Wpływ macierzy przejścia systemu bonus-malus ubezpieczeń komunikacyjnych OC na jego efektywność taryfikacyjną

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wpływ macierzy przejścia systemu bonus-malus ubezpieczeń komunikacyjnych OC na jego efektywność taryfikacyjną"

Transkrypt

1 Wpływ macierzy przejścia systemu bonus-malus ubezpieczeń komunikacyjnych OC na jego efektywność taryfikacyjną Anna Szymańska Katedra Metod Statystycznych Uniwersytet Łódzki

2 Taryfikacja w ubezpieczeniach komunikacyjnych OC Taryfikacja a priori Taryfikacja a posteriori

3 Łańcuch Markowa jako model przejść pomiędzy klasami systemu bonus-malus dla pojedynczego ubezpieczonego Załóżmy, że portfel to zbiór ubezpieczonych podzielonych w wyniku taryfikacji a priori na grupy taryfowe, a następnie w wyniku taryfikacji a posteriori na klasy taryfowe. Liczba klas taryfowych jest skończona i wynosi s. Oznaczmy przez S={1,2,...,s} zbiór numerów klas taryfowych. Przyjmijmy, że klasa j=1 jest obciążana największymi zwyżkami, natomiast j=s największymi zniżkami. Przynależność ubezpieczonego do klasy i w danym roku zależy od klasy, w której znajdował się w roku poprzednim oraz liczby szkód spowodowanych w roku poprzednim. Przy czym ubezpieczeni bez historii szkodowości trafiają do klasy startowej. Niech C t będzie zmienną losową oznaczającą klasę do której należy ubezpieczony w okresie ( t 1, t]. Każdej i-tej klasie taryfowej przyporządkowana jest stawka składki b i, i = 1,...,s stanowiąca procent składki podstawowej. Liczba szkód w danym roku dla dowolnego ubezpieczonego z danej klasy jest zmienną losową o znanym i stałym w czasie rozkładzie prawdopodobieństwa.

4 Łańcuch Markowa jako model przejść pomiędzy klasami systemu bonus-malus dla pojedynczego ubezpieczonego Modelem systemu bonus-malus dla pojedynczego ubezpieczonego o stałym współczynniku intensywności szkód λ>0 jest jednorodny łańcuch Markowa {C t } tєn o przestrzeni stanów S={1,2,...,s}, macierzy prawdopodobieństw przejścia: M( ) pk ( ) T( k) (1) k0 oraz prawdopodobieństwie przejścia ubezpieczonego z klasy taryfowej C i do klasy C j w jednym roku: p ij k0 ( k) ( ) p ( ) t, (2) gdzie pk () jest prawdopodobieństwem, że ubezpieczony w ciągu roku spowoduje ( k) 1 dla Tk i j k szkód oraz tij tij ( k) dla i,jєs, k = 0,1,2,... Funkcję T: S S, 0 dla Tk i j S={1,2,...,s} nazywamy funkcją transformacji, przy czym T k (i) = j oznacza, że ubezpieczony przechodzi z klasy i do klasy j, gdy spowodował k szkód w ciągu jednego roku. k ij

5 Łańcuch Markowa jako model przejść pomiędzy klasami systemu bonus-malus dla pojedynczego ubezpieczonego Zasady przejścia można zapisać w postaci k zerojedynkowych macierzy: t11 t12 t1s T(k) = [ t ( )] ij k. t s1 ts2 tss Dla każdego nierozkładalnego, ergodycznego łańcucha Markowa istnieje rozkład stacjonarny postaci: (3) a ( ) [ a1( ),..., a ( )], (4) n gdzie a j ( ) lim p ( ) oraz p n () jest prawdopodobieństwem przejścia n ij ij ubezpieczonego w okresie n-lat z klasy C i do klasy C j. Rozkład stacjonarny uzyskuje się rozwiązując równanie: gdzie s j1 a j s i1 s a j ( ) ai ( ) pij( ), j 1,..., s, (5) () 1, oraz a j () są frakcją ubezpieczonych znajdujących się w klasie C j po osiągnięciu przez system stanu stacjonarnego lub prawdopodobieństwem, że ubezpieczony znajdzie się w klasie C j po n okresach, gdy liczba okresów dąży do nieskończoności. Przy powyższych założeniach wektor a(λ) można wyznaczyć jako unormowany lewostronny wektor własny macierzy przejść M.

6 Miary efektywności taryfikacyjnej systemów bonus-malus Efektywność Loimaranty (ang. elasticity of the mean stationary premium with respect to the claim frequency) jest określona wzorem: db( ) d ( ), (6) B( ) gdzie oczekiwana stacjonarna składka za pojedynczy okres po osiągnięciu przez system stanu stacjonarnego wynosi: s B( ) a j ( ) b j. (7) i1

7 Miary efektywności taryfikacyjnej systemów bonus-malus Elastyczność ogólna (łączna):. ) ( ) ( 0 d (8) Załóżmy, że rozkład liczby szkód jest Poissona, a parametr intensywności szkód ma rozkład gamma. Całkę we wzorze (8) można przybliżyć wyznaczając całkę w d 0 ) ( ) ( (9) gdzie całkę we wzorze (9) można obliczyć za pomocą metody trapezów. Przybliżenie całki jest postaci k i k i k i k i k d k w i w ) ( ) ( 1 0 (10) Do obliczeń przyjęto w=3 i k=500. Zwiększenie wartości parametrów w i k poprawia dokładność aproksymacji na dziewiątym miejscu po przecinku.

8 Miary efektywności taryfikacyjnej systemów bonus-malus Względny stacjonarny oczekiwany poziom składki (ang. relative stationary average level) RSAL: RSAL( B( ) min j ( b j ) ). max j ( b j ) min j ( b j ) (11)

9 Przykładowe systemy bonus-malus Tabela nr 1. BMS PZU Nr klasy BM C j Liczba szkód w Stawka składki roku [%] 0 1 i więcej 1 C C C C C C C C C C C C C

10 Przykładowe systemy bonus-malus Tabela nr 2. BMS I Nr klasy BM C j Stawka składki Liczba szkód w roku [%] i więcej 1 C C C C C C C C C C C C C

11 Przykładowe systemy bonus-malus Tabela nr 3. BMS II Nr klasy BM C j Stawka składki Liczba szkód w roku [%] i więcej 1 C C C C C C C C C C C C C

12 Przykładowe systemy bonus-malus Tabela nr 4. BMS III Nr klasy BM C j Stawka składki Liczba szkód w roku [%] i więcej 1 C C C C C C C C C C C C C

13 Przykładowe systemy bonus-malus Tabela nr 5. BMS IV Nr Klasy BM C j Stawka składki Liczba szkód w roku [%] i więcej 1 C C C C C C C C C C C C C C C C C C

14 Przykładowe systemy bonus-malus Tabela nr 6. BMS V Nr klasy BM C j Stawka składki Liczba szkód w roku [%] i więcej 1 C C C C C C C C C C C C C C C C C C

15 Przykładowe systemy bonus-malus Tabela nr 7. BMS VI Nr klasy BM C j Stawka składki Liczba szkód w roku [%] i więcej 1 C C C C C C C C C C C C C C C C C C

16 Ocena efektywności taryfikacyjnej badanych systemów bonus-malus Tabela nr 8. Miary efektywności taryfikacyjnej systemów bonus-malus System Miara efektywności taryfikacyjnej systemu bonus-malus () () B RSAL () BMS PZU 0, , , , BMS I 0, , , , BMS II 0, , , , BMS III 0, , , , BMS IV 0, , , , BMS V 0, , , , BMS VI 0, , , ,108860

17 Ocena efektywności taryfikacyjnej badanych systemów bonus-malus 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 η(λ) η B(λ) RSAL miara efektywności BMS PZU BMS I BMS II BMS III BMS IV BMS V BMS VI

18 Ocena efektywności taryfikacyjnej badanych systemów bonus-malus System bonus-malus PZU, BMS I, BMS II, BMS IV i BMS V charakteryzują się niską efektywnością taryfikacyjną. W tych systemach stawki składki nie będą odpowiednie do ryzyka, jakie reprezentują ubezpieczeni a polisy będą się koncentrować w klasach zniżkowych, co może być powodem braku równowagi finansowej w portfelu. Systemy bonus-malus BMS III i BMS VI będą lepiej spełniać funkcję taryfikacyjną niż pozostałe badane systemy - oczekiwana stacjonarna składka będzie większa, a skoncentrowanie polis w klasach zniżkowych mniejsze. Miary efektywności taryfikacyjnej wskazują na lepszą elastyczność stawek względem intensywności szkód w tych systemach.

19 Wnioski Zwiększenie liczby klas systemu przy tych samych zasadach przejścia pomiędzy klasami, nie zawsze poprawia jego efektywność taryfikacyjną, czego przykładem są systemy: BMS IV w stosunku do BMS I oraz BMS V w porównaniu z BMS II. W wymienionych parach systemów wszystkie oceniane miary efektywności taryfikacyjnej mają mniejsze wartości nawet po zwiększeniu liczby klas, co świadczy o zmniejszeniu ich efektywności taryfikacyjnej. Wyjątek stanowi tutaj system BMS VI w stosunku do BMS III, czyli systemy bardzo surowo karzące ubezpieczonych zgłaszających szkody. Zwiększenie liczby klas dla takich systemów znacznie poprawia efektywność taryfikacyjną

20 Wnioski Niewielkie zaostrzenie kar, w porównaniu z systemem PZU, tylko dla ubezpieczonych powodujących w roku co najmniej dwie szkody, jak w systemach BMS I i BMS IV nie poprawia efektywności taryfikacyjnej systemu, a wręcz powoduje pogorszenie jego efektywności taryfikacyjnej. Należy tutaj zauważyć, że system BMS IV ma mniejsze wartości efektywności: Loimaranty i ogólnej, w porównaniu z BMS I i PZU, przy takich samych zasadach przejścia pomiędzy klasami i większej liczbie klas.

21 Wnioski Zaostrzenie kar dla wszystkich ubezpieczonych zgłaszających szkody przy tej samej liczbie klas, jak w systemach BMS I, BMS II i BMS III oraz BMS IV, BMS V i BMS VI, poprawia efektywność taryfikacyjną systemu. Należy jednak zauważyć, że w przypadku systemów z większą liczbą klas poprawa funkcji taryfikacyjnej jest większa.

22 Bibliografia Antonio K., Valez E., Statistical concepts of a priori and a posteriori risk classification in insurance, AStA Adv Stat Anal 2012, vol.96, s Bonsdorff H., On the Convergence rate of bonus-malus Systems, ASTIN Bulletin 1992, vol.22, s Denuit M., Marechal X., Pitrebois S., Walhin J., Actuarial Modelling of Claim Counts. Risk Classification, Credibility and Bonus-Malus Systems, Wiley, England 2007, s Lemaire J., Bonus-Malus Systems in Automobile Insurance, Kluwer, Boston, Niemiec M., Bonus-Malus Systems as Markov Set-Chains, ASTIN Bulletin 2007, vol. 37, s Podgórska M., Śliwka P., Tobolewski M., Wrzosek M., Łańcuchy Markowa w teorii i w zastosowaniach, Oficyna Wydawnicza SGH, Warszawa 2002, s.16 Szymańska A., Małecka M., Zastosowanie metody trapezów w ocenie efektywności taryfikacyjnej systemów bonus-malus ubezpieczeń komunikacyjnych OC, w: Z. Zieliński (red.), Rola informatyki w naukach ekonomicznych i społecznych. Innowacje i implikacje interdyscyplinarne, Wydawnictwo Wyższej Szkoły Handlowej, Kielce 2013, s

Wpływ liczby klas i reguł przejścia systemu bonus-malus na jego efektywność taryfikacyjną

Wpływ liczby klas i reguł przejścia systemu bonus-malus na jego efektywność taryfikacyjną Anna Szymańska Wydział Ekonomiczno-Socjologiczny Uniwersytet Łódzki Wpływ liczby klas i reguł przejścia systemu bonus-malus na jego efektywność taryfikacyjną Streszczenie Towarzystwa ubezpieczeniowe konkurują

Bardziej szczegółowo

System bonus-malus z mechanizmem korekty składki

System bonus-malus z mechanizmem korekty składki System bonus-malus z mechanizmem korekty składki mgr Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny dr hab. Wojciech Bijak, prof. SGH Ubezpieczeniowy Fundusz Gwarancyjny, Szkoła Główna Handlowa Zagadnienia

Bardziej szczegółowo

Wykorzystanie informacji kredytowej w procesie oceny ryzyka ubezpieczeniowego w ubezpieczeniach komunikacyjnych

Wykorzystanie informacji kredytowej w procesie oceny ryzyka ubezpieczeniowego w ubezpieczeniach komunikacyjnych Wykorzystanie informacji kredytowej w procesie oceny ryzyka ubezpieczeniowego w ubezpieczeniach komunikacyjnych Ubezpieczeniowy Fundusz Gwarancyjny mgr Karolina Pasternak-Winiarska mgr Kamil Gala Zagadnienia

Bardziej szczegółowo

Łączenie i agregacja systemów bonus-malus w ubezpieczeniach komunikacyjnych

Łączenie i agregacja systemów bonus-malus w ubezpieczeniach komunikacyjnych Wojciech Bijak Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie Ubezpieczeniowy Fundusz Gwarancyjny Łączenie i agregacja systemów bonus-malus w ubezpieczeniach komunikacyjnych Streszczenie

Bardziej szczegółowo

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy bez pamięci w których czas i stany są zbiorami dyskretnymi. Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. 2 Łańcuchem Markowa nazywamy proces będący ciągiem zmiennych

Bardziej szczegółowo

Optymalizacja reguł przejścia systemu bonus-malus o składkach Q-optymalnych

Optymalizacja reguł przejścia systemu bonus-malus o składkach Q-optymalnych Marcin Topolewski, Michał Bernardelli Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie Optymalizacja reguł przejścia systemu bonus-malus o składkach Q-optymalnych Streszczenie Systemy bonus-malus

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

Wokół wyszukiwarek internetowych

Wokół wyszukiwarek internetowych Wokół wyszukiwarek internetowych Bartosz Makuracki 23 stycznia 2014 Przypomnienie Wzór x 1 = 1 d N x 2 = 1 d N + d N i=1 p 1,i x i + d N i=1 p 2,i x i. x N = 1 d N + d N i=1 p N,i x i Oznaczenia Gdzie:

Bardziej szczegółowo

N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach:

N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach: Zadanie. O niezależnych zmiennych losowych N, M M, M 2, 3 wiemy, że: N ma rozkład Poissona z wartością oczekiwaną równą 00 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach: 2, 3 Pr( M = )

Bardziej szczegółowo

1. Wstęp SYSTEMY BONUS-MALUS Z WIELOLETNIĄ HISTORIĄ SZKODOWĄ. Wojciech Bijak. Piotr Dziel

1. Wstęp SYSTEMY BONUS-MALUS Z WIELOLETNIĄ HISTORIĄ SZKODOWĄ. Wojciech Bijak. Piotr Dziel SYSTEMY BONUS-MALUS Z WIELOLETNIĄ HISTORIĄ SZKODOWĄ Wojciech Bijak Szkoła Główna Handlowa w Warszawie Piotr Dziel Ubezpieczeniowy Fundusz Gwarancyjny e-mails: wobi@sgh.waw.pl; pdziel@ufg.pl ISSN 1644-6739

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 4.04.0 r. Zadanie. Przy danej wartości λ parametru ryzyka Λ liczby szkód generowane przez ubezpieczającego się w kolejnych latach to niezależne zmienne losowe o rozkładzie

Bardziej szczegółowo

Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką

Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką z losową stopą procentową i losową składką Instytut Matematyki i Informatyki Politechniki Wrocławskiej 10 czerwca 2008 Oznaczenia Wprowadzenie ξ n liczba wypłat w (n 1, n], Oznaczenia Wprowadzenie ξ n

Bardziej szczegółowo

Agata Boratyńska Statystyka aktuarialna... 1

Agata Boratyńska Statystyka aktuarialna... 1 Agata Boratyńska Statystyka aktuarialna... 1 ZADANIA NA ĆWICZENIA Z TEORII WIAROGODNOŚCI Zad. 1. Niech X 1, X 2,..., X n będą niezależnymi zmiennymi losowymi z rozkładu wykładniczego o wartości oczekiwanej

Bardziej szczegółowo

Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa

Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Wojciech Niemiro 1 Uniwersytet Warszawski i UMK Toruń XXX lat IMSM, Warszawa, kwiecień 2017 1 Wspólne prace z Błażejem Miasojedowem,

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 1.10.2012 r.

Matematyka ubezpieczeń majątkowych 1.10.2012 r. Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Łańcuchy Markowa: zagadnienia graniczne. Ukryte modele Markowa. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ KLASYFIKACJA STANÓW Stan i jest osiągalny

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

Ogólnopolska Konferencja Aktuarialna Zagadnienia aktuarialne teoria i praktyka Warszawa, IE SGH 2009

Ogólnopolska Konferencja Aktuarialna Zagadnienia aktuarialne teoria i praktyka Warszawa, IE SGH 2009 Rafał M. Łochowski Szkoła Główna Handlowa w Warszawie O pewnym modelu pojawiania się szkód Ogólnopolska Konferencja Aktuarialna Zagadnienia aktuarialne teoria i praktyka Warszawa, IE SGH 2009 Modele pojawiania

Bardziej szczegółowo

Spacery losowe generowanie realizacji procesu losowego

Spacery losowe generowanie realizacji procesu losowego Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z

Bardziej szczegółowo

System bonus-malus z korektą składki

System bonus-malus z korektą składki Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny Wojciech Bijak Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie Ubezpieczeniowy Fundusz Gwarancyjny System bonus-malus z korektą składki Streszczenie

Bardziej szczegółowo

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy bez pamięci w których czas i stany są zbiorami dyskretnymi. Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. Przykład Symetryczne błądzenie przypadkowe na prostej. 1 2 Łańcuchem

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 5.0.00 r. Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej µ wariancji oraz momencie centralnym µ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X

Bardziej szczegółowo

Wybrane metody szacowania rezerw techniczno-ubezpieczeniowych

Wybrane metody szacowania rezerw techniczno-ubezpieczeniowych Wybrane metody szacowania rezerw techniczno-ubezpieczeniowych Agata Boratyńska SGH, Warszawa Agata Boratyńska (SGH) Rezerwy 1 / 24 Plan 1 Co to są rezerwy techniczno-ubezpieczeniowe? 2 Rezerwa składek

Bardziej szczegółowo

dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2.

dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2. Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej μ, wariancji momencie centralnym μ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X μ k Pr > μ + t σ ) 0. k k t σ *

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka Biomatematyka Załóżmy, że częstości genotypów AA, Aa i aa w całej populacji wynoszą p 2, 2pq i q 2. Wiadomo, że czynnik selekcyjny sprawia, że osobniki o genotypie aa nie rozmnażają się. 1. Wyznacz częstości

Bardziej szczegółowo

Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka

Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE Joanna Sawicka Plan prezentacji Model Poissona-Gamma ze składnikiem regresyjnym Konstrukcja optymalnego systemu Bonus- Malus Estymacja

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

DOI: /sps JEL Classification: G22 Insurance; Insurance Companies; Actuarial Studies

DOI: /sps JEL Classification: G22 Insurance; Insurance Companies; Actuarial Studies ZALEŻNOŚĆ STOCHASTYCZNA W AKTUARIALNYCH MODELACH TARYFIKACJI A POSTERIOR ŚLĄSKI Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny Wojciech Bijak Szkoła Główna Handlowa w Warszawie, Ubezpieczeniowy Fundusz

Bardziej szczegółowo

Zadanie 1. są niezależne i mają rozkład z atomami: ( ),

Zadanie 1. są niezależne i mają rozkład z atomami: ( ), Zadanie. Zmienne losowe są niezależne i mają rozkład z atomami: ( ) ( ) i gęstością: ( ) na przedziale ( ). Wobec tego ( ) wynosi: (A) 0.2295 (B) 0.2403 (C) 0.2457 (D) 0.25 (E) 0.269 Zadanie 2. Niech:

Bardziej szczegółowo

Rachunek Prawdopodobieństwa Anna Janicka

Rachunek Prawdopodobieństwa Anna Janicka Rachunek Prawdopodobieństwa Anna Janicka wykład XIV, 24.01.2017 ŁAŃCUCHYMARKOWA CD. KRÓTKIE INFO O RÓŻNYCH WAŻNYCH ROZKŁADACH Plan na dzisiaj Łańcuchy Markowa cd. Różne ważne rozkłady prawdopodobieństwa,

Bardziej szczegółowo

Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku.

Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku. Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku. Uogólnienie na przeliczalnie nieskończone przestrzenie stanów zostało opracowane

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Ryzyko w ubezpieczeniach Risk in insurances Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności matematyka finansowa i ubezpieczeniowa Rodzaj zajęć: wykład, ćwiczenia

Bardziej szczegółowo

Wykład 9: Markov Chain Monte Carlo

Wykład 9: Markov Chain Monte Carlo RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka Biomatematyka W 200-elementowej próbie losowej z diploidalnej populacji wystąpiło 89 osobników genotypu AA, 57 osobników genotypu Aa oraz 54 osobników genotypu aa. Na podstawie tych danych (a) dokonaj

Bardziej szczegółowo

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k = Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,

Bardziej szczegółowo

Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II

Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II Ćwiczenia: Ukryte procesy Markowa lista kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II dr Jarosław Kotowicz Zadanie. Dany jest łańcuch Markowa, który może przyjmować wartości,,...,

Bardziej szczegółowo

Lista 1. Procesy o przyrostach niezależnych.

Lista 1. Procesy o przyrostach niezależnych. Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)

Bardziej szczegółowo

MUMIO Lab 6 (składki, kontrakt stop-loss)

MUMIO Lab 6 (składki, kontrakt stop-loss) MUMIO Lab 6 (składki, kontrakt stop-loss) 1. (6p.) Niech X oznacza ryzyko (zmienn a losow a o własności P (X 0) = 1), a H( ) niech oznacza formułȩ kalkulacji składki (przyporz adkowuj ac a każdemu ryzyku

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych..00 r. Zadanie. Proces szkód w pewnym ubezpieczeniu jest złożonym procesem Poissona z oczekiwaną liczbą szkód w ciągu roku równą λ i rozkładem wartości szkody o dystrybuancie

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji

Bardziej szczegółowo

Zadanie 1. O rozkładzie pewnego ryzyka X posiadamy następujące informacje: znamy oczekiwaną wartość nadwyżki ponad 20:

Zadanie 1. O rozkładzie pewnego ryzyka X posiadamy następujące informacje: znamy oczekiwaną wartość nadwyżki ponad 20: Zadanie 1. O rozkładzie pewnego ryzyka X posiadamy następujące informacje: znamy oczekiwaną wartość nadwyżki ponad 20: E X 20 8 oraz znamy następujące charakterystyki dotyczące przedziału 10, 20 : 3 Pr

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu

Bardziej szczegółowo

Statystyka aktuarialna i teoria ryzyka, model indywidualny i zespołowy, rozkłady złożone

Statystyka aktuarialna i teoria ryzyka, model indywidualny i zespołowy, rozkłady złożone Statystyka aktuarialna i teoria ryzyka, model indywidualny i zespołowy, rozkłady złożone Agata Boratyńska SGH, Warszawa Agata Boratyńska (SGH) SAiTR wykład 3 i 4 1 / 25 MODEL RYZYKA INDYWIDUALNEGO X wielkość

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 0.0.005 r. Zadanie. Likwidacja szkody zaistniałej w roku t następuje: w tym samym roku z prawdopodobieństwem 0 3, w następnym roku z prawdopodobieństwem 0 3, 8 w roku

Bardziej szczegółowo

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f

Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f Zadanie. W kolejnych latach t =,,,... ubezpieczony charakteryzujący się parametrem ryzyka Λ generuje N t szkód. Dla danego Λ = λ zmienne N, N, N,... są warunkowo niezależne i mają (brzegowe) rozkłady Poissona:

Bardziej szczegółowo

Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH

Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego. Łukasz Kończyk WMS AGH Zastosowanie modelu regresji logistycznej w ocenie ryzyka ubezpieczeniowego Łukasz Kończyk WMS AGH Plan prezentacji Model regresji liniowej Uogólniony model liniowy (GLM) Ryzyko ubezpieczeniowe Przykład

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Własność iteracyjności składek ubezpieczeniowych wyznaczonych w oparciu o teorię skumulowanej perspektywy Kahnemana-Tversky

Własność iteracyjności składek ubezpieczeniowych wyznaczonych w oparciu o teorię skumulowanej perspektywy Kahnemana-Tversky Własność iteracyjności składek ubezpieczeniowych wyznaczonych w oparciu o teorię skumulowanej perspektywy Kahnemana-Tversky ego Marek Kałuszka Michał Krzeszowiec Ogólnopolska Konferencja Naukowa Zagadnienia

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego

Bardziej szczegółowo

Modelowanie komputerowe

Modelowanie komputerowe Modelowanie komputerowe wykład 5- Klasyczne systemy kolejkowe i ich analiza dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 16,23listopada2015r. Analiza

Bardziej szczegółowo

STOCHASTYCZNY MODEL BEZPIECZEŃSTWA OBIEKTU W PROCESIE EKSPLOATACJI

STOCHASTYCZNY MODEL BEZPIECZEŃSTWA OBIEKTU W PROCESIE EKSPLOATACJI 1-2011 PROBLEMY EKSPLOATACJI 89 Franciszek GRABSKI Akademia Marynarki Wojennej, Gdynia STOCHASTYCZNY MODEL BEZPIECZEŃSTWA OBIEKTU W PROCESIE EKSPLOATACJI Słowa kluczowe Bezpieczeństwo, procesy semimarkowskie,

Bardziej szczegółowo

01. dla x 0; 1 2 wynosi:

01. dla x 0; 1 2 wynosi: Matematyka ubezpieczeń majątkowych 0.0.04 r. Zadanie. Ryzyko X ma rozkład z atomami: Pr X 0 08. Pr X 0. i gęstością: f X x 0. dla x 0; Ryzyko Y ma rozkład z atomami: Pr Y 0 07. Pr Y 0. i gęstością: fy

Bardziej szczegółowo

Zadanie 1. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną:

Zadanie 1. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną: Zadanie. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną: Pr Pr ( = k) ( N = k ) N = + k, k =,,,... Jeśli wiemy, że szkód wynosi: k= Pr( N = k) =, to prawdopodobieństwo,

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, Biomatematyka

EGZAMIN DYPLOMOWY, część II, Biomatematyka Biomatematyka Niech a będzie recesywnym płciowo skojarzonym genem i załóżmy, że proces selekcji uniemożliwia kojarzenie się osobników płci męskiej o genotypie aa. Przyjmijmy, że genotypy AA, Aa i aa występują

Bardziej szczegółowo

W6 Systemy naprawialne

W6 Systemy naprawialne W6 Systemy naprawialne Henryk Maciejewski Jacek Jarnicki Marek Woda www.zsk.iiar.pwr.edu.pl Plan wykładu 1. Graf stanów elementu naprawialnego / systemu 2. Analiza niezawodnościowa systemu model Markowa

Bardziej szczegółowo

19 marzec, Łańcuchy Markowa z czasem dyskretnym. Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136

19 marzec, Łańcuchy Markowa z czasem dyskretnym. Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 19 marzec, 2012 Przykłady procesów Markowa (i). P = (p ij ) - macierz stochastyczna, tzn. p ij 0, j p ij =

Bardziej szczegółowo

Modele wielorownaniowe

Modele wielorownaniowe Część 1. e e jednorównaniowe są znacznym uproszczeniem rzeczywistości gospodarczej e jednorównaniowe są znacznym uproszczeniem rzeczywistości gospodarczej e makroekonomiczne z reguły składają się z większej

Bardziej szczegółowo

Predykcja szkód z uwzględnieniem zależności w ubezpieczeniach AC i OC komunikacyjnym

Predykcja szkód z uwzględnieniem zależności w ubezpieczeniach AC i OC komunikacyjnym Daniel Sobiecki 1 Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie Predykcja szkód z uwzględnieniem zależności w ubezpieczeniach AC i OC komunikacyjnym Streszczenie Przedmiotem opracowania

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6. Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych

Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6. Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych Nazwa modułu: teoria ryzyka Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6 Wydział: Matematyki Stosowanej Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych

Bardziej szczegółowo

( n) Łańcuchy Markowa X 0, X 1,...

( n) Łańcuchy Markowa X 0, X 1,... Łańcuchy Markowa Łańcuchy Markowa to rocesy dyskretne w czasie i o dyskretnym zbiorze stanów, "bez amięci". Zwykle będziemy zakładać, że zbiór stanów to odzbiór zbioru liczb całkowitych Z lub zbioru {,,,...}

Bardziej szczegółowo

Spis treści. 1. Analiza zmian i tendencje rozwoju rynku ubezpieczeń komunikacyjnych

Spis treści. 1. Analiza zmian i tendencje rozwoju rynku ubezpieczeń komunikacyjnych Spis treści Wstęp... 9 1. Analiza zmian i tendencje rozwoju rynku ubezpieczeń komunikacyjnych w Polsce... 11 1.1. Charakterystyka i regulacje prawne rynku ubezpieczeń komunikacyjnych w Europie... 11 1.2.

Bardziej szczegółowo

Anna Celczyńska. Liczebność próby badawczej

Anna Celczyńska. Liczebność próby badawczej A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 296, 2013 * OCENA WYBRANYCH CZYNNIKÓW RYZYKA W UBEZPIECZENIU OC POSIADACZY POJAZDÓW MECHANICZNYCH 1. WPROWADZENIE Jedną z najważniejszych

Bardziej szczegółowo

Deterministyczna analiza systemu bonus-malus

Deterministyczna analiza systemu bonus-malus Barbara Cieślik, Damian Sulik Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie Deterministyczna analiza systemu bonus-malus Streszczenie Przedmiotem artykułu jest deterministyczna analiza

Bardziej szczegółowo

Biostatystyka, # 3 /Weterynaria I/

Biostatystyka, # 3 /Weterynaria I/ Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 3..007 r. Zadanie. Każde z ryzyk pochodzących z pewnej populacji charakteryzuje się tym że przy danej wartości λ parametru ryzyka Λ rozkład wartości szkód z tego ryzyka

Bardziej szczegółowo

Aproksymacja diofantyczna

Aproksymacja diofantyczna Aproksymacja diofantyczna Szymon Draga Ustroń, 4 listopada 0 r Wprowadzenie Jak wiadomo, każdą liczbę niewymierną można (z dowolną dokładnością) aproksymować liczbami wymiernymi Powstaje pytanie, w jaki

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład I: Formalizm statystyki matematycznej 17 lutego 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Zagadnienia omawiane na wykładach Forma zaliczenia przedmiotu Forma zaliczenia Literatura

Bardziej szczegółowo

Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1

Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład 1 Pojęcie szeregu nieskończonego:zastosowania do rachunku prawdopodobieństwa wykład dr Mariusz Grządziel 5 lutego 04 Paradoks Zenona z Elei wersja uwspółcześniona Zenek goni Andrzeja; prędkość Andrzeja:

Bardziej szczegółowo

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2 Instytut Matematyczny Uniwersytet Wrocławski Zakres egzaminu magisterskiego Wybrane rozdziały anazlizy i topologii 1 i 2 Pojęcia, fakty: Definicje i pojęcia: metryka, iloczyn skalarny, norma supremum,

Bardziej szczegółowo

ANALIZA MOŻLIWOŚCI ZASTOSOWANIA HIERARCHICZNYCH ESTYMATORÓW WIARYGODNOŚCI WYŻSZEGO RZĘDU W UBEZPIECZENIACH KOMUNIKACYJNYCH

ANALIZA MOŻLIWOŚCI ZASTOSOWANIA HIERARCHICZNYCH ESTYMATORÓW WIARYGODNOŚCI WYŻSZEGO RZĘDU W UBEZPIECZENIACH KOMUNIKACYJNYCH PRZEGLĄD STATYSTYCZNY R. LXII ZESZYT 2 2015 MARCIN TOPOLEWSKI 1 ANALIZA MOŻLIWOŚCI ZASTOSOWANIA HIERARCHICZNYCH ESTYMATORÓW WIARYGODNOŚCI WYŻSZEGO RZĘDU W UBEZPIECZENIACH KOMUNIKACYJNYCH 1. WSTĘP Niniejsza

Bardziej szczegółowo

Wyznaczenie współczynnika restytucji

Wyznaczenie współczynnika restytucji 1 Ćwiczenie 19 Wyznaczenie współczynnika restytucji 19.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika restytucji dla różnych materiałów oraz sprawdzenie słuszności praw obowiązujących

Bardziej szczegółowo

Modele DSGE. Jerzy Mycielski. Maj Jerzy Mycielski () Modele DSGE Maj / 11

Modele DSGE. Jerzy Mycielski. Maj Jerzy Mycielski () Modele DSGE Maj / 11 Modele DSGE Jerzy Mycielski Maj 2008 Jerzy Mycielski () Modele DSGE Maj 2008 1 / 11 Modele DSGE DSGE - Dynamiczne, stochastyczne modele równowagi ogólnej (Dynamic Stochastic General Equilibrium Model)

Bardziej szczegółowo

Geometryczna zbieżność algorytmu Gibbsa

Geometryczna zbieżność algorytmu Gibbsa Geometryczna zbieżność algorytmu Gibbsa Iwona Żerda Wydział Matematyki i Informatyki, Uniwersytet Jagielloński 6 grudnia 2013 6 grudnia 2013 1 / 19 Plan prezentacji 1 Algorytm Gibbsa 2 Tempo zbieżności

Bardziej szczegółowo

z przedziału 0,1 liczb dodatnich. Rozważmy dwie zmienne losowe:... ma złożony rozkład dwumianowy o parametrach 1,q i, gdzie X, wszystkie składniki X

z przedziału 0,1 liczb dodatnich. Rozważmy dwie zmienne losowe:... ma złożony rozkład dwumianowy o parametrach 1,q i, gdzie X, wszystkie składniki X Zadanie. Mamy dany ciąg liczb q, q,..., q n z przedziału 0,, oraz ciąg m, m,..., m n liczb dodatnich. Rozważmy dwie zmienne losowe: o X X X... X n, gdzie X i ma złożony rozkład dwumianowy o parametrach,q

Bardziej szczegółowo

PRZYKŁADY ZASTOSOWANIA MACIERZY MIGRACJI W ZARZĄDZANIU RYZYKIEM FINANSOWYM

PRZYKŁADY ZASTOSOWANIA MACIERZY MIGRACJI W ZARZĄDZANIU RYZYKIEM FINANSOWYM Urszula Grzybowska Marek Karwański Szkoła Główna Gospodarstwa Wiejskiego w Warszawie PRZYKŁADY ZASTOSOWANIA MACIERZY MIGRACJI W ZARZĄDZANIU RYZYKIEM FINANSOWYM Wstęp W ostatnich latach coraz częściej do

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład IV: dla łańcuchów Markowa 14 marca 2017 Wykład IV: Klasyfikacja stanów Kiedy rozkład stacjonarny jest jedyny? Przykład Macierz jednostkowa I wymiaru #E jest macierzą stochastyczną. Dla tej macierzy

Bardziej szczegółowo

DOI: /sps JEL Classification: G22 Insurance; Insurance Companies; Actuarial Studies

DOI: /sps JEL Classification: G22 Insurance; Insurance Companies; Actuarial Studies TARYFIKACJA A PRIORI Z UWZGLĘDNIENIEM EFEKTÓW PRZESTRZENNYCH Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny e-mail: kgala@ufg.pl ISSN 1644-6739 e-issn 2449-9765 DOI: 10.15611/sps.2017.15.05 JEL Classification:

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych

Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Elżbieta Krajewska Instytut Matematyki Politechnika Łódzka Elżbieta Krajewska Immunizacja ubezpieczycieli życiowych 1/22 Plan prezentacji

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 6.04.2009 r.

Matematyka ubezpieczeń majątkowych 6.04.2009 r. Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie. Niech N oznacza liczbę szkód zaszłych w ciągu roku z pewnego ubezpieczenia z czego: M to liczba szkód zgłoszonych przed końcem tego roku K to liczba

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie 1. W pewnej populacji podmiotów każdy podmiot narażony jest na ryzyko straty X o rozkładzie normalnym z wartością oczekiwaną równą μ i wariancją równą. Wszystkie podmioty z tej populacji kierują

Bardziej szczegółowo

Algorytm Metropolisa-Hastingsa

Algorytm Metropolisa-Hastingsa Seminarium szkoleniowe, 25 kwietnia 2006 Plan prezentacji 1 Problem Metoda MCMC 2 Niezależny algorytm Metropolisa-Hastingsa Bła dzenie losowe Zbieżność procedury Metropolisa-Hastingsa Problem Metoda MCMC

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, Biomatematyka

EGZAMIN DYPLOMOWY, część II, Biomatematyka Biomatematyka Niech X n oznacza proporcję pozycji w nici DNA, które po n replikacjach są obsadzone takimi samymi nukleotydami, jak w chwili początkowej, tak więc X 0 = 1. Zakładamy, że w każdej replikacji

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 4 Modelowanie niezawodności prostych struktur sprzętowych Prowadzący: mgr inż. Marcel Luzar Cel

Bardziej szczegółowo

Dyskretny proces Markowa

Dyskretny proces Markowa Procesy sochasyczne WYKŁAD 4 Dyskreny roces Markowa Rozarujemy roces sochasyczny X, w kórym aramer jes ciągły zwykle. Będziemy zakładać, że zbiór sanów jes co najwyżej rzeliczalny. Proces X, jes rocesem

Bardziej szczegółowo

Hierarchiczna analiza skupień

Hierarchiczna analiza skupień Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym

Bardziej szczegółowo

SPOTKANIE 11: Reinforcement learning

SPOTKANIE 11: Reinforcement learning Wrocław University of Technology SPOTKANIE 11: Reinforcement learning Adam Gonczarek Studenckie Koło Naukowe Estymator adam.gonczarek@pwr.edu.pl 19.01.2016 Uczenie z nadzorem (ang. supervised learning)

Bardziej szczegółowo

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N = HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki

Bardziej szczegółowo

modele stochastycznej niezależności liczby szkód i wartości pojedynczej szkody.

modele stochastycznej niezależności liczby szkód i wartości pojedynczej szkody. Joanna Sawicka Roczniki Kolegium Analiz Ekonomicznych Zeszyt 31/2013 Model stochastycznej zależności liczby szkód i wartości pojedynczej szkody Streszczenie W literaturze dotyczącej metody zaufania ang.

Bardziej szczegółowo

Wykorzystanie informacji kredytowej w procesie oceny ryzyka ubezpieczeniowego w ubezpieczeniach komunikacyjnych

Wykorzystanie informacji kredytowej w procesie oceny ryzyka ubezpieczeniowego w ubezpieczeniach komunikacyjnych Kamil Gala, Karolina Kolak Ubezpieczeniowy Fundusz Gwarancyjny Wykorzystanie informacji kredytowej w procesie oceny ryzyka ubezpieczeniowego w ubezpieczeniach komunikacyjnych Streszczenie W pracy przedstawiono

Bardziej szczegółowo

Algorytmy MCMC i ich zastosowania statystyczne

Algorytmy MCMC i ich zastosowania statystyczne Algorytmy MCMC i ich zastosowania statystyczne Wojciech Niemiro Uniwersytet Mikołaja Kopernika, Toruń i Uniwersytet Warszawski Statystyka Matematyczna Wisła, grudzień 2010 Wykład 1 1 Co to jest MCMC? 2

Bardziej szczegółowo

Quick Launch Manual:

Quick Launch Manual: egresja Odds atio Quick Launch Manual: regresja logistyczna i odds ratio Uniwesytet Warszawski, Matematyka 28.10.2009 Plan prezentacji egresja Odds atio 1 2 egresja egresja logistyczna 3 Odds atio 4 5

Bardziej szczegółowo

Wykład 4 Wybór najlepszej procedury. Estymacja parametrów re

Wykład 4 Wybór najlepszej procedury. Estymacja parametrów re Wykład 4 Wybór najlepszej procedury. Estymacja parametrów regresji z wykorzystaniem metody bootstrap. Wrocław, 22.03.2017r Wybór najlepszej procedury - podsumowanie Co nas interesuje przed przeprowadzeniem

Bardziej szczegółowo

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie METODY ESTYMACJI PUNKTOWEJ X 1,..., X n - próbka z rozkładu P θ, θ Θ, θ jest nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie P θ. Definicja. Estymatorem

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, Biomatematyka

EGZAMIN DYPLOMOWY, część II, Biomatematyka Biomatematyka Załóżmy, że częstości genotypów AA, Aa i aa w populacji znajdującej się w warunkach Hardy ego-wainberga wynoszą p 2, 2pq i q 2. Wiadomo, że badany mężczyzna należy do genotypu Aa. Wyznacz

Bardziej szczegółowo