałaś/wyonałeś pomiar. 3. Za pomocą abli zaończonych wtyczami bananowymi zasilaj uład napięciem stałym o wartości poniżej 5 V. Zmierz tą wartość multimetrem ja najdoładniej. Nie zmieniaj wartości napięcia z zasilacza w ciągu pomiarów całej serii diod. 4. Zmieniając olejno diody w zacisach, mierz napięcia U. Czy wsazania miernia zmieniają się w czasie? Co to oznacza z puntu widzenia niepewności pomiaru? 5. UWAGA. Zwróć uwagę, że po wyjęciu badanej diody z uładu, woltomierz mierzy wartość U Z - napięcia zasilania. 6. Zanotuj wartości U orzystając z tabeli poniżej. Pisząc raport oblicz też prąd diody I. Tabela Arusz pomiarowy nr pomiaru napięcie U [V] niepewność U [V] Prąd (U Z -U )/R [A] Niepewność I [A] 7. Z wyniów pomiarów wartości U będzie sporządzany histogram. Histogram to wyres słupowy zmiennej mierzonej U poazujący np. ilość pomiarów (liczebność) w przedziałach wartości U o szeroości zwanej szeroością przedziałów histogramowania (ang. : bin size, np. we własnościach histogramu w programie Scidavis). Zasady wyonywania histogramu są podane na ońcu tej instrucji. Na histogramach można przedstawiać liczebności przedziałów, częstości występowania wartości z przedziałów lub gęstości (opis poniżej). Należy sporządzić histogram liczebności wyniów pomiarów napięcia przewodzenia diod U dla ooło 7- przedziałów wartości przyjmowanych przez U. Histogram można rysować w aruszu alulacyjnym programu Excel, Open Calc lub w programie Scidavis (z menu wybrać Plot Statistical Graphs Histogram). 6

7 METOY ANALIZY ANYCH Celem zadań rachunowych rozważanych poniżej jest opanowanie i zrozumienie metod analizy rozładów wyniów doświadczalnych. Wynii napięć U z Tabeli zostaną przedstawione na histogramie. Uzysany rozład wartości U zostanie porównany na wyresie z rozładem Gaussa wyreślonym dla parametrów: µ = U (wartość średnia zmierzonych wartości U ) oraz niepewności pojedynczego pomiaru σ = s U. Opis metody sporządzania histogramu znajduje się w ońcowej części tej instrucji. Wzory, z tórych orzystamy w obliczeniach: N n - wartość średnia z serii N pomiarów U i : U = Ui nu[ ] = U, N i= N = gdzie =... n numeruje n przedziałów histogramowania, U [] oznacza wartość środową napięcia w -tym przedziale histogramowania, n oznacza ilość wartości w -tym przedziale histogramowania (liczebność przedziału), przy czym ilość wszystich pomiarów n N = n jest równa sumie liczebności wszystich przedziałów histogramowania, = - wartość niepewności pojedynczego pomiaru (tóra taże może być liczona z liczebności i wartości średniej w przedziałach histogramowania): N n ( ) ( [ ] ) su = Ui U n U U = sɶ U N N i= = Na histogramach można przedstawiać: - liczebności n w przedziałach histogramowania (ilość wyniów pomiaru wartości U mieszczących się w ażdym przedziale histogramowania = n ). Aby porównać tai histogram z gęstością prawdopodobieństwa należy gęstość prawdopodobieństwa pomnożyć przez N. n - ułame liczebności przedziału do ilości wszystich pomiarów, zwany częstością N zliczeń. Aby porównać tai histogram z gęstością prawdopodobieństwa należy gęstość pomnożyć przez - szeroość przedziału histogramowania. n - ułame zwany gęstością zliczeń. Tai histogram jest unormowany i może być N bezpośrednio porównywany z gęstością prawdopodobieństwa np. z rozładu Gaussa. PORÓWNANIE GRAFICZNE ROZKŁAU GAUSSA I OŚWIACZALNEGO Zadanie 4 Załadając, że wynii U pomiarów napięcia przewodzenia można opisać rozładem Gaussa (gęstości prawdopodobieństwa): ( U µ ) G( U ; µ, σ ) = exp, σ π σ z wartościami parametrów µ = U =.7763 V (wartość średnia) oraz σ = s U = V (dyspersja) obliczonymi dla indywidualnych zmierzonych danych (podane tu liczby pochodzą z przyładowego pomiaru napięć przewodzenia serii diod), naszicuj ten rozład na histogramie liczebności. Sorzystaj z tabeli 3. 7

8 rawędź dolna przedziału histogramowania U, [V] rawędź górna przedziału histogramowania U + [V] środe przedziału U [] [V] Liczba n wyniów w przedziale (liczebność przedziału) gęstość esperymentalna n N [V ] Spodziewana ilość zliczeń w przedziale obliczona z rozładu Gaussa N ;U, = N G U [ ] su ( ) Tabela suma N = ,3 3,76 33,36 7,3 7,8,4 0,03 Przypominamy wzór służący do wyznaczenia oczeiwanej liczby N pomiarów w przedziale: U + N = N G( U ; µ, σ ) du, U gdzie jest szeroością przedziału histogramowania. Najprostsza, i przybliżona, metoda obliczenia całi polega na zastąpieniu jej wyrażeniem G( U [ ]; µ, σ ) oreślającym pole powierzchni prostoąta o wysoości G( U [ ]; µ, σ ) i podstawie, gdzie U [] wyznacza środe przedziału histogramowania, a wtedy N N = N G( U ; µ, σ ). ' [ ] Jeśli chcemy wyznaczyć całę doładnie, wprowadzamy nową zmienną całowania U µ z =, σ zwaną standaryzowaną i wartość N wyznaczamy za pomocą z+ ( ) ( ) ( ) ( ) ( ) N = N P z z < z = N N z dz = N F z F z, + + z z U µ U gdzie z = + µ x, z+ =, F( z) = σ σ exp dx π Wartości przydatnych całe F(z) rozładu Gaussa znajdują się w tabeli 4 na ońcu instrucji. Funcję, tórą tu całujemy: z N ( z) = exp π nazywamy standaryzowanym rozładem Gaussa. 8

9 ANALIZA ANYCH Z CZĘŚCI (B) POMIAR 00 IO I SPRAWOZANIE. Oblicz podstawowe statystyi opisowe: średnią arytmetyczną U, jej statystyczną niepewność standardową s i statystyczną niepewność standardową pojedynczego U pomiaru s U uzysanego zbioru wartości U.. Narysuj histogram uzysanych wartości napięcia przewodzenia diod. Na histogramie zaznacz położenie wartości średniej oraz wartości odległe o jedną statystyczną niepewność pojedynczego pomiaru na prawo i lewo od wartości średniej. Na podstawie histogramu lub orzystając bezpośrednio z danych, oceń procent liczby pomiarów mieszczących się w tym przedziale. Porównaj z wartością wyniająca z rozładu Gaussa. 3. Załadając, że zebrane wartości napięć U przedstawiają reprezentatywną próbę wylosowaną z rozładu Gaussa o parametrach oreślonych przez wartość średnią U i statystyczną niepewność pojedynczego pomiaru s U, nanieś na histogram rzywą wyniającą z rozładu Gaussa (gęstość prawdopodobieństwa rozładu Gaussa mnożoną przez N dla przypadu histogramu liczebności). 4. Wyznacz systematyczną niepewność średniej wartości U. Porównaj ją ze statystyczną niepewnością średniej s i ze statystyczną niepewnością s U U pojedynczego pomiaru. Jaie onluzje wyniają z tego porównania? 5. Stosownie zaorąglając, podaj ostateczną ocenę oczeiwanej wartości U całej zbiorowości wszystich diod wyproduowanych w partii, z tórej pobrano badaną próbę, a taże niepewność statystyczną i niepewność systematyczną tej oceny. CAŁKI ROZKŁAU GAUSSA. Tabela poniżej podaje wartość całi standaryzowanego rozładu Gaussa z x F ( z) = P ( < x z) = + exp dx, z 0 π >. 0 Z uwagi na symetrię rozładu, wartość całi dla ujemnych wartości argumentu można wyznaczyć ze związu F( z) = F(z). Poniższy rozład został policzony wyorzystując funcję ROZKLA.NORMALNY ( ) w programie Excel. 9

10 Tabela 4 z

11 KONSTRUKCJA HISTOGRAMU KONSTRUKCJA HISTOGRAMU Przy onstruowaniu histogramu przydatne jest wyznaczenie wartości najmniejszej x min i najwięszej, x max, w próbce. Wartości te pozwalają ocenić rozpiętość histogramu. Niech symbol N oznacza liczebność próbi. Sam histogram budujemy w następujący sposób. Ustalamy dolną rawędź x {} < x min histogramu oraz szeroość i przedziałów, czyli cały zares wartości wielości histogramowanej dzielimy na przedziały: od x {} do x {} = x {} +, od x {} do x {3} = x {} +, od x {3} do x {4} = x {3} + 3 itd., aŝ do ostatniego, K-tego przedziału od wartości x {K} = x {K } + K do wartości x {K + } = x {K} + K, x {K + } x max. Następnie ustalamy, do tórego przedziału naleŝy aŝda z olejnych wartości z próbi, otrzymując liczby n i danych w aŝdym z przedziałów, zwane liczebnościami bądź rotnościami. W tracie ustalania, do tórego przedziału histogramowania naleŝy włączyć daną wartość, moŝemy natnąć się na sytuację, w tórej wartość ta wypada na granicy przedziałów, a więc moŝe zostać zalasyfiowana zarówno do tego, w tórym rozwaŝana wartość stanowi górną granicę lub teŝ do następnego przedziału obejmującego więsze wartości zmiennej histogramowanej. Najczęściej przyjmujemy onwencję, w tórej przedział histogramowania jest z lewej strony otwarty zaś z prawej domnięty, ja to sugeruje opis w poprzednim puncie. W następnym rou dla aŝdego przedziału histogramu onstruujemy częstość p i := n i /N oraz wielość f i, tórą zwiemy gęstością wielości histogramowanej (w tym przypadu: gęstością oresu drgań wahadła), a tórą definiujemy jao f i := p i / i, czyli stosune częstości p i do szeroości i przedziału histogramowania. W rezultacie otrzymujemy olejne wiersze tabeli poniŝej. przedział (x {}, x {} ] (x {}, x {3} ]... (x {K}, x {K + } ] suma rotność n n... n K N częstość p i n n n... K N N N gęstość f i [s ] n n nk... N N N ZauwaŜ, Ŝe wielości f i mają wymiar w tym przypadu jest to odwrotność jednosti czasu, w tórej wyraŝamy wynii pomiaru oresu. Spełniają one taŝe oczywisty związe K fi i =, i= czyli pola powierzchni słupów histogramu sumują się do jedność co jest definicją frazy: histogram jest unormowany do jedności. Najczęściej szeroości i przedziałów histogramowania wybieramy taie same dla aŝdego z przedziałów, co uprasza nieco obliczenia. Są jedna sytuacje (przyład poznamy w jednym z następnych ćwiczeń), iedy to zmuszeni jesteśmy wybrać je róŝnymi (a w srajnym przypadu sięgającymi niesończoności). Histogram rysujemy, reśląc słupi, o wysoości proporcjonalnej do wartości gęstości, na olejnych przedziałach zaznaczonych na osi odciętych, czyli wielości histogramowanej. Zwróć uwagę na nietóre elementy graficzne taiego rysunu. Histogram winien mieć tytuł, osie naleŝy opisać zarówno słownie, ja i symbolem, ja równieŝ podać, w nawiasach wadratowych lub orągłych, jednostę wielości występującej na osiach. Normy wymagają, aby znacznii na osiach zwrócone były u dodatnim ierunom osi, co powoduje Ŝe w przypadu, gdy reślone wielości wypadają w pierwszej ćwiartce, znacznii te wchodzą do rysunu, zaś prezentując wyres, tóry mieści się w trzeciej ćwiartce, znacznii będą wsazywać na zewnątrz treści rysunu. W odniesieniu do wszystich elementów graficznych prezentowanych w opracowaniach nauowych obowiązuje jeszcze jedna zasada: powinny być one ascetyczne w swym obliczu wszelie gradienty, tła, linie siate, trzeci wymiar i tym podobne dodati K

12 KONSTRUKCJA HISTOGRAMU powinny się pojawiać jedynie wtedy, gdy wyniają z istoty prezentowanej wielości lub teŝ intencją autora jest zwrócenie uwagi czytelnia na dany aspet. Z histogramami związana jest onwencja, tórej naleŝy bezwzględnie przestrzegać. OtóŜ, istnieją dwa typy wielości, tóre histogramujemy. RozwaŜmy taie wielości ja czas, masa, długość, temperatura, ciśnienie,... i sonfrontujmy je taimi wielościami, ja liczba rozpadających się jąder atomowych w zadanym przedziale czasowym, długość słowa czyli liczba liter w słowie, liczba ocze na ostce do gier planszowych, liczba galaty w wybranym ącie bryłowym,.... Te pierwsze maja tę własność, Ŝe a priori mogą przyjmować dowolną wartość, taŝe wyraŝoną liczbą niewymierną (nie moŝemy wyluczyć, Ŝe ula ma masę np. e π g), podczas gdy te drugie opisują się liczbą całowitą bądź zerem. Te pierwsze nazywamy wielościami ciągłymi, zaś o tych drugich mówimy, Ŝe przedstawiają sobą wielości dysretne. To rozróŝnienie znajduje swe odbicie na histogramie słupi histogramu wielości ciągłej zawsze rysujemy połączone ze sobą (nawet jeśli histogram przedstawia częstości, a nawet rotności), a słupi histogramu wielości dysretnej rozdzielone. Ilustrują to dwa rysuni poniŝej. Lewy przedstawia częstość wielości dysretnej liczby liter w słowach Pana Tadeusza (test poematu: Polsa Bibliotea Internetowa, zaś prawy uazuje gęstość wielości ciągłej długości 9439 ziaren fasoli (S.J. Pretorius, Biometria,, (930), 0; dane za: M.G. Kendall i A. Stuart, The Advanced Theory of Statistics, Charles Gryffin & Co. Ltd., London, 958 zwróć uwagę, Ŝe słowo gęstość oznacz tu liczbę ziaren fasoli na przedział długości, a nie gęstość masy ziarna fasoli). częstość p i 0,6 0,4 0, 0,0 0,08 0,06 0,04 0,0 0,00 Rozład długości słowa w poemacie Pan Tadeusz liczba i liter w słowie gęstość f i [mm - ] 0,6 0,5 0,4 0,3 0, 0, 0 Rozład długości ziarna fasoli długośc ziarna [mm] O histogramach często mówimy, Ŝe przedstawiają sobą rozład wielości histogramowanej, np. rozład wartości zmierzonego oresu drgań. Termin ten równieŝ stosujemy, gdy ilustrujemy częstości, a nawet wtedy, gdy na histogramie uazujemy jedynie liczby danych (rotności n i ) w lasach.

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

Laboratorum 1 Podstawy pomiaru wielkości elektrycznych Analiza niepewności pomiarowych

Laboratorum 1 Podstawy pomiaru wielkości elektrycznych Analiza niepewności pomiarowych Laboratorum 1 Podstawy pomiaru wielkości elektrycznych Analiza niepewności pomiarowych Marcin Polkowski (251328) 1 marca 2007 r. Spis treści 1 Cel ćwiczenia 2 2 Techniczny i matematyczny aspekt ćwiczenia

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

Wyznaczanie ciepła topnienia lodu lub ciepła właściwego wybranego ciała

Wyznaczanie ciepła topnienia lodu lub ciepła właściwego wybranego ciała dla specjalnośći Biofizya moleularna Wyznaczanie ciepła topnienia lodu lub ciepła właściwego wybranego ciała I. WSTĘP C 1 C 4 Ciepło jest wielością charateryzującą przepływ energii (analogiczną do pracy

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIŁ INŻYNIERII MECHNICZNEJ INSTYTUT EKSPLOTCJI MSZYN I TRNSPORTU ZKŁD STEROWNI ELEKTROTECHNIK I ELEKTRONIK ĆWICZENIE: E2 POMIRY PRĄDÓW I NPIĘĆ W

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

BADANIE DIOD PÓŁPRZEWODNIKOWYCH

BADANIE DIOD PÓŁPRZEWODNIKOWYCH BAANE O PÓŁPZEWONKOWYCH nstytut izyki Akademia Pomorska w Słupsku Cel i ćwiczenia. Celem ćwiczenia jest: - zapoznanie się z przebiegiem charakterystyk prądowo-napięciowych diod różnych typów, - zapoznanie

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze

Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Podstawy analizy wypadów drogowych Instrucja do ćwiczenia 1 Wyznaczenie prędości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Spis treści 1. CEL ĆWICZENIA... 3. WPROWADZENIE...

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE Część 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3. 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3.. Metoda trzech momentów Rozwiązanie wieloprzęsłowych bele statycznie niewyznaczalnych można ułatwić w znaczącym

Bardziej szczegółowo

PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE

PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE ORAZ ŚREDNIE 1. Procenty i proporcje DEFINICJA 1. Jeden procent (1%) pewnej liczby a to setna część tej liczby, tórą oznacza się: 1% a, przy czym 1% a = 1 p a, zaś

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą.

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą. Ćwiczenie nr 9 Pomiar rezystancji metodą porównawczą. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne poznanie różnych metod pomiaru rezystancji, a konkretnie zapoznanie się z metodą porównawczą. 2. Dane

Bardziej szczegółowo

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH MODYFICJ OSZTOW LGORYTMU JOHNSON DO SZEREGOWNI ZDŃ UDOWLNYCH Michał RZEMIŃSI, Paweł NOW a a Wydział Inżynierii Lądowej, Załad Inżynierii Producji i Zarządzania w udownictwie, ul. rmii Ludowej 6, -67 Warszawa

Bardziej szczegółowo

Badanie rozkładu pola magnetycznego przewodników z prądem

Badanie rozkładu pola magnetycznego przewodników z prądem Ćwiczenie E7 Badanie rozkładu pola magnetycznego przewodników z prądem E7.1. Cel ćwiczenia Prąd elektryczny płynący przez przewodnik wytwarza wokół niego pole magnetyczne. Ćwiczenie polega na pomiarze

Bardziej szczegółowo

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Konwekcja wymuszona - 1 -

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Konwekcja wymuszona - 1 - Katedra Silniów Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Konwecja wymuszona - - Wstęp Konwecją nazywamy wymianę ciepła pomiędzy powierzchnią ciała stałego przylegającym do niej płynem, w tórym występuje

Bardziej szczegółowo

SPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ

SPRAWDZENIE PRAWA OHMA POMIAR REZYSTANCJI METODĄ TECHNICZNĄ Laboratorium Podstaw Elektroniki Marek Siłuszyk Ćwiczenie M 4 SPWDZENE PW OHM POM EZYSTNCJ METODĄ TECHNCZNĄ opr. tech. Mirosław Maś niwersytet Przyrodniczo - Humanistyczny Siedlce 2013 1. Wstęp Celem ćwiczenia

Bardziej szczegółowo

Laboratorium Metrologii

Laboratorium Metrologii Laboratorium Metrologii Ćwiczenie nr 3 Oddziaływanie przyrządów na badany obiekt I Zagadnienia do przygotowania na kartkówkę: 1 Zdefiniować pojęcie: prąd elektryczny Podać odpowiednią zależność fizyczną

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

ZADANIE 52 INTERFERENCYJNY POMIAR KRZYWIZNY SOCZEWKI (pierścienie Newtona) Cel ćwiczenia Celem ćwiczenia jest wyznaczenie, przy znanej długości fali

ZADANIE 52 INTERFERENCYJNY POMIAR KRZYWIZNY SOCZEWKI (pierścienie Newtona) Cel ćwiczenia Celem ćwiczenia jest wyznaczenie, przy znanej długości fali ZADANIE 52 INTERFERENCYJNY POMIAR KRZYWIZNY SOCZEWKI (pierścienie Newtona) Cel ćwiczenia Celem ćwiczenia jest wyznaczenie, przy znanej długości fali świetlnej, promienia rzywizny soczewi płaso-wypułej

Bardziej szczegółowo

Ćwiczenie 4. Pomiary rezystancji metodami technicznymi

Ćwiczenie 4. Pomiary rezystancji metodami technicznymi Ćwiczenie 4 Pomiary rezystancji metodami technicznymi Program ćwiczenia: 1. Techniczna metoda pomiaru rezystancji wyznaczenie charakterystyki =f(u) elementu nieliniowego (żarówka samochodowa) 2. Pomiar

Bardziej szczegółowo

Ćwiczenie: "Pomiary rezystancji przy prądzie stałym"

Ćwiczenie: Pomiary rezystancji przy prądzie stałym Ćwiczenie: "Pomiary rezystancji przy prądzie stałym" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym? Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie

Bardziej szczegółowo

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

PRZYRZĄDY POMIAROWE. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego PRZYRZĄDY POMIAROWE Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Przyrządy pomiarowe Ogólny podział: mierniki, rejestratory, detektory, charakterografy.

Bardziej szczegółowo

Wpływ zamiany typów elektrowni wiatrowych o porównywalnych parametrach na współpracę z węzłem sieciowym

Wpływ zamiany typów elektrowni wiatrowych o porównywalnych parametrach na współpracę z węzłem sieciowym Wpływ zamiany typów eletrowni wiatrowych o porównywalnych parametrach na współpracę z węzłem sieciowym Grzegorz Barzy Paweł Szwed Instytut Eletrotechnii Politechnia Szczecińsa 1. Wstęp Ostatnie ila lat,

Bardziej szczegółowo

Badanie diod półprzewodnikowych i elektroluminescencyjnych (LED)

Badanie diod półprzewodnikowych i elektroluminescencyjnych (LED) Temat ćwiczenia: Badanie diod półprzewodnikowych i elektroluminescencyjnych (LED) - - ` Symbol studiów (np. PK10): data wykonania ćwiczenia - godzina wykonania ćwiczenia. Nazwisko i imię*: 1 Pluton/Grupa

Bardziej szczegółowo

Dioda półprzewodnikowa

Dioda półprzewodnikowa COACH 10 Dioda półprzewodnikowa Program: Coach 6 Projekt: na MN060c CMA Coach Projects\PTSN Coach 6\ Elektronika\dioda_2.cma Przykład wyników: dioda2_2.cmr Cel ćwiczenia - Pokazanie działania diody - Wyznaczenie

Bardziej szczegółowo

Dokładność pomiaru: Ogólne informacje o błędach pomiaru

Dokładność pomiaru: Ogólne informacje o błędach pomiaru Dokładność pomiaru: Rozumny człowiek nie dąży do osiągnięcia w określonej dziedzinie większej dokładności niż ta, którą dopuszcza istota przedmiotu jego badań. (Arystoteles) Nie można wykonać bezbłędnego

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA

POLITECHNIKA WARSZAWSKA POLITECHNIKA WARSZAWSKA WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ STATYSTYCZNA KONTROLA PROCESU (SPC) Ocena i weryfikacja statystyczna założeń przyjętych przy sporządzaniu

Bardziej szczegółowo

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Badanie własności diód krzemowej, germanowej, oraz diody Zenera

Badanie własności diód krzemowej, germanowej, oraz diody Zenera 23 kwietnia 2001 Ryszard Kostecki Badanie własności diód krzemowej, germanowej, oraz diody Zenera Streszczenie Celem tej pracy jest zapoznanie się z tematyką i zbadanie diód krzemowej, germanowej, oraz

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment

Bardziej szczegółowo

Elementy elektroniczne i przyrządy pomiarowe

Elementy elektroniczne i przyrządy pomiarowe Elementy elektroniczne i przyrządy pomiarowe Cel ćwiczenia. Nabycie umiejętności posługiwania się miernikami uniwersalnymi, oscyloskopem, generatorem, zasilaczem, itp. Nabycie umiejętności rozpoznawania

Bardziej szczegółowo

Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji

Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 1 Temat: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Katedra Architektury Komputerów i Telekomunikacji

Bardziej szczegółowo

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k: Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,

Bardziej szczegółowo

Ćwiczenie nr 82: Efekt fotoelektryczny

Ćwiczenie nr 82: Efekt fotoelektryczny Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 82: Efekt fotoelektryczny

Bardziej szczegółowo

Sprzęt i architektura komputerów

Sprzęt i architektura komputerów Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Sprzęt i architektura komputerów Laboratorium Temat:Pomiary podstawowych wielkości elektryczych: prawa Ohma i Kirchhoffa Katedra Architektury

Bardziej szczegółowo

Wykres linii ciśnień i linii energii (wykres Ancony)

Wykres linii ciśnień i linii energii (wykres Ancony) Wyres linii ciśnień i linii energii (wyres Ancony) W wyorzystywanej przez nas do rozwiązywania problemów inżyniersich postaci równania Bernoulliego występuje wysoość prędości (= /g), wysoość ciśnienia

Bardziej szczegółowo

I we. F (filtr) U we. Rys. 1. Schemat blokowy układu zasilania odbiornika prądu stałego z sieci energetycznej z zastosowaniem stabilizatora napięcia

I we. F (filtr) U we. Rys. 1. Schemat blokowy układu zasilania odbiornika prądu stałego z sieci energetycznej z zastosowaniem stabilizatora napięcia 22 ĆWICZENIE 3 STABILIZATORY NAPIĘCIA STAŁEGO Wiadomości wstępne Stabilizatory napięcia stałego są to układy elektryczne dostarczające do odbiornika napięcie o stałej wartości niezależnie od zmian w określonych

Bardziej szczegółowo

ROZDZIAŁ 1 Opracowanie danych pomiarowych 1

ROZDZIAŁ 1 Opracowanie danych pomiarowych 1 ROZDZIAŁ 1 Opracowanie danych pomiarowych 1 Andrzej Zięba Pomiary wielości fizycznych mogą być doonywane tylo ze sończoną doładnością. Powodem tego jest niedosonałość przyrządów pomiarowych i nieprecyzyjność

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY 2011

EGZAMIN GIMNAZJALNY 2011 Centralna Komisja Egzaminacyjna w Warszawie EGZMIN GIMNZJLNY 011 część matematyczno-przyrodnicza Klucz puntowania zadań (arusz dla uczniów bez dysfuncji i z dyslesją rozwojową) KWIECIEŃ 011 Zadania zamnięte

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Ćwiczenie nr 1. Regulacja i pomiar napięcia stałego oraz porównanie wskazań woltomierzy.

Ćwiczenie nr 1. Regulacja i pomiar napięcia stałego oraz porównanie wskazań woltomierzy. Ćwiczenie nr 1 Regulacja i pomiar napięcia stałego oraz porównanie wskazań woltomierzy. 1. Cel ćwiczenia Celem ćwiczenia jest analiza wpływów i sposobów włączania przyrządów pomiarowych do obwodu elektrycznego

Bardziej szczegółowo

Temat: Prawo Hooke a. Oscylacje harmoniczne. Zagadnienia: prawa dynamiki Newtona, siła sprężysta, prawo Hooke a, oscylacje harmoniczne,

Temat: Prawo Hooke a. Oscylacje harmoniczne. Zagadnienia: prawa dynamiki Newtona, siła sprężysta, prawo Hooke a, oscylacje harmoniczne, sg M 6-1 - Teat: Prawo Hooe a. Oscylacje haroniczne. Zagadnienia: prawa dynaii Newtona, siła sprężysta, prawo Hooe a, oscylacje haroniczne, ores oscylacji. Koncepcja: Sprężyna obciążana różnyi asai wydłuża

Bardziej szczegółowo

UT 33 B UT 33 C UT 33 D

UT 33 B UT 33 C UT 33 D MULTIMETRY CYFROWE UT 33 B UT 33 C UT 33 D INSTRUKCJA OBSŁUGI Instrukcja obsługi dostarcza informacji dotyczących parametrów technicznych, sposobu uŝytkowania oraz bezpieczeństwa pracy. Strona 1 1.WPROWADZENIE:

Bardziej szczegółowo

METODA PROJEKTOWANIA REJONU ZMIANY KIERUNKU TRASY KOLEJOWEJ

METODA PROJEKTOWANIA REJONU ZMIANY KIERUNKU TRASY KOLEJOWEJ Problemy Kolejnictwa Zeszyt 5 97 Prof. dr hab. inż. Władysław Koc Politechnia Gdańsa METODA PROJEKTOWANIA REJONU ZMIANY KIERUNKU TRASY KOLEJOWEJ SPIS TREŚCI. Wprowadzenie. Ogólna ocena sytuacji geometrycznej

Bardziej szczegółowo

METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki

METROLOGIA. Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki METROLOGIA Dr inż. Eligiusz PAWŁOWSKI Politechnika Lubelska Wydział Elektrotechniki i Informatyki Prezentacja do wykładu dla EINS Zjazd 3, wykład nr 5, 6 Prawo autorskie Niniejsze materiały podlegają ochronie

Bardziej szczegółowo

Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu

Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu Ćwiczenie E5 Pomiar indukcji pola magnetycznego w szczelinie elektromagnesu E5.1. Cel ćwiczenia Celem ćwiczenia jest pomiar siły elektrodynamicznej (przy pomocy wagi) działającej na odcinek przewodnika

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

INSTRUKCJA. Ćwiczenie A2. Wyznaczanie współczynnika sprężystości sprężyny metodą dynamiczną.

INSTRUKCJA. Ćwiczenie A2. Wyznaczanie współczynnika sprężystości sprężyny metodą dynamiczną. INSRUKCJA Ćwiczenie A Wyznaczanie wpółczynnia prężytości prężyny metodą dynamiczną. Przed zapoznaniem ię z intrucją i przytąpieniem do wyonania ćwiczenia należy zapoznać ię z natępującymi zagadnieniami:

Bardziej szczegółowo

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07) Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA BADANIE STANDARDOWEJ BRAMKI NAND TTL (UCY 7400)

INSTRUKCJA DO ĆWICZENIA BADANIE STANDARDOWEJ BRAMKI NAND TTL (UCY 7400) INSTRUKCJA DO ĆWICZENIA BADANIE STANDARDOWEJ BRAMKI NAND TTL (UCY 74).Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z charakterystykami statycznymi i parametrami statycznymi bramki standardowej NAND

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

Ćwiczenie nr 34. Badanie elementów optoelektronicznych

Ćwiczenie nr 34. Badanie elementów optoelektronicznych Ćwiczenie nr 34 Badanie elementów optoelektronicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elementami optoelektronicznymi oraz ich podstawowymi parametrami, a także doświadczalne sprawdzenie

Bardziej szczegółowo

XLVII OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne

XLVII OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne XLVII OLIMPIADA FIZYCZNA ETAP I Zadanie doświadczalne ZADANIE D2 Zakładając, że zależność mocy P pobieranej przez żarówkę od temperatury bezwzględnej jej włókna T ma postać: 4 P = A + BT + CT wyznacz wartości

Bardziej szczegółowo

STABILIZATOR NAPIĘCIA

STABILIZATOR NAPIĘCIA STABILIZATOR NAPIĘCIA Indywidualna Pracownia Elektroniczna Michał Dąbrowski asystent: Krzysztof Piasecki 16 XI 2010 1 Streszczenie Celem doświadczenia jest zapoznanie się z zasadą działania i wykonanie

Bardziej szczegółowo

Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO

Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO Ć w i c z e n i e POMIAY W OBWODACH PĄDU STAŁEGO. Wiadomości ogólne.. Obwód elektryczny Obwód elektryczny jest to układ odpowiednio połączonych elementów przewodzących prąd i źródeł energii elektrycznej.

Bardziej szczegółowo

LVI Olimpiada Fizyczna Zawody III stopnia

LVI Olimpiada Fizyczna Zawody III stopnia LVI Olimpiada Fizyczna Zawody III stopnia ZADANIE DOŚIADCZALNE Praca wyjścia wolframu Masz do dyspozycji: żarówkę samochodową 12V z dwoma włóknami wolframowymi o mocy nominalnej 5 oraz 2, odizolowanymi

Bardziej szczegółowo

Mierzymy opór elektryczny rezystora i żaróweczki. czy prawo Ohma jest zawsze spełnione?

Mierzymy opór elektryczny rezystora i żaróweczki. czy prawo Ohma jest zawsze spełnione? 1 Mierzymy opór elektryczny rezystora i żaróweczki czy prawo Ohma jest zawsze spełnione? Czas trwania zajęć: 1h Określenie wiedzy i umiejętności wymaganej u uczniów przed przystąpieniem do realizacji zajęć:

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

Wyznaczanie rozmiaro w przeszko d i szczelin za pomocą s wiatła laserowego

Wyznaczanie rozmiaro w przeszko d i szczelin za pomocą s wiatła laserowego Ćwiczenie v.x3.1.16 Wyznaczanie rozmiaro w przeszo d i szczelin za pomocą s wiatła laserowego 1 Wstęp teoretyczny Wyznaczanie rozmiarów szczelin i przeszód za pomocą światła oparte jest o zjawisa dyfracji

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW

WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW POLTECHNKA WARSZAWSKA NSTYTUT RADOELEKTRONK ZAKŁAD RADOKOMUNKACJ WECZOROWE STUDA ZAWODOWE LABORATORUM OBWODÓW SYGNAŁÓW Ćwiczenie 1 Temat: OBWODY PRĄDU STAŁEGO Opracował: mgr inż. Henryk Chaciński Warszawa

Bardziej szczegółowo

PRAKTYCZNY PRZYKŁAD OCENY ŚRODOWISKOWEGO RYZYKA ZDROWOTNEGO

PRAKTYCZNY PRZYKŁAD OCENY ŚRODOWISKOWEGO RYZYKA ZDROWOTNEGO PRAKTYCZNY PRZYKŁAD OCENY ŚRODOWISKOWEGO RYZYKA ZDROWOTNEGO Mgr Beata Malec, dr Mare Biesiada, dr Anicenta Buba Instytut Medycyny Pracy i Zdrowia Środowisowego, Sosnowiec Wstęp Zagrożenia zdrowotne stwarzane

Bardziej szczegółowo

Moduł stolika liniowego

Moduł stolika liniowego Podstawy Konstrucji Urządzeń Precyzyjnych Materiały pomocnicze do ćwiczeń projetowych część 1 Moduł stolia liniowego Presrypt opracował: dr inż. Wiesław Mościci Warszawa 2014 Materiały zawierają informacje

Bardziej szczegółowo

Pomiar mocy czynnej, biernej i pozornej

Pomiar mocy czynnej, biernej i pozornej Pomiar mocy czynnej, biernej i pozornej 1. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z różnymi metodami pomiaru mocy w obwodach prądu przemiennego.. Wprowadzenie: Wykonując pomiary z wykorzystaniem

Bardziej szczegółowo

Przykładowe zadanie egzaminacyjne dla kwalifikacji E.20 w zawodzie technik elektronik

Przykładowe zadanie egzaminacyjne dla kwalifikacji E.20 w zawodzie technik elektronik 1 Przykładowe zadanie egzaminacyjne dla kwalifikacji E.20 w zawodzie technik elektronik Znajdź usterkę oraz wskaż sposób jej usunięcia w zasilaczu napięcia stałego 12V/4A, wykonanym w oparciu o układ scalony

Bardziej szczegółowo

Prąd elektryczny w obwodzie rozgałęzionym dochodzenie. do praw Kirchhoffa.

Prąd elektryczny w obwodzie rozgałęzionym dochodzenie. do praw Kirchhoffa. 1 Prąd elektryczny w obwodzie rozgałęzionym dochodzenie do praw Kirchhoffa. Czas trwania zajęć: 1h Określenie wiedzy i umiejętności wymaganej u uczniów przed przystąpieniem do realizacji zajęć: Uczeń:

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 3 A

Instrukcja do ćwiczenia laboratoryjnego nr 3 A Instrkcja do ćwiczenia laboratoryjnego nr 3 A Temat: Pomiar rezystancji dynamicznej wybranych diod Cel ćwiczenia. Celem ćwiczenia jest poznanie metod wyznaczania oraz pomiar rezystancji dynamicznej (róŝniczkowej)

Bardziej szczegółowo

DOKUMENTACJA TECHNICZNO - RUCHOWA INSTRUKCJA OBSŁUGI MULTIMETR TYPU IME-S2*

DOKUMENTACJA TECHNICZNO - RUCHOWA INSTRUKCJA OBSŁUGI MULTIMETR TYPU IME-S2* Zakład Montażu Urządzeń Elektronicznych Tychy DOKUMENTACJA TECHNICZNO - RUCHOWA INSTRUKCJA OBSŁUGI MULTIMETR TYPU IME-S2* 01/ 2004 DTR ZMUE styczeń 2004 Aktualizacja wrzesień 2008r. 1 SPIS TREŚCI 1. Przeznaczenie,

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 4

Instrukcja do ćwiczenia laboratoryjnego nr 4 Instrukcja do ćwiczenia laboratoryjnego nr 4 Temat: Badanie własności przełączających diod półprzewodnikowych Cel ćwiczenia. Celem ćwiczenia jest poznanie własności przełączających złącza p - n oraz wybranych

Bardziej szczegółowo

Dlaczego należy uwzględniać zarówno wynik maturalny jak i wskaźnik EWD?

Dlaczego należy uwzględniać zarówno wynik maturalny jak i wskaźnik EWD? EWD co to jest? Metoda EWD to zestaw technik statystycznych pozwalających oszacować wkład szkoły w końcowe wyniki egzaminacyjne. Wkład ten nazywamy właśnie edukacyjną wartością dodaną. EWD jest egzaminacyjnym

Bardziej szczegółowo

Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy i jednoparametrowy : spryna

Metody komputerowe i obliczeniowe Metoda Elementów Skoczonych. Element jednowymiarowy i jednoparametrowy : spryna Metody omputerowe i obliczeniowe Metoda Elementów Soczonych Element jednowymiarowy i jednoparametrowy : spryna Jest to najprostszy element: współrzdne loalne i globalne jego wzłów s taie same nie potrzeba

Bardziej szczegółowo

KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 26 lutego 2010 r. zawody II stopnia (rejonowe) Schemat punktowania zadań

KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 26 lutego 2010 r. zawody II stopnia (rejonowe) Schemat punktowania zadań Maksymalna liczba punktów 60 KONKURS FIZYCZNY dla uczniów gimnazjów województwa lubuskiego 6 lutego 00 r. zawody II stopnia (rejonowe) Schemat punktowania zadań Uwaga!. Za poprawne rozwiązanie zadania

Bardziej szczegółowo

DOBÓR NASTAW ZABEZPIECZEŃ NADPRĄDOWYCH ZWARCIOWYCH DLA LINII ŚREDNIEGO NAPIĘCIA

DOBÓR NASTAW ZABEZPIECZEŃ NADPRĄDOWYCH ZWARCIOWYCH DLA LINII ŚREDNIEGO NAPIĘCIA dr inż. Witold HOPPEL DOBÓR NASTAW ZABEZPECZEŃ NADPRĄDOWYCH ZWARCOWYCH DLA LN ŚREDNEGO NAPĘCA 1. Wprowadzenie W liniach SN od sutów zwarć międzyfazowych (tylo taich załóceń dotyczy artyuł) stosuje się

Bardziej szczegółowo

Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego:

Grupa: Zespół: wykonał: 1 Mariusz Kozakowski Data: 3/11/2013 111B. Podpis prowadzącego: Sprawozdanie z laboratorium elektroniki w Zakładzie Systemów i Sieci Komputerowych Temat ćwiczenia: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Sprawozdanie Rok: Grupa: Zespół:

Bardziej szczegółowo

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) Wprowadzenie Wartość współczynnika sztywności użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić pionowo

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);

Bardziej szczegółowo

Ćwiczenie 1. Metody określania niepewności pomiaru

Ćwiczenie 1. Metody określania niepewności pomiaru Grzegorz Wielgoszewski Data wykonania ćwiczenia: Nr albumu 134651 7 października 01 Proszę podać obie daty. Grupa SO 7:30 Data sporządzenia sprawozdania: Stanowisko 13 3 listopada 01 Proszę pamiętać o

Bardziej szczegółowo

Walidacja metod analitycznych Raport z walidacji

Walidacja metod analitycznych Raport z walidacji Walidacja metod analitycznych Raport z walidacji Małgorzata Jakubowska Katedra Chemii Analitycznej WIMiC AGH Walidacja metod analitycznych (według ISO) to proces ustalania parametrów charakteryzujących

Bardziej szczegółowo

Ć w i c z e n i e 1 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH

Ć w i c z e n i e 1 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH Ć w i c z e n i e 6 BADANIE PROSTOWNIKÓW NIESTEROWANYCH. Wiadomości ogólne Prostowniki są to urządzenia przetwarzające prąd przemienny na jednokierunkowy. Prostowniki stosowane są m.in. do ładowania akumulatorów,

Bardziej szczegółowo

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo.

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo. Zagadnienia szczegółowe: obliczanie wartości wyrażeń arytmetycznych; działania na pierwiastkach i potęgach;

Bardziej szczegółowo

SPECYFIKACJA PRZETWORNIK RÓŻNICY CIŚNIEŃ DPC250; DPC250-D; DPC4000; DPC4000-D

SPECYFIKACJA PRZETWORNIK RÓŻNICY CIŚNIEŃ DPC250; DPC250-D; DPC4000; DPC4000-D SPECYFIKACJA PRZETWORNIK RÓŻNICY CIŚNIEŃ DPC250; DPC250-D; DPC4000; DPC4000-D 1. Wprowadzenie...3 1.1. Funkcje urządzenia...3 1.2. Charakterystyka urządzenia...3 1.3. Warto wiedzieć...3 2. Dane techniczne...4

Bardziej szczegółowo

LUPS-11ME LISTWOWY UNIWERSALNY PRZETWORNIK SYGNAŁOWY DOKUMENTACJA TECHNICZNO-RUCHOWA. Wrocław, kwiecień 2003 r.

LUPS-11ME LISTWOWY UNIWERSALNY PRZETWORNIK SYGNAŁOWY DOKUMENTACJA TECHNICZNO-RUCHOWA. Wrocław, kwiecień 2003 r. LISTWOWY UNIWERSALNY PRZETWORNIK SYGNAŁOWY DOKUMENTACJA TECHNICZNO-RUCHOWA Wrocław, kwiecień 2003 r. 50-305 WROCŁAW TEL./FAX (+71) 373-52-27 ul. S. Jaracza 57-57a TEL. 0-602-62-32-71 str.2 SPIS TREŚCI

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 www: http://hirg.if.pw.edu.pl/~gos/students/kadd Politechnika Warszawska Wydział

Bardziej szczegółowo

REFERAT PRACY MAGISTERSKIEJ Symulacja estymacji stanu zanieczyszczeń rzeki z wykorzystaniem sztucznych sieci neuronowych.

REFERAT PRACY MAGISTERSKIEJ Symulacja estymacji stanu zanieczyszczeń rzeki z wykorzystaniem sztucznych sieci neuronowych. REFERAT PRACY MAGISTERSKIEJ Symulacja estymacji stanu zanieczyszczeń rzei z wyorzystaniem sztucznych sieci neuronowych. Godło autora pracy: EwGron. Wprowadzenie. O poziomie cywilizacyjnym raju, obo wielu

Bardziej szczegółowo

DTR.SP-02 APLISENS PRODUKCJA PRZETWORNIKÓW CIŚNIENIA I APARATURY POMIAROWEJ DOKUMENTACJA TECHNICZNO-RUCHOWA

DTR.SP-02 APLISENS PRODUKCJA PRZETWORNIKÓW CIŚNIENIA I APARATURY POMIAROWEJ DOKUMENTACJA TECHNICZNO-RUCHOWA DTR.SP-02 APLISENS PRODUKCJA PRZETWORNIKÓW CIŚNIENIA I APARATURY POMIAROWEJ DOKUMENTACJA TECHNICZNO-RUCHOWA SEPARATOR SYGNAŁÓW PRĄDOWYCH BEZ ENERGII POMOCNICZEJ TYPU SP-02 WARSZAWA, STYCZEŃ 2004r. 1 DTR.SP-02

Bardziej szczegółowo

Sprawozdanie z laboratorium proekologicznych źródeł energii

Sprawozdanie z laboratorium proekologicznych źródeł energii P O L I T E C H N I K A G D A Ń S K A Sprawozdanie z laboratorium proekologicznych źródeł energii Temat: Wyznaczanie charakterystyk prądowo-napięciowych modułu ogniw fotowoltaicznych i sprawności konwersji

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne Czyli jak bardzo jesteśmy pewni że parametr oceniony na podstawie próbki jest

Bardziej szczegółowo

LABORATORIUM OPTYKI GEOMETRYCZNEJ

LABORATORIUM OPTYKI GEOMETRYCZNEJ LABORATORIUM OPTYKI GEOMETRYCZNEJ POMIAR OGNISKOWYCH SOCZEWEK CIENKICH 1. Cel dwiczenia Zapoznanie z niektórymi metodami badania ogniskowych soczewek cienkich. 2. Zakres wymaganych zagadnieo: Prawa odbicia

Bardziej szczegółowo

Instrukcja obsługi miernika uniwersalnego MU-02D

Instrukcja obsługi miernika uniwersalnego MU-02D Instrukcja obsługi miernika uniwersalnego MU-02D 1. Informacje ogólne Miernik MU-02D umożliwia pomiary napięć stałych (do 1000V) i przemiennych (do 750V), natężenia prądu stałego (do 10A), oporności (do

Bardziej szczegółowo

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl

Bardziej szczegółowo

STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych

STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych STABILIZATORY NAPIĘCIA I PRĄDU STAŁEGO O DZIAŁANIU CIĄGŁYM Instrukcja do ćwiczeń laboratoryjnych Wstęp Celem ćwiczenia jest zapoznanie się z problemami związanymi z projektowaniem, realizacją i pomiarami

Bardziej szczegółowo

LVII Olimpiada Fizyczna (2007/2008)

LVII Olimpiada Fizyczna (2007/2008) LVII Olimpiada Fizyczna (2007/2008) Zadanie doświadczalne Masz do dyspozycji: baterię słoneczną, sześć różnych oporników o oporach 100Ω, 500Ω, 1000Ω, 2200Ω, 3000Ω, 4300Ω określonych z dokładnością 5%,

Bardziej szczegółowo