Wykorzystanie informacji kredytowej w procesie oceny ryzyka ubezpieczeniowego w ubezpieczeniach komunikacyjnych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykorzystanie informacji kredytowej w procesie oceny ryzyka ubezpieczeniowego w ubezpieczeniach komunikacyjnych"

Transkrypt

1 Wykorzystanie informacji kredytowej w procesie oceny ryzyka ubezpieczeniowego w ubezpieczeniach komunikacyjnych Ubezpieczeniowy Fundusz Gwarancyjny mgr Karolina Pasternak-Winiarska mgr Kamil Gala Zagadnienia Aktuarialne teoria i praktyka Warszawa, września 2014 Ubezpieczeniowy Fundusz Gwarancyjny 1

2 Plan referatu 1. Ocena ryzyka w ubezpieczeniach komunikacyjnych 2. Wykorzystanie informacji kredytowej do oceny ryzyka w ubezpieczeniach komunikacyjnych 3. Aktuarialne metody taryfikacji a priori Metody tradycyjne Uogólnione modele liniowe Rozszerzenia 4. Badanie UFG BIK Cel badania i jego założenia Przygotowanie danych Eksploracja danych Omówienie wyników i wnioski 5. Podsumowanie 6. Literatura Ubezpieczeniowy Fundusz Gwarancyjny 2

3 Ocena ryzyka w ubezpieczeniach komunikacyjnych Kalkulacja składki Taryfikacja a priori i taryfikacja a posteriori Niejednorodny portfel klientów Grupy taryfowe a priori Ubezpieczeniowy Fundusz Gwarancyjny 3

4 Wykorzystanie informacji kredytowej do oceny ryzyka w ubezpieczeniach komunikacyjnych Czy istnieje korelacja między historią kredytową ubezpieczonego a jego szkodowością? Czy taka korelacja nie jest pozorna? Czy można wskazać związki przyczynowo-skutkowe między zjawiskami kredytowymi i ubezpieczeniowymi? Jeśli tak, to które informacje kredytowe wskazują na zwiększony lub zmniejszony potencjał szkodowy ubezpieczonego i jakie jest ich znaczenie w porównaniu do pozostałych danych dostępnych ubezpieczycielowi? Jakie są uwarunkowania i konsekwencje wykorzystania danych kredytowych do oceny ryzyka ubezpieczeniowego? Ubezpieczeniowy Fundusz Gwarancyjny 4

5 Aktuarialne metody taryfikacji a priori. Metody tradycyjne. Założenia: Zmienne taryfowe x i y o mx i my poziomach odpowiednio. x i i y j - stawki składki dla i-tego poziomu zmiennej x oraz j-tego poziomu zmiennej y w ij - ekspozycja na ryzyko umów ubezpieczenia znajdujących się w grupie wyznaczonej przez kombinację poziomów i oraz j zmiennych taryfowych x i y r ij - statystyka szkodowa odpowiadająca tej grupie model multiplikatywny, tzn. dodatkowe warunki normalizujące np. x 1 = y 1 = 1 Ubezpieczeniowy Fundusz Gwarancyjny 5

6 Aktuarialne metody taryfikacji a priori. Metody tradycyjne. metody analizy jednokierunkowej metody oparte na tablicy kontyngencji Metoda Baileya-Simona Metoda sum brzegowych Metoda najmniejszych kwadratów Ubezpieczeniowy Fundusz Gwarancyjny 6

7 Aktuarialne metody taryfikacji a priori. Uogólnione modele liniowe. Zmienna zależna nie musi mieć rozkładu normalnego. Trzy podstawowe elementy: składnik losowy Jeżeli to składnik systematyczny Ubezpieczeniowy Fundusz Gwarancyjny 7

8 Aktuarialne metody taryfikacji a priori. Uogólnione modele liniowe. funkcja wiążąca (ang. link function) różniczkowalna, odwracalna Jeśli to - kanoniczna funkcja wiążąca. Parametry szacowane metodą MNW stosowanie formalnych metod wnioskowania statystycznego Przykładowo, dla funkcji wiążącej logarytmicznej mamy: Multiplikatywna taryfa składki. W badaniu UFG i BIK zastosowano składnik systematyczny postaci: Ubezpieczeniowy Fundusz Gwarancyjny 8

9 Badanie UFG - BIK. Cel badania i założenia. Cel: Sprawdzenie zdolności predykcyjnych zagregowanych danych statystycznych pochodzących z baz UFG i BIK, w zakresie ryzyka ubezpieczeniowego w obszarze ubezpieczeń komunikacyjnych. Hipoteza badawcza: Negatywna historia kredytowa klienta jest powiązania z wyższym ryzykiem po stronie ubezpieczyciela. Ubezpieczeniowy Fundusz Gwarancyjny 9

10 Badanie UFG - BIK. Cel badania i założenia. ubezpieczenia komunikacyjne AC oraz OC p.p.m., umowy ubezpieczenia zawarte przez osoby fizyczne, agregacja danych na poziomie: o kodu pocztowego, o miesiąca zawarcia umowy ubezpieczenia, o przedziału wiekowego, o płci (wymiary łączące), rodzaj umowy (OC/AC), okres obserwacji: dane dotyczące umów zawartych w kolejnych miesiącach w latach Ubezpieczeniowy Fundusz Gwarancyjny 10

11 Badanie UFG - BIK. Cel badania i założenia. 1. Ryzyko związane z umową ubezpieczenia: Częstość zdarzeń = liczba zdarzeń ubezpieczeniowych zaszłych w okresie obowiązywania umowy ekspozycja na ryzyko (okres obowiązywania umowy w latach) 2. Modelowane prawdopodobieństwo: Pr(wystąpienie co najmniej 1 zdarzenia w okresie ochrony) 3. Stosowane modele: Liczba zdarzeń: regresja Poissona regresja ujemna dwumianowa Prawdopodobieństwo wystąpienia szkody: regresja logistyczna Ubezpieczeniowy Fundusz Gwarancyjny 11

12 Badanie UFG - BIK. Przygotowanie danych. Obszary informacyjne danych kredytowych BIK: poziom zadłużenia, nadmierne zadłużenie, obciążenia klienta, opóźnienia w spłacie, podejrzenie wyłudzenia, ocena punktowa. Obszary informacyjne danych ubezpieczeniowych UFG: dane o umowach ubezpieczenia i obciążających je szkodach, cechy demograficzne ubezpieczonego (wiek i płeć), region zamieszkania ubezpieczonego, liczba szkód obciążających poprzednie umowy ubezpieczonego, informacja, czy ubezpieczony pojazd ma historię ubezpieczenia w bazie OI UFG. Ubezpieczeniowy Fundusz Gwarancyjny 12

13 Badanie UFG - BIK. Przygotowanie danych. 6,5 mln obserwacji agregacja względem wymiarów łączących: o połączenie niektórych grup wiekowych o agregacja kodów pocztowych: Według pierwszych 3 cyfr 14,5 tys. obserwacji Agregacja mieszana 18 tys. obserwacji estymacja parametrów zbiór uczący - umowy zawarte w 2011 roku, weryfikacja modelu zbiór walidacyjny - umowy zawarte w 2012 roku. Klienci bez historii ubezpieczenia a klienci z obszerną historią ubezpieczenia syntetyczny wskaźnik opisujący przeszłą szkodowość - predyktor credibility z modelu Bühlmanna-Strauba Ubezpieczeniowy Fundusz Gwarancyjny 13

14 Badanie UFG - BIK. Eksploracja danych. sprawdzenie rozkładów poszczególnych zmiennych analiza siły związku między zmiennymi objaśniającymi a modelowanymi wskaźnikami (współczynniki korelacji Pearsona, Kendalla i Spearmana). Rys. 1 Rozrzut punktów dla częstości zdarzeń OC i średniej sumy sald kredytów hipotecznych wraz z miarami korelacji Macierz korelacji dla zbioru uczącego i porównanie współczynników korelacji dla podprób z 2011 i 2012r. Dla większości zmiennych korelacja stabilna w czasie co do kierunku. Ubezpieczeniowy Fundusz Gwarancyjny 14

15 1. Dane zagregowane. Badanie UFG - BIK. Metodyka. Podział modeli analitycznych ze względu na: rodzaj umowy ubezpieczenia AC / OC, zmienną objaśnianą liczba zdarzeń / liczba umów szkodowych, rodzaj agregacji agregacja na 3 cyfrach kodu pocztowego / agregacja mieszana. Selekcja zmiennych objaśniających: opisowa, krokowa. Kryterium oceny zmiennych objaśniających: istotność statystyczna, wpływ na wartość bayesowskiego kryterium informacyjnego (BIC). Ubezpieczeniowy Fundusz Gwarancyjny 15

16 Wyniki i wnioski: Badanie UFG - BIK. Omówienie wyników i wnioski. zmienne kredytowe statystycznie istotne (większa liczba dla umów OC), większa rola w modelowaniu liczby zdarzeń niż w liczby umów szkodowych, dla większości zmiennych dot.: o wykorzystania limitów kredytowych, o udziału salda należności wymagalnych w sumie sald, o łącznej kwoty rat, o sumy sald bez kredytów mieszkaniowych znak parametru zgodny z hipotezą badawczą, znak przeciwny różne oddziaływanie zjawisk kredytowych na zjawiska ubezpieczeniowe brak jednoznacznej interpretacji. zmniejszenie błędu prognozy wynikające z uwzględnienia zmiennych kredytowych: do 10-15%. największa korzyść z wykorzystania danych kredytowych - częstość zdarzeń z umów OC (przy umowach AC efekt mniej zauważalny). Ubezpieczeniowy Fundusz Gwarancyjny 16

17 2. Dane indywidualne. Badanie UFG - BIK. Metodyka. Łączenie: kod pocztowy (według agregacji mieszanej), rok, wiek ubezpieczonego. Modele: liczba zdarzeń (regresja Poissona) prawdopodobieństwo wystąpienia zdarzenia szkodowego (regresja logistyczna). Selekcja zmiennych metodą krokową, analogicznie do analizy danych zagregowanych. W przypadku umów AC kryterium BIC zbyt restrykcyjne kryterium AIC. Ubezpieczeniowy Fundusz Gwarancyjny 17

18 Badanie UFG - BIK. Omówienie wyników i wnioski. zmienne kredytowe statystycznie istotne (większe znaczenie dla umów OC), najważniejsze zmienne dotyczą: o udziału sumy salda należności wymagalnych bez kredytów mieszkaniowych w sumie salda bez kredytów mieszkaniowych, o łącznej kwoty rat, o sumy sumę sald bez kredytów mieszkaniowych, a kierunek ich oddziaływania jest zgodny z hipotezą badawczą. odsetek klientów o niskiej ocenie punktowej znak przeciwny (np. wpływ sytuacji kredytowej na użytkowanie pojazdu lub korelacja oceny punktowej z wielkością miejscowości zamieszkania.) Dla zmiennych ubezpieczeniowych: duży wpływ historii szkodowej ubezpieczonego również dla danych indywidualnych. interakcja między wiekiem a płcią, rodzaj pojazdu, informacja, czy w bazie UFG występuje historia ubezpieczeniowa pojazdu lub podmiotu. Ubezpieczeniowy Fundusz Gwarancyjny 18

19 Badanie UFG - BIK. Podsumowanie. Najważniejsza z analizowanych zmiennych - liczba przeszłych zdarzeń ubezpieczeniowego. Zmienne kredytowe są statystycznie istotne w większości zbudowanych modeli. Wykorzystanie informacji kredytowej może poprawić dopasowanie modelu do danych oraz zmniejszyć błąd prognozy na zbiorze walidacyjnym. Najlepsze wyniki uzyskane zostały dla częstości zdarzeń dla umów OC p.p.m. na poziomie zagregowanym. Wpływ zmiennych kredytowych wydaje się większy w przypadku umów OC. Znak parametru przy niektórych zmiennych kredytowych nie jest zgodny z hipotezą badawczą. Wykorzystanie informacji kredytowej w taryfikacji może być w przyszłości interesującym kierunkiem działań ubezpieczycieli, przy czym należy wziąć pod uwagę również ograniczenia prawne i etyczne z tym związane. Ubezpieczeniowy Fundusz Gwarancyjny 19

20 Dziękujemy za uwagę! mgr Karolina Pasternak-Winiarska mgr Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny 20

21 Literatura Bühlmann H., Gisler A. (2005), A Course In Credibility Theory and Its Applications, Springer. Denuit M., Maréchal X., Pitrebois S., Walhin J. (2007) - Actuarial Modelling of Claim Counts: Risk Classification, Credibility and Bonus-Malus Systems, John Wiley & Sons Ltd. Miller M., R. A. Smith (2003), "The Relationship of Credit-based Insurance Scores to Private Passenger Automobile Insurance Loss Propensity", Actuarial Study Monaghan, J. E. (2000), "The Impact of Personal Credit History on Loss Performance in Personal Lines", Casualty Actuary Society Forum-Winter: Wu C.-S. P., Guszcza J.C. (2003), "Does Credit Score Really Explain Insurance Losses? Multivariate Analysis From a Data Mining Point of View", Proceedings of the Casualty Actuarial Society Ubezpieczeniowy Fundusz Gwarancyjny 21

Wykorzystanie informacji kredytowej w procesie oceny ryzyka ubezpieczeniowego w ubezpieczeniach komunikacyjnych

Wykorzystanie informacji kredytowej w procesie oceny ryzyka ubezpieczeniowego w ubezpieczeniach komunikacyjnych Kamil Gala, Karolina Kolak Ubezpieczeniowy Fundusz Gwarancyjny Wykorzystanie informacji kredytowej w procesie oceny ryzyka ubezpieczeniowego w ubezpieczeniach komunikacyjnych Streszczenie W pracy przedstawiono

Bardziej szczegółowo

System bonus-malus z mechanizmem korekty składki

System bonus-malus z mechanizmem korekty składki System bonus-malus z mechanizmem korekty składki mgr Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny dr hab. Wojciech Bijak, prof. SGH Ubezpieczeniowy Fundusz Gwarancyjny, Szkoła Główna Handlowa Zagadnienia

Bardziej szczegółowo

ZNACZENIE WYMIANY DANYCH MIĘDZY BIK i UFG DLA BEZPIECZEŃSTWA TRANSAKCJI UBEZPIECZENIOWO-BANKOWYCH. dr Mariusz Cholewa Prezes Zarządu BIK S.A.

ZNACZENIE WYMIANY DANYCH MIĘDZY BIK i UFG DLA BEZPIECZEŃSTWA TRANSAKCJI UBEZPIECZENIOWO-BANKOWYCH. dr Mariusz Cholewa Prezes Zarządu BIK S.A. ZNACZENIE WYMIANY DANYCH MIĘDZY BIK i UFG DLA BEZPIECZEŃSTWA TRANSAKCJI UBEZPIECZENIOWO-BANKOWYCH dr Mariusz Cholewa Prezes Zarządu BIK S.A. Informacje o BIK GRUPA BIK NAJWIĘKSZY ZBIÓR INFORMACJI O ZOBOWIĄZANIACH

Bardziej szczegółowo

Wpływ macierzy przejścia systemu bonus-malus ubezpieczeń komunikacyjnych OC na jego efektywność taryfikacyjną

Wpływ macierzy przejścia systemu bonus-malus ubezpieczeń komunikacyjnych OC na jego efektywność taryfikacyjną Wpływ macierzy przejścia systemu bonus-malus ubezpieczeń komunikacyjnych OC na jego efektywność taryfikacyjną Anna Szymańska Katedra Metod Statystycznych Uniwersytet Łódzki Taryfikacja w ubezpieczeniach

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Wojciech Skwirz

Wojciech Skwirz 1 Regularyzacja jako metoda doboru zmiennych objaśniających do modelu statystycznego. 2 Plan prezentacji 1. Wstęp 2. Część teoretyczna - Algorytm podziału i ograniczeń - Regularyzacja 3. Opis wyników badania

Bardziej szczegółowo

Automatyczny system wykrywania nieubezpieczonych posiadaczy pojazdów mechanicznych wspierający kontrole prowadzone przez UFG

Automatyczny system wykrywania nieubezpieczonych posiadaczy pojazdów mechanicznych wspierający kontrole prowadzone przez UFG Automatyczny system wykrywania nieubezpieczonych posiadaczy pojazdów mechanicznych wspierający kontrole prowadzone przez UFG XX Forum Teleinformatyki 25.09.2014, Warszawa dr hab. Wojciech Bijak, prof.

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Wpływ liczby klas i reguł przejścia systemu bonus-malus na jego efektywność taryfikacyjną

Wpływ liczby klas i reguł przejścia systemu bonus-malus na jego efektywność taryfikacyjną Anna Szymańska Wydział Ekonomiczno-Socjologiczny Uniwersytet Łódzki Wpływ liczby klas i reguł przejścia systemu bonus-malus na jego efektywność taryfikacyjną Streszczenie Towarzystwa ubezpieczeniowe konkurują

Bardziej szczegółowo

Monitoring kształtowania wysokości taryf w świetle zmieniających się czynników ryzyka

Monitoring kształtowania wysokości taryf w świetle zmieniających się czynników ryzyka Monitoring kształtowania wysokości taryf w świetle zmieniających się czynników ryzyka 1 Przepisy prawa ustawa z dnia 22 maja 2003r. o działalności ubezpieczeniowej art. 18. 1. Wysokość składek ubezpieczeniowych

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii

Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii SPIS TREŚCI Przedmowa... 11 Wykaz symboli... 15 Litery alfabetu greckiego wykorzystywane w podręczniku... 15 Symbole wykorzystywane w zagadnieniach teorii mnogości (rachunku zbiorów)... 16 Symbole stosowane

Bardziej szczegółowo

Ubezpieczeniowy Fundusz Gwarancyjny. Jakość i standaryzacja danych a efektywność procesów realizowanych przez UFG

Ubezpieczeniowy Fundusz Gwarancyjny. Jakość i standaryzacja danych a efektywność procesów realizowanych przez UFG Ubezpieczeniowy Fundusz Gwarancyjny Jakość i standaryzacja danych a efektywność procesów realizowanych przez UFG Przemysław Czapliński Wojciech Bijak Krzysztof Hrycko Holiday Inn, Warszawa 25 marca 2009

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6. Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych

Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6. Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych Nazwa modułu: teoria ryzyka Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6 Wydział: Matematyki Stosowanej Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych

Bardziej szczegółowo

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22 Spis treści Przedmowa do wydania pierwszego.... 11 Przedmowa do wydania drugiego.... 15 Wykaz symboli.... 17 Litery alfabetu greckiego wykorzystywane w podręczniku.... 17 Symbole wykorzystywane w zagadnieniach

Bardziej szczegółowo

PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: FINANSE I RACHUNKOWOŚĆ STUDIA DRUGIEGO STOPNIA

PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: FINANSE I RACHUNKOWOŚĆ STUDIA DRUGIEGO STOPNIA PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: FINANSE I RACHUNKOWOŚĆ STUDIA DRUGIEGO STOPNIA CZĘŚĆ I dotyczy wszystkich studentów kierunku Finanse i Rachunkowość pytania podstawowe 1. Miernik dobrobytu alternatywne

Bardziej szczegółowo

Anna Celczyńska. Liczebność próby badawczej

Anna Celczyńska. Liczebność próby badawczej A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 296, 2013 * OCENA WYBRANYCH CZYNNIKÓW RYZYKA W UBEZPIECZENIU OC POSIADACZY POJAZDÓW MECHANICZNYCH 1. WPROWADZENIE Jedną z najważniejszych

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności. TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.

Bardziej szczegółowo

Predykcja szkód z uwzględnieniem zależności w ubezpieczeniach AC i OC komunikacyjnym

Predykcja szkód z uwzględnieniem zależności w ubezpieczeniach AC i OC komunikacyjnym Daniel Sobiecki 1 Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie Predykcja szkód z uwzględnieniem zależności w ubezpieczeniach AC i OC komunikacyjnym Streszczenie Przedmiotem opracowania

Bardziej szczegółowo

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona Badanie zależności między cechami Obserwujemy dwie cechy: X oraz Y Obiekt (X, Y ) H 0 : Cechy X oraz Y są niezależne Próba: (X 1, Y 1 ),..., (X n, Y n ) Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności

Bardziej szczegółowo

Prognozowanie na podstawie modelu ekonometrycznego

Prognozowanie na podstawie modelu ekonometrycznego Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)

Bardziej szczegółowo

Ubezpieczenia majątkowe

Ubezpieczenia majątkowe Wprowadzenie do ubezpieczeń Uniwersytet Przyrodniczy we Wrocławiu Instytut Nauk Ekonomicznych i Społecznych 2016/2017 Literatura N. L. Bowers i inni, Actuarial Mathematics, The Society of Actuaries, Itasca,

Bardziej szczegółowo

Etapy modelowania ekonometrycznego

Etapy modelowania ekonometrycznego Etapy modelowania ekonometrycznego jest podstawowym narzędziem badawczym, jakim posługuje się ekonometria. Stanowi on matematyczno-statystyczną formę zapisu prawidłowości statystycznej w zakresie rozkładu,

Bardziej szczegółowo

Modelowanie glikemii w procesie insulinoterapii

Modelowanie glikemii w procesie insulinoterapii Dawid Kaliszewski Modelowanie glikemii w procesie insulinoterapii Promotor dr hab. inż. Zenon Gniazdowski Cel pracy Zbudowanie modelu predykcyjnego przyszłych wartości glikemii diabetyka leczonego za pomocą

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA MATEMATYCZNA Nazwa w języku angielskim Mathematical Statistics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Autor prezentuje spójny obraz najczęściej stosowanych metod statystycznych, dodatkowo omawiając takie

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

ZAAWANSOWANE METODY ANALIZ STATYSTYCZNYCH red. Ewa Frątczak

ZAAWANSOWANE METODY ANALIZ STATYSTYCZNYCH red. Ewa Frątczak Tytuł: Autor: ZAAWANSOWANE METODY ANALIZ STATYSTYCZNYCH red. Ewa Frątczak Wstęp Zaawansowane metody analiz statystycznych przenoszą analizy statystyczne na kolejny wyższy poziom. Określenie tego wyższego

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka

Stanisław Cichocki. Natalia Nehrebecka Stanisław Cichocki Natalia Nehrebecka - adres mailowy: scichocki@o2.pl - strona internetowa: www.wne.uw.edu.pl/scichocki - dyżur: po zajęciach lub po umówieniu mailowo - 80% oceny: egzaminy - 20% oceny:

Bardziej szczegółowo

MODELOWANIE STRUKTURY PROBABILISTYCZNEJ UBEZPIECZEŃ ŻYCIOWYCH Z OPCJĄ ADBS JOANNA DĘBICKA 1, BEATA ZMYŚLONA 2

MODELOWANIE STRUKTURY PROBABILISTYCZNEJ UBEZPIECZEŃ ŻYCIOWYCH Z OPCJĄ ADBS JOANNA DĘBICKA 1, BEATA ZMYŚLONA 2 JOANNA DĘBICKA 1, BEATA ZMYŚLONA 2 MODELOWANIE STRUKTURY PROBABILISTYCZNEJ UBEZPIECZEŃ ŻYCIOWYCH Z OPCJĄ ADBS X OGÓLNOPOLSKA KONFERENCJA AKTUARIALNA ZAGADNIENIA AKTUARIALNE TEORIA I PRAKTYKA WARSZAWA,

Bardziej szczegółowo

TARYFA SKŁADEK ZA UBEZPIECZENIE AUTOCASCO STANDARD (ACS)

TARYFA SKŁADEK ZA UBEZPIECZENIE AUTOCASCO STANDARD (ACS) TARYFA SKŁADEK ZA UBEZPIECZENIE AUTOCASCO STANDARD (ACS) 1 1. Niniejsza taryfa składek ma zastosowanie do umów ubezpieczenia zawieranych na podstawie ogólnych warunków ubezpieczenia Autocasco Standard

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)

Bardziej szczegółowo

Regresja liniowa wprowadzenie

Regresja liniowa wprowadzenie Regresja liniowa wprowadzenie a) Model regresji liniowej ma postać: gdzie jest zmienną objaśnianą (zależną); są zmiennymi objaśniającymi (niezależnymi); natomiast są parametrami modelu. jest składnikiem

Bardziej szczegółowo

Spis treści. 1. Analiza zmian i tendencje rozwoju rynku ubezpieczeń komunikacyjnych

Spis treści. 1. Analiza zmian i tendencje rozwoju rynku ubezpieczeń komunikacyjnych Spis treści Wstęp... 9 1. Analiza zmian i tendencje rozwoju rynku ubezpieczeń komunikacyjnych w Polsce... 11 1.1. Charakterystyka i regulacje prawne rynku ubezpieczeń komunikacyjnych w Europie... 11 1.2.

Bardziej szczegółowo

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych

Bardziej szczegółowo

Łączenie i agregacja systemów bonus-malus w ubezpieczeniach komunikacyjnych

Łączenie i agregacja systemów bonus-malus w ubezpieczeniach komunikacyjnych Wojciech Bijak Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie Ubezpieczeniowy Fundusz Gwarancyjny Łączenie i agregacja systemów bonus-malus w ubezpieczeniach komunikacyjnych Streszczenie

Bardziej szczegółowo

KARTA KURSU. Kod Punktacja ECTS* 1

KARTA KURSU. Kod Punktacja ECTS* 1 KARTA KURSU Nazwa Nazwa w j. ang. Wprowadzenie do statystyki Introduction to statistics Kod Punktacja ECTS* 1 Koordynator Prof. dr hab. Jerzy Wołek Zespół dydaktyczny Prof. dr hab. Jerzy Wołek doktoranci

Bardziej szczegółowo

Analiza statystyczna trudności tekstu

Analiza statystyczna trudności tekstu Analiza statystyczna trudności tekstu Łukasz Dębowski ldebowsk@ipipan.waw.pl Problem badawczy Chcielibyśmy mieć wzór matematyczny,...... który dla dowolnego tekstu...... na podstawie pewnych statystyk......

Bardziej szczegółowo

PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA. CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe

PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA. CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe 1. Cele i przydatność ujęcia modelowego w ekonomii 2.

Bardziej szczegółowo

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ Korelacja oznacza fakt współzależności zmiennych, czyli istnienie powiązania pomiędzy nimi. Siłę i kierunek powiązania określa się za pomocą współczynnika korelacji

Bardziej szczegółowo

KARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4

KARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4 KARTA KURSU (do zastosowania w roku ak. 2015/16) Nazwa Statystyka 1 Nazwa w j. ang. Statistics 1 Kod Punktacja ECTS* 4 Koordynator Dr hab. Tadeusz Sozański (koordynator, wykłady) Dr Paweł Walawender (ćwiczenia)

Bardziej szczegółowo

Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego. Katarzyna Kuziak

Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego. Katarzyna Kuziak Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego Katarzyna Kuziak Cel: łączenie różnych rodzajów ryzyka rynkowego za pomocą wielowymiarowej funkcji powiązań 2 Ryzyko rynkowe W pomiarze ryzyka

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

2008-03-18 wolne wolne 2008-03-25 wolne wolne

2008-03-18 wolne wolne 2008-03-25 wolne wolne PLAN SPOTKAŃ ĆWICZEŃ: Data Grupa 2a Grupa 4a Grupa 2b Grupa 4b 2008-02-19 Zajęcia 1 Zajęcia 1 2008-02-26 Zajęcia 1 Zajęcia 1 2008-03-04 Zajęcia 2 Zajęcia 2 2008-03-11 Zajęcia 2 Zajęcia 2 2008-03-18 wolne

Bardziej szczegółowo

Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych

Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych Studia podyplomowe w zakresie przetwarzanie, zarządzania i statystycznej analizy danych PRZEDMIOT (liczba godzin konwersatoriów/ćwiczeń) Statystyka opisowa z elementami analizy regresji (4/19) Wnioskowanie

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp.

K wartość kapitału zaangażowanego w proces produkcji, w tys. jp. Sprawdzian 2. Zadanie 1. Za pomocą KMNK oszacowano następującą funkcję produkcji: Gdzie: P wartość produkcji, w tys. jp (jednostek pieniężnych) K wartość kapitału zaangażowanego w proces produkcji, w tys.

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność

Bardziej szczegółowo

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

Regresja wielokrotna. PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Regresja wielokrotna Model dla zależności liniowej: Y=a+b 1 X 1 +b 2 X 2 +...+b n X n Cząstkowe współczynniki regresji wielokrotnej: b 1,..., b n Zmienne niezależne (przyczynowe): X 1,..., X n Zmienna

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia II stopnia Specjalność: Inżynieria Powierzchni

Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia II stopnia Specjalność: Inżynieria Powierzchni Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia II stopnia Specjalność: Inżynieria Powierzchni Przedmiot: Statystyczne Sterowanie Procesami Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu:

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 Inne układy doświadczalne 1) Układ losowanych bloków Stosujemy, gdy podejrzewamy, że może występować systematyczna zmienność między powtórzeniami np. - zmienność

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Ubezpieczenia majątkowe 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/6

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Ubezpieczenia majątkowe 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/6 KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Ubezpieczenia majątkowe 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/6 5. LICZBA PUNKTÓW ECTS: 5 6. LICZBA GODZIN: 30 / 30 7.

Bardziej szczegółowo

ANALIZA REGRESJI SPSS

ANALIZA REGRESJI SPSS NLIZ REGRESJI SPSS Metody badań geografii społeczno-ekonomicznej KORELCJ REGRESJ O ile celem korelacji jest zmierzenie siły związku liniowego między (najczęściej dwoma) zmiennymi, o tyle w regresji związek

Bardziej szczegółowo

Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński

Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński Mikroekonometria 13 Mikołaj Czajkowski Wiktor Budziński Endogeniczność regresja liniowa W regresji liniowej estymujemy następujące równanie: i i i Metoda Najmniejszych Kwadratów zakłada, że wszystkie zmienne

Bardziej szczegółowo

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE

Bardziej szczegółowo

SPIS TEŚCI CZĘŚĆ I RACHUNEK PRAWDOPODOBIEŃSTWA

SPIS TEŚCI CZĘŚĆ I RACHUNEK PRAWDOPODOBIEŃSTWA SPIS TEŚCI PRZEDMOWA...13 CZĘŚĆ I RACHUNEK PRAWDOPODOBIEŃSTWA 1. ZDARZENIA LOSOWE I PRAWDOPODOBIEŃSTWO...17 1.1. UWAGI WSTĘPNE... 17 1.2. ZDARZENIA LOSOWE... 17 1.3. RELACJE MIĘDZY ZDARZENIAMI... 18 1.4.

Bardziej szczegółowo

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty

Bardziej szczegółowo

Kancelarie i doradcy odszkodowawczy z perspektywy

Kancelarie i doradcy odszkodowawczy z perspektywy Kancelarie i doradcy odszkodowawczy z perspektywy Ubezpieczeniowego Funduszu Gwarancyjnego Listopad 2010 Ubezpieczeniowy Fundusz Gwarancyjny 1 Plan prezentacji 1. Miejsce UFG w systemie ubezpieczeń obowiązkowych

Bardziej szczegółowo

Statystyka Małych Obszarów w badaniach próbkowych

Statystyka Małych Obszarów w badaniach próbkowych Statystyka Małych Obszarów w badaniach próbkowych Łukasz Wawrowski l.wawrowski@stat.gov.pl Urząd Statystyczny w Poznaniu SKN Estymator, UEP 5.03.2012 1 Wprowadzenie Podstawowe pojęcia Badanie 2 Estymator

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku

Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Przykład 2 Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Sondaż sieciowy analiza wyników badania sondażowego dotyczącego motywacji w drodze do sukcesu Cel badania: uzyskanie

Bardziej szczegółowo

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN

Bardziej szczegółowo

K A R T A P R Z E D M I O T U ( S Y L L A B U S )

K A R T A P R Z E D M I O T U ( S Y L L A B U S ) K A R T A P R Z E D M I O T U ( S Y L L A B U S ) Kod Nazwa w języku polskim: Ubezpieczenie odpowiedzialności cywilnej posiadaczy pojazdów mechanicznych w języku angielskim: Motor Third Party Liability

Bardziej szczegółowo

LITERATURA I TREŚCI PROGRAMOWE STUDIÓW PODYPLOMOWYCH MATEMATYKA FINANSOWA I UBEZPIECZENIOWA

LITERATURA I TREŚCI PROGRAMOWE STUDIÓW PODYPLOMOWYCH MATEMATYKA FINANSOWA I UBEZPIECZENIOWA Załącznik nr 2 do zarządzenia nr 165 Rektora Uniwersytetu Śląskiego w Katowicach z dnia 26 października 2012 r. LITERATURA I TREŚCI PROGRAMOWE STUDIÓW PODYPLOMOWYCH MATEMATYKA FINANSOWA I UBEZPIECZENIOWA

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 Regresja wielokrotna Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X 1, X 2, X 3,...) na zmienną zależną (Y).

Bardziej szczegółowo

Wyniki finansowe ubezpieczycieli w okresie trzech kwartałów 2006 roku

Wyniki finansowe ubezpieczycieli w okresie trzech kwartałów 2006 roku Warszawa, 10 stycznia 2007 i finansowe ubezpieczycieli w okresie trzech kwartałów 2006 roku (Informacja zweryfikowana w stosunku do opublikowanej w dniu 20 grudnia 2006, stosownie do korekty danych przekazanych

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Wybrane aspekty ubezpieczeń i reasekuracji Nazwa w języku angielskim: Selected Aspects Of Insurance And Reinsurance Kierunek

Bardziej szczegółowo

kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2

kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2 kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2 Kierunek Turystyka i Rekreacja Poziom kształcenia II stopień Rok/Semestr 1/2 Typ przedmiotu (obowiązkowy/fakultatywny) obowiązkowy y/ ćwiczenia

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Scoring kredytowy w pigułce

Scoring kredytowy w pigułce Analiza danych Data mining Sterowanie jakością Analityka przez Internet Scoring kredytowy w pigułce Mariola Kapla Biuro Informacji Kredytowej S.A. StatSoft Polska Sp. z o.o. ul. Kraszewskiego 36 30-110

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną

Bardziej szczegółowo

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

RAPORT. szkodowość w roku polisowym 2011 stan na dzień przygotowany dla Urzędu Miasta Łodzi. Raport szkód za rok polisowy 2011.

RAPORT. szkodowość w roku polisowym 2011 stan na dzień przygotowany dla Urzędu Miasta Łodzi. Raport szkód za rok polisowy 2011. RAPORT szkodowość w roku polisowym 2011 stan na dzień 31-03- 2012 przygotowany dla Urzędu Miasta Łodzi Raport szkód za rok polisowy 2011. 1 Program ubezpieczenia mienia, odpowiedzialności cywilnej, ubezpieczeń

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania analizy wariancji w opracowywaniu wyników badań empirycznych Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki -

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

(Jan Łazowski, Wstęp do nauki o ubezpieczeniach)

(Jan Łazowski, Wstęp do nauki o ubezpieczeniach) UBEZPIECZENIE Ubezpieczenie to urządzenie gospodarcze zapewniające pokrycie przyszłych potrzeb majątkowych, wywołanych u poszczególnych jednostek przez odznaczające się pewną prawidłowością zdarzenia losowe,

Bardziej szczegółowo

ŚNIADANIE PRASOWE TRENDY NA RYNKU KREDYTÓW

ŚNIADANIE PRASOWE TRENDY NA RYNKU KREDYTÓW ŚNIADANIE PRASOWE TRENDY NA RYNKU KREDYTÓW DLA LUDNOŚCI I FIRM W 2016 R. Mariusz Cholewa Prezes Zarządu BIK S.A. AGENDA Kredyty konsumpcyjne i pożyczki Wzrost wartości przy spadku liczby udzielonych kredytów.

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

WYCHODZĄC POZA PROSTĄ REGRESJĘ MODELOWANIE STATYSTYCZNE W OBSZARZE UBEZPIECZEŃ

WYCHODZĄC POZA PROSTĄ REGRESJĘ MODELOWANIE STATYSTYCZNE W OBSZARZE UBEZPIECZEŃ WYCHODZĄC POZA PROSTĄ REGRESJĘ MODELOWANIE STATYSTYCZNE W OBSZARZE UBEZPIECZEŃ Grzegorz Harańczyk, StatSoft Polska Sp. z o.o. Wiele zjawisk i procesów występujących w otaczającej nas rzeczywistości ma

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Zmienna losowa dwuwymiarowa i korelacja

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Zmienna losowa dwuwymiarowa i korelacja WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Zmienna losowa dwuwymiarowa i korelacja Zmienna losowa dwuwymiarowa Definiujemy ją tak samo, jak zmienną losową jednowymiarową, z tym że poszczególnym zdarzeniom elementarnym

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada

Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada Stanisław Cichocki Natalia Nehrebecka Katarzyna Rosiak-Lada 1. Sprawy organizacyjne Zasady zaliczenia 2. Czym zajmuje się ekonometria? 3. Formy danych statystycznych 4. Model ekonometryczny 2 1. Sprawy

Bardziej szczegółowo

Uogolnione modele liniowe

Uogolnione modele liniowe Uogolnione modele liniowe Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Uogolnione modele liniowe grudzien 2013 1 / 17 (generalized linear model - glm) Zakładamy,

Bardziej szczegółowo

Spis treści CZĘŚĆ I. UBEZPIECZENIA GOSPODARCZE

Spis treści CZĘŚĆ I. UBEZPIECZENIA GOSPODARCZE Spis treści Wykaz skrótów......................................................... 8 Wstęp................................................................. 9 CZĘŚĆ I. UBEZPIECZENIA GOSPODARCZE 1. RYZYKO

Bardziej szczegółowo

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych

Bardziej szczegółowo

Proces modelowania zjawiska handlu zagranicznego towarami

Proces modelowania zjawiska handlu zagranicznego towarami Załącznik nr 1 do raportu końcowego z wykonania pracy badawczej pt. Handel zagraniczny w województwach (NTS2) realizowanej przez Centrum Badań i Edukacji Statystycznej z siedzibą w Jachrance na podstawie

Bardziej szczegółowo

System bonus-malus z korektą składki

System bonus-malus z korektą składki Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny Wojciech Bijak Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie Ubezpieczeniowy Fundusz Gwarancyjny System bonus-malus z korektą składki Streszczenie

Bardziej szczegółowo

Ubezpieczenia non-life. Redaktor: Ewa Wierzbicka

Ubezpieczenia non-life. Redaktor: Ewa Wierzbicka Ubezpieczenia non-life. Redaktor: Ewa Wierzbicka Wprowadzenie -Ewa Wierzbicka 11 1. Rynek ubezpieczeń non-life w Polsce -Kazimierz Ortyński 15 1.1. Pojęcie i funkcje rynku ubezpieczeń 15 1.2. Struktura

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących

Bardziej szczegółowo

Sposoby prezentacji problemów w statystyce

Sposoby prezentacji problemów w statystyce S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki

Bardziej szczegółowo