Wpływ macierzy przejścia systemu bonus-malus ubezpieczeń komunikacyjnych OC na jego efektywność taryfikacyjną

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wpływ macierzy przejścia systemu bonus-malus ubezpieczeń komunikacyjnych OC na jego efektywność taryfikacyjną"

Transkrypt

1 Wpływ macierzy przejścia systemu bonus-malus ubezpieczeń komunikacyjnych OC na jego efektywność taryfikacyjną Anna Szymańska Katedra Metod Statystycznych Uniwersytet Łódzki

2 Taryfikacja w ubezpieczeniach komunikacyjnych OC Taryfikacja a priori Taryfikacja a posteriori

3 Łańcuch Markowa jako model przejść pomiędzy klasami systemu bonus-malus dla pojedynczego ubezpieczonego Załóżmy, że portfel to zbiór ubezpieczonych podzielonych w wyniku taryfikacji a priori na grupy taryfowe, a następnie w wyniku taryfikacji a posteriori na klasy taryfowe. Liczba klas taryfowych jest skończona i wynosi s. Oznaczmy przez S={1,2,...,s} zbiór numerów klas taryfowych. Przyjmijmy, że klasa j=1 jest obciążana największymi zwyżkami, natomiast j=s największymi zniżkami. Przynależność ubezpieczonego do klasy i w danym roku zależy od klasy, w której znajdował się w roku poprzednim oraz liczby szkód spowodowanych w roku poprzednim. Przy czym ubezpieczeni bez historii szkodowości trafiają do klasy startowej. Niech C t będzie zmienną losową oznaczającą klasę do której należy ubezpieczony w okresie ( t 1, t]. Każdej i-tej klasie taryfowej przyporządkowana jest stawka składki b i, i = 1,...,s stanowiąca procent składki podstawowej. Liczba szkód w danym roku dla dowolnego ubezpieczonego z danej klasy jest zmienną losową o znanym i stałym w czasie rozkładzie prawdopodobieństwa.

4 Łańcuch Markowa jako model przejść pomiędzy klasami systemu bonus-malus dla pojedynczego ubezpieczonego Modelem systemu bonus-malus dla pojedynczego ubezpieczonego o stałym współczynniku intensywności szkód λ>0 jest jednorodny łańcuch Markowa {C t } tєn o przestrzeni stanów S={1,2,...,s}, macierzy prawdopodobieństw przejścia: M( ) pk ( ) T( k) (1) k0 oraz prawdopodobieństwie przejścia ubezpieczonego z klasy taryfowej C i do klasy C j w jednym roku: p ij k0 ( k) ( ) p ( ) t, (2) gdzie pk () jest prawdopodobieństwem, że ubezpieczony w ciągu roku spowoduje ( k) 1 dla Tk i j k szkód oraz tij tij ( k) dla i,jєs, k = 0,1,2,... Funkcję T: S S, 0 dla Tk i j S={1,2,...,s} nazywamy funkcją transformacji, przy czym T k (i) = j oznacza, że ubezpieczony przechodzi z klasy i do klasy j, gdy spowodował k szkód w ciągu jednego roku. k ij

5 Łańcuch Markowa jako model przejść pomiędzy klasami systemu bonus-malus dla pojedynczego ubezpieczonego Zasady przejścia można zapisać w postaci k zerojedynkowych macierzy: t11 t12 t1s T(k) = [ t ( )] ij k. t s1 ts2 tss Dla każdego nierozkładalnego, ergodycznego łańcucha Markowa istnieje rozkład stacjonarny postaci: (3) a ( ) [ a1( ),..., a ( )], (4) n gdzie a j ( ) lim p ( ) oraz p n () jest prawdopodobieństwem przejścia n ij ij ubezpieczonego w okresie n-lat z klasy C i do klasy C j. Rozkład stacjonarny uzyskuje się rozwiązując równanie: gdzie s j1 a j s i1 s a j ( ) ai ( ) pij( ), j 1,..., s, (5) () 1, oraz a j () są frakcją ubezpieczonych znajdujących się w klasie C j po osiągnięciu przez system stanu stacjonarnego lub prawdopodobieństwem, że ubezpieczony znajdzie się w klasie C j po n okresach, gdy liczba okresów dąży do nieskończoności. Przy powyższych założeniach wektor a(λ) można wyznaczyć jako unormowany lewostronny wektor własny macierzy przejść M.

6 Miary efektywności taryfikacyjnej systemów bonus-malus Efektywność Loimaranty (ang. elasticity of the mean stationary premium with respect to the claim frequency) jest określona wzorem: db( ) d ( ), (6) B( ) gdzie oczekiwana stacjonarna składka za pojedynczy okres po osiągnięciu przez system stanu stacjonarnego wynosi: s B( ) a j ( ) b j. (7) i1

7 Miary efektywności taryfikacyjnej systemów bonus-malus Elastyczność ogólna (łączna):. ) ( ) ( 0 d (8) Załóżmy, że rozkład liczby szkód jest Poissona, a parametr intensywności szkód ma rozkład gamma. Całkę we wzorze (8) można przybliżyć wyznaczając całkę w d 0 ) ( ) ( (9) gdzie całkę we wzorze (9) można obliczyć za pomocą metody trapezów. Przybliżenie całki jest postaci k i k i k i k i k d k w i w ) ( ) ( 1 0 (10) Do obliczeń przyjęto w=3 i k=500. Zwiększenie wartości parametrów w i k poprawia dokładność aproksymacji na dziewiątym miejscu po przecinku.

8 Miary efektywności taryfikacyjnej systemów bonus-malus Względny stacjonarny oczekiwany poziom składki (ang. relative stationary average level) RSAL: RSAL( B( ) min j ( b j ) ). max j ( b j ) min j ( b j ) (11)

9 Przykładowe systemy bonus-malus Tabela nr 1. BMS PZU Nr klasy BM C j Liczba szkód w Stawka składki roku [%] 0 1 i więcej 1 C C C C C C C C C C C C C

10 Przykładowe systemy bonus-malus Tabela nr 2. BMS I Nr klasy BM C j Stawka składki Liczba szkód w roku [%] i więcej 1 C C C C C C C C C C C C C

11 Przykładowe systemy bonus-malus Tabela nr 3. BMS II Nr klasy BM C j Stawka składki Liczba szkód w roku [%] i więcej 1 C C C C C C C C C C C C C

12 Przykładowe systemy bonus-malus Tabela nr 4. BMS III Nr klasy BM C j Stawka składki Liczba szkód w roku [%] i więcej 1 C C C C C C C C C C C C C

13 Przykładowe systemy bonus-malus Tabela nr 5. BMS IV Nr Klasy BM C j Stawka składki Liczba szkód w roku [%] i więcej 1 C C C C C C C C C C C C C C C C C C

14 Przykładowe systemy bonus-malus Tabela nr 6. BMS V Nr klasy BM C j Stawka składki Liczba szkód w roku [%] i więcej 1 C C C C C C C C C C C C C C C C C C

15 Przykładowe systemy bonus-malus Tabela nr 7. BMS VI Nr klasy BM C j Stawka składki Liczba szkód w roku [%] i więcej 1 C C C C C C C C C C C C C C C C C C

16 Ocena efektywności taryfikacyjnej badanych systemów bonus-malus Tabela nr 8. Miary efektywności taryfikacyjnej systemów bonus-malus System Miara efektywności taryfikacyjnej systemu bonus-malus () () B RSAL () BMS PZU 0, , , , BMS I 0, , , , BMS II 0, , , , BMS III 0, , , , BMS IV 0, , , , BMS V 0, , , , BMS VI 0, , , ,108860

17 Ocena efektywności taryfikacyjnej badanych systemów bonus-malus 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 η(λ) η B(λ) RSAL miara efektywności BMS PZU BMS I BMS II BMS III BMS IV BMS V BMS VI

18 Ocena efektywności taryfikacyjnej badanych systemów bonus-malus System bonus-malus PZU, BMS I, BMS II, BMS IV i BMS V charakteryzują się niską efektywnością taryfikacyjną. W tych systemach stawki składki nie będą odpowiednie do ryzyka, jakie reprezentują ubezpieczeni a polisy będą się koncentrować w klasach zniżkowych, co może być powodem braku równowagi finansowej w portfelu. Systemy bonus-malus BMS III i BMS VI będą lepiej spełniać funkcję taryfikacyjną niż pozostałe badane systemy - oczekiwana stacjonarna składka będzie większa, a skoncentrowanie polis w klasach zniżkowych mniejsze. Miary efektywności taryfikacyjnej wskazują na lepszą elastyczność stawek względem intensywności szkód w tych systemach.

19 Wnioski Zwiększenie liczby klas systemu przy tych samych zasadach przejścia pomiędzy klasami, nie zawsze poprawia jego efektywność taryfikacyjną, czego przykładem są systemy: BMS IV w stosunku do BMS I oraz BMS V w porównaniu z BMS II. W wymienionych parach systemów wszystkie oceniane miary efektywności taryfikacyjnej mają mniejsze wartości nawet po zwiększeniu liczby klas, co świadczy o zmniejszeniu ich efektywności taryfikacyjnej. Wyjątek stanowi tutaj system BMS VI w stosunku do BMS III, czyli systemy bardzo surowo karzące ubezpieczonych zgłaszających szkody. Zwiększenie liczby klas dla takich systemów znacznie poprawia efektywność taryfikacyjną

20 Wnioski Niewielkie zaostrzenie kar, w porównaniu z systemem PZU, tylko dla ubezpieczonych powodujących w roku co najmniej dwie szkody, jak w systemach BMS I i BMS IV nie poprawia efektywności taryfikacyjnej systemu, a wręcz powoduje pogorszenie jego efektywności taryfikacyjnej. Należy tutaj zauważyć, że system BMS IV ma mniejsze wartości efektywności: Loimaranty i ogólnej, w porównaniu z BMS I i PZU, przy takich samych zasadach przejścia pomiędzy klasami i większej liczbie klas.

21 Wnioski Zaostrzenie kar dla wszystkich ubezpieczonych zgłaszających szkody przy tej samej liczbie klas, jak w systemach BMS I, BMS II i BMS III oraz BMS IV, BMS V i BMS VI, poprawia efektywność taryfikacyjną systemu. Należy jednak zauważyć, że w przypadku systemów z większą liczbą klas poprawa funkcji taryfikacyjnej jest większa.

22 Bibliografia Antonio K., Valez E., Statistical concepts of a priori and a posteriori risk classification in insurance, AStA Adv Stat Anal 2012, vol.96, s Bonsdorff H., On the Convergence rate of bonus-malus Systems, ASTIN Bulletin 1992, vol.22, s Denuit M., Marechal X., Pitrebois S., Walhin J., Actuarial Modelling of Claim Counts. Risk Classification, Credibility and Bonus-Malus Systems, Wiley, England 2007, s Lemaire J., Bonus-Malus Systems in Automobile Insurance, Kluwer, Boston, Niemiec M., Bonus-Malus Systems as Markov Set-Chains, ASTIN Bulletin 2007, vol. 37, s Podgórska M., Śliwka P., Tobolewski M., Wrzosek M., Łańcuchy Markowa w teorii i w zastosowaniach, Oficyna Wydawnicza SGH, Warszawa 2002, s.16 Szymańska A., Małecka M., Zastosowanie metody trapezów w ocenie efektywności taryfikacyjnej systemów bonus-malus ubezpieczeń komunikacyjnych OC, w: Z. Zieliński (red.), Rola informatyki w naukach ekonomicznych i społecznych. Innowacje i implikacje interdyscyplinarne, Wydawnictwo Wyższej Szkoły Handlowej, Kielce 2013, s

Wpływ liczby klas i reguł przejścia systemu bonus-malus na jego efektywność taryfikacyjną

Wpływ liczby klas i reguł przejścia systemu bonus-malus na jego efektywność taryfikacyjną Anna Szymańska Wydział Ekonomiczno-Socjologiczny Uniwersytet Łódzki Wpływ liczby klas i reguł przejścia systemu bonus-malus na jego efektywność taryfikacyjną Streszczenie Towarzystwa ubezpieczeniowe konkurują

Bardziej szczegółowo

System bonus-malus z mechanizmem korekty składki

System bonus-malus z mechanizmem korekty składki System bonus-malus z mechanizmem korekty składki mgr Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny dr hab. Wojciech Bijak, prof. SGH Ubezpieczeniowy Fundusz Gwarancyjny, Szkoła Główna Handlowa Zagadnienia

Bardziej szczegółowo

Wykorzystanie informacji kredytowej w procesie oceny ryzyka ubezpieczeniowego w ubezpieczeniach komunikacyjnych

Wykorzystanie informacji kredytowej w procesie oceny ryzyka ubezpieczeniowego w ubezpieczeniach komunikacyjnych Wykorzystanie informacji kredytowej w procesie oceny ryzyka ubezpieczeniowego w ubezpieczeniach komunikacyjnych Ubezpieczeniowy Fundusz Gwarancyjny mgr Karolina Pasternak-Winiarska mgr Kamil Gala Zagadnienia

Bardziej szczegółowo

Wokół wyszukiwarek internetowych

Wokół wyszukiwarek internetowych Wokół wyszukiwarek internetowych Bartosz Makuracki 23 stycznia 2014 Przypomnienie Wzór x 1 = 1 d N x 2 = 1 d N + d N i=1 p 1,i x i + d N i=1 p 2,i x i. x N = 1 d N + d N i=1 p N,i x i Oznaczenia Gdzie:

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 1.10.2012 r.

Matematyka ubezpieczeń majątkowych 1.10.2012 r. Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka Biomatematyka Załóżmy, że częstości genotypów AA, Aa i aa w całej populacji wynoszą p 2, 2pq i q 2. Wiadomo, że czynnik selekcyjny sprawia, że osobniki o genotypie aa nie rozmnażają się. 1. Wyznacz częstości

Bardziej szczegółowo

Wykład 9: Markov Chain Monte Carlo

Wykład 9: Markov Chain Monte Carlo RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa

Bardziej szczegółowo

Lista 1. Procesy o przyrostach niezależnych.

Lista 1. Procesy o przyrostach niezależnych. Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka Biomatematyka W 200-elementowej próbie losowej z diploidalnej populacji wystąpiło 89 osobników genotypu AA, 57 osobników genotypu Aa oraz 54 osobników genotypu aa. Na podstawie tych danych (a) dokonaj

Bardziej szczegółowo

Predykcja szkód z uwzględnieniem zależności w ubezpieczeniach AC i OC komunikacyjnym

Predykcja szkód z uwzględnieniem zależności w ubezpieczeniach AC i OC komunikacyjnym Daniel Sobiecki 1 Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie Predykcja szkód z uwzględnieniem zależności w ubezpieczeniach AC i OC komunikacyjnym Streszczenie Przedmiotem opracowania

Bardziej szczegółowo

Modelowanie komputerowe

Modelowanie komputerowe Modelowanie komputerowe wykład 5- Klasyczne systemy kolejkowe i ich analiza dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 16,23listopada2015r. Analiza

Bardziej szczegółowo

Anna Celczyńska. Liczebność próby badawczej

Anna Celczyńska. Liczebność próby badawczej A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 296, 2013 * OCENA WYBRANYCH CZYNNIKÓW RYZYKA W UBEZPIECZENIU OC POSIADACZY POJAZDÓW MECHANICZNYCH 1. WPROWADZENIE Jedną z najważniejszych

Bardziej szczegółowo

Deterministyczna analiza systemu bonus-malus

Deterministyczna analiza systemu bonus-malus Barbara Cieślik, Damian Sulik Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie Deterministyczna analiza systemu bonus-malus Streszczenie Przedmiotem artykułu jest deterministyczna analiza

Bardziej szczegółowo

Spis treści. 1. Analiza zmian i tendencje rozwoju rynku ubezpieczeń komunikacyjnych

Spis treści. 1. Analiza zmian i tendencje rozwoju rynku ubezpieczeń komunikacyjnych Spis treści Wstęp... 9 1. Analiza zmian i tendencje rozwoju rynku ubezpieczeń komunikacyjnych w Polsce... 11 1.1. Charakterystyka i regulacje prawne rynku ubezpieczeń komunikacyjnych w Europie... 11 1.2.

Bardziej szczegółowo

Quick Launch Manual:

Quick Launch Manual: egresja Odds atio Quick Launch Manual: regresja logistyczna i odds ratio Uniwesytet Warszawski, Matematyka 28.10.2009 Plan prezentacji egresja Odds atio 1 2 egresja egresja logistyczna 3 Odds atio 4 5

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6. Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych

Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6. Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych Nazwa modułu: teoria ryzyka Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6 Wydział: Matematyki Stosowanej Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych

Bardziej szczegółowo

ISBN (wersja drukowana) 978-83-7969-266-8 ISBN (ebook) 978-83-7969-736-6

ISBN (wersja drukowana) 978-83-7969-266-8 ISBN (ebook) 978-83-7969-736-6 Anna Szymańska Uniwersytet Łódzki, Wydział Ekonomiczno-Socjologiczny Katedra Metod Statystycznych, 90-214 Łódź, ul. Rewolucji 1905 r. nr 41/43 RECENZENT Wojciech Bijak REDAKTOR WYDAWNICTWA UŁ Elżbieta

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,5,,0,0) jest rozwiązaniem dopuszczalnym zagadnienia programowania liniowego: Zminimalizować 3x 1 +x +x 3 +4x 4 +6x 5, przy ograniczeniach

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 6.04.2009 r.

Matematyka ubezpieczeń majątkowych 6.04.2009 r. Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie. Niech N oznacza liczbę szkód zaszłych w ciągu roku z pewnego ubezpieczenia z czego: M to liczba szkód zgłoszonych przed końcem tego roku K to liczba

Bardziej szczegółowo

Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych

Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Elżbieta Krajewska Instytut Matematyki Politechnika Łódzka Elżbieta Krajewska Immunizacja ubezpieczycieli życiowych 1/22 Plan prezentacji

Bardziej szczegółowo

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i )

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i ) Rachunek prawdopodobieństwa - Teoria - Przypomnienie Podstawy Definicja 1. Schemat klasyczny - wszystkie zdarzenia elementarne są równo prawdopodobne, licząc prawdopodobieństwo liczymy stosunek liczby

Bardziej szczegółowo

Punkty ECTS Matematyka 11049 8

Punkty ECTS Matematyka 11049 8 STUDIA LICENCJACKIE PRZEDMIOTY PODSTAWOWE Przedmiot Matematyka 11049 8 PRZEDMIOTY KIERUNKOWE MIESI Przedmiot Algebra 12100 6 Analiza matematyczna 12101 6 Deterministyczne modele badań operacyjnych 12014

Bardziej szczegółowo

K A R T A P R Z E D M I O T U ( S Y L L A B U S )

K A R T A P R Z E D M I O T U ( S Y L L A B U S ) K A R T A P R Z E D M I O T U ( S Y L L A B U S ) Kod Nazwa w języku polskim: Ubezpieczenie odpowiedzialności cywilnej posiadaczy pojazdów mechanicznych w języku angielskim: Motor Third Party Liability

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 244, 2010. Anna Szyma ska *

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 244, 2010. Anna Szyma ska * A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 44, 010 * WPŁYW PARAMETRÓW ROZKŁADU WIELKO CI SZKÓD NA WYSOKOS SKŁADKI NETTO W UBEZPIECZENIACH KOMUNKACYJNYCH OC 1. TEORETYCZNE ZASADY

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

K A R T A P R Z E D M I O T U ( S Y L L A B U S )

K A R T A P R Z E D M I O T U ( S Y L L A B U S ) K A R T A P R Z E D M I O T U ( S Y L L A B U S ) Kod UTHRad/E/A/HES / Nazwa w języku polskim: Ubezpieczenie odpowiedzialności cywilnej posiadaczy pojazdów mechanicznych w języku angielskim: Motor Third

Bardziej szczegółowo

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1. 1. W p r owadze n ie 1 Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1.1. WPROWADZENIE SYGNAŁ nośnik informacji ANALIZA SYGNAŁU badanie, którego celem jest identyfikacja własności, cech, miar sygnału; odtwarzanie

Bardziej szczegółowo

Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d.

Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d. Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d. Oprócz zmiennych i wektorów strukturami danych w R są: macierze; ramki (ang. data frames); listy; klasy S3 1 Macierze Macierze

Bardziej szczegółowo

1 Funkcja użyteczności

1 Funkcja użyteczności 1 Funkcja użyteczności Funkcja użyteczności to funkcja, której wartościami są wartości użyteczności (satysfakcji, komfortu psychicznego). Można mówić o użyteczności różnych zjawisk. Użyteczność pieniądza

Bardziej szczegółowo

Monitoring kształtowania wysokości taryf w świetle zmieniających się czynników ryzyka

Monitoring kształtowania wysokości taryf w świetle zmieniających się czynników ryzyka Monitoring kształtowania wysokości taryf w świetle zmieniających się czynników ryzyka 1 Przepisy prawa ustawa z dnia 22 maja 2003r. o działalności ubezpieczeniowej art. 18. 1. Wysokość składek ubezpieczeniowych

Bardziej szczegółowo

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

Generacja liczb pseudolosowych

Generacja liczb pseudolosowych Generacja liczb pseudolosowych Zapis liczb w komputerze Generatory liczb pseudolosowych Liniowe kongruentne Liniowe mutiplikatywne kongruentne Jakość generatorów Test widmowy Generowanie liczb losowych

Bardziej szczegółowo

Zasady przyjmowania zniżek/zwyżek w Liberty Direct. Agenci 2011

Zasady przyjmowania zniżek/zwyżek w Liberty Direct. Agenci 2011 Zasady przyjmowania zniżek/zwyżek w Liberty Direct Agenci 2011 tel. 1 95 21 www.libertydirect.pl Bonus Malus System zniżek zwyżek Dwa oddzielne systemy Bonus - Malus Jeden w OC a drugi w AC Takie same

Bardziej szczegółowo

MODEL OCENY SYSTEMU REMONTU TECHNIKI WOJSKOWEJ

MODEL OCENY SYSTEMU REMONTU TECHNIKI WOJSKOWEJ ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK LII NR 1 (184) 2011 Marian Brzeziń ski Wojskowa Akademia Techniczna MODEL OCENY SYSTEMU REMONTU TECHNIKI WOJSKOWEJ STRESZCZENIE W artykule scharakteryzowano

Bardziej szczegółowo

Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych

Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych mgr inż. C. Dendek prof. nzw. dr hab. J. Mańdziuk Politechnika Warszawska, Wydział Matematyki i Nauk Informacyjnych Outline 1 Uczenie

Bardziej szczegółowo

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2 Instytut Matematyczny Uniwersytet Wrocławski Zakres egzaminu magisterskiego Wybrane rozdziały anazlizy i topologii 1 i 2 Pojęcia, fakty: Definicje i pojęcia: metryka, iloczyn skalarny, norma supremum,

Bardziej szczegółowo

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III Komisja Egzaminacyjna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III Matematyka ubezpieczeń majątkowych Imię i nazwisko osoby egzaminowanej:. Czas egzaminu: 100 minut Komisja

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

4. Ubezpieczenie Życiowe

4. Ubezpieczenie Życiowe 4. Ubezpieczenie Życiowe Składka ubezpieczeniowa musi brać pod uwagę następujące czynniki: 1. Kwotę wypłaconą przy śmierci ubezpieczonego oraz jej wartość aktualną. 2. Rozkład czasu do śmierci ubezpieczonego

Bardziej szczegółowo

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ

TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ. dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ TEORIA GIER W EKONOMII WYKŁAD 2: GRY DWUOSOBOWE O SUMIE ZEROWEJ dr Robert Kowalczyk Katedra Analizy Nieliniowej Wydział Matematyki i Informatyki UŁ Definicja gry o sumie zerowej Powiemy, że jest grą o

Bardziej szczegółowo

WYDZIAŁ EKONOMII KARTA OPISU MODUŁU KSZTAŁCENIA

WYDZIAŁ EKONOMII KARTA OPISU MODUŁU KSZTAŁCENIA WYDZIAŁ EKONOMII KARTA OPISU MODUŁU KSZTAŁCENIA Nazwa modułu Ubezpieczenia Nazwa modułu w języku angielskim Insurance Kod modułu Kody nie zostały jeszcze przypisane Kierunek studiów Kierunek prawno-ekonomiczny

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów 4. Wartości własne i wektory własne 4.1. Podstawowe definicje, własności i twierdzenia 4.2. Lokalizacja wartości własnych 4.3. Metoda potęgowa znajdowania

Bardziej szczegółowo

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Komisja Egzaminacyjna dla Aktuariuszy XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut . Ile

Bardziej szczegółowo

Ekonometria_FIRJK Arkusz1

Ekonometria_FIRJK Arkusz1 Rok akademicki: Grupa przedmiotów Numer katalogowy: Nazwa przedmiotu 1) : łumaczenie nazwy na jęz. angielski 3) : Kierunek studiów 4) : Ekonometria Econometrics Ekonomia ECS 2) Koordynator przedmiotu 5)

Bardziej szczegółowo

Zastosowanie łańcuchów Markowa w badaniu stopnia stabilności dochodów podatników

Zastosowanie łańcuchów Markowa w badaniu stopnia stabilności dochodów podatników Robert ORPYCH Zastosowanie łańcuchów Markowa w badaniu stopnia stabilności dochodów podatników Nierównomiernoć rozkładu płac i dochodów to ważny i złożony problem, który wywiera znaczący wpływ na kształtowanie

Bardziej szczegółowo

1. Opierał się wyłącznie na strategiach czystych, a, jak wiadomo, gra może mieć jedyne równowagi w strategiach mieszanych.

1. Opierał się wyłącznie na strategiach czystych, a, jak wiadomo, gra może mieć jedyne równowagi w strategiach mieszanych. Rozdział 4 Uczenie się w grach Na dzisiejszym wykładzie robimy krok w tył w stosunku do tego, o czym mówiliśmy przez ostatnie tygodnie. Dotychczas mówiliśmy o dowolnych grach wieloetapowych, dziś opowiem

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 259, 2011. Anna Szymańska *

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 259, 2011. Anna Szymańska * A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 59, * WPŁYW TYPU ROZKŁADU WIELKOŚCI SZKÓD NA WARTOŚĆ SKŁADKI NETTO W UBEZPIECZENIACH KOMUNIKACYJNYCH OC. TEORETYCZNE ZASADY KALKULACJI

Bardziej szczegółowo

OFERTA. ubezpieczenia następstw nieszczęśliwych wypadków dla. dzieci, młodzieży oraz personelu. Placówek Oświatowo - Wychowawczych

OFERTA. ubezpieczenia następstw nieszczęśliwych wypadków dla. dzieci, młodzieży oraz personelu. Placówek Oświatowo - Wychowawczych OFERTA ubezpieczenia następstw nieszczęśliwych wypadków dla dzieci, młodzieży oraz personelu Placówek Oświatowo - Wychowawczych na rok szkolny 2010/2011 Łódź 2010 1 Szanowni Państwo, Polskie Towarzystwo

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Ubezpieczenia majątkowe 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/6

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Ubezpieczenia majątkowe 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/6 KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Ubezpieczenia majątkowe 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/6 5. LICZBA PUNKTÓW ECTS: 5 6. LICZBA GODZIN: 30 / 30 7.

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH

POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH Barbara Popowska bpopowsk@math.put.poznan.pl Politechnika Poznańska http://www.put.poznan.pl/ PROGRAM REFERATU 1. WPROWADZENIE 2. GRAF JAKO MODEL

Bardziej szczegółowo

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Informatyka

Bardziej szczegółowo

PROCES RYZYKA Z ZALEŻNYMI OKRESAMI MIĘDZY WYPŁATAMI ANALIZA PRAWDOPODOBIEŃSTWA RUINY 1

PROCES RYZYKA Z ZALEŻNYMI OKRESAMI MIĘDZY WYPŁATAMI ANALIZA PRAWDOPODOBIEŃSTWA RUINY 1 Stanisław Heilpern Uniwersytet Ekonomiczny we Wrocławiu PROCES RYZYKA Z ZALEŻNYMI OKRESAMI MIĘDZY WYPŁATAMI ANALIZA PRAWDOPODOBIEŃSTWA RUINY 1 Wprowadzenie W pracy będzie rozpatrywany ciągły proces ryzyka,

Bardziej szczegółowo

Zbiory przybliżone, cz. 1 (wersja do druku) dr. Piotr Szczuko

Zbiory przybliżone, cz. 1 (wersja do druku) dr. Piotr Szczuko Zbiory przybliżone, cz. 1 (wersja do druku) dr. Piotr Szczuko Katedra Systemów Multimedialnych 2009 Plan wykładu Historia zbiorów przybliżonych System informacyjny i decyzyjny Reguły decyzyjne Tożsamość

Bardziej szczegółowo

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński Zarządzanie ryzykiem Opracował: Dr inŝ. Tomasz Zieliński I. OGÓLNE INFORMACJE O PRZEDMIOCIE Cel przedmiotu: Celem przedmiotu jest zaprezentowanie studentom podstawowych pojęć z zakresu ryzyka w działalności

Bardziej szczegółowo

Streszczenie. 3. Mechanizmy Zniszczenia Plastycznego

Streszczenie. 3. Mechanizmy Zniszczenia Plastycznego Streszczenie Dobór elementów struktury konstrukcyjnej z warunku ustalonej niezawodności, mierzonej wskaźnikiem niezawodności β. Przykład liczbowy dla ramy statycznie niewyznaczalnej. Leszek Chodor, Joanna

Bardziej szczegółowo

Przegląd ważniejszych rozkładów

Przegląd ważniejszych rozkładów Przegląd ważniejszych rozkładów Rozkład dwupunktowy P (X = x) = { p dla x = a, 1 p dla x = b, to zmienna losowa X ma rozkład dwupunktowy z parametrem p (0 < p < 1). Rozkład ten pojawia się przy opisie

Bardziej szczegółowo

Optymalizacja reguł przejścia systemu bonus-malus

Optymalizacja reguł przejścia systemu bonus-malus Optymalizaca rguł przścia systmu onus-malus Dr Marcin Topolwski Dr Michał Brnardlli Instytut Ekonomtrii Szkoła Główna Handlowa w Warszawi Plan: Inspiraca, motywaca, cl i zakrs adania Ryzyko Systm onus-malus

Bardziej szczegółowo

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy

Bardziej szczegółowo

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania

Bardziej szczegółowo

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu:

Funkcja jednej zmiennej - przykładowe rozwiązania 1. Badając przebieg zmienności funkcji postępujemy według poniższego schematu: Funkcja jednej zmiennej - przykładowe rozwiązania Zadanie 4 c) Badając przebieg zmienności funkcji postępujemy według poniższego schematu:. Analiza funkcji: (a) Wyznaczenie dziedziny funkcji (b) Obliczenie

Bardziej szczegółowo

Algorytmy i bazy danych (wykład obowiązkowy dla wszystkich)

Algorytmy i bazy danych (wykład obowiązkowy dla wszystkich) MATEMATYKA I EKONOMIA PROGRAM STUDIÓW DLA II STOPNIA Data: 2010-11-07 Opracowali: Krzysztof Rykaczewski Paweł Umiński Streszczenie: Poniższe opracowanie przedstawia projekt planu studiów II stopnia na

Bardziej szczegółowo

1. Ubezpieczenia życiowe

1. Ubezpieczenia życiowe 1. Ubezpieczenia życiowe Przy ubezpieczeniach życiowych mamy do czynienia z jednorazową wypłatą sumy ubezpieczenia. Moment jej wypłaty i wielkość wypłaty może być funkcją zmiennej losowej T a więc czas

Bardziej szczegółowo

4 Kilka klas procesów

4 Kilka klas procesów Marek Beśka, Całka Stochastyczna, wykład 4 48 4 Kilka klas procesów 4.1 Procesy rosnące i przestrzenie V,, loc Jak poprzednio niech (Ω, F, F, P ) będzie zupełną bazą stochastyczną. Definicja 4.1 Proces

Bardziej szczegółowo

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L, Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, 18.09.2012 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, 18.09.2012 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,0,3,3) jest optymalnym rozwiązaniem zagadnienia programowania liniowego: Zminimalizować 8x 1 +5x 2 +3x 3 +4x 4, przy ograniczeniach

Bardziej szczegółowo

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rozważmy

Bardziej szczegółowo

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 3 Generacja realizacji zmiennych losowych Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia: Generowanie

Bardziej szczegółowo

PRZESTRZENNE ZRÓŻNICOWANIE RYZYKA UBEZPIECZENIOWEGO A EFEKTYWNOŚĆ UBEZPIECZEŃ NA ŻYCIE Autor: Adam Śliwiński,

PRZESTRZENNE ZRÓŻNICOWANIE RYZYKA UBEZPIECZENIOWEGO A EFEKTYWNOŚĆ UBEZPIECZEŃ NA ŻYCIE Autor: Adam Śliwiński, PRZESTRZENNE ZRÓŻNICOWANIE RYZYKA UBEZPIECZENIOWEGO A EFEKTYWNOŚĆ UBEZPIECZEŃ NA ŻYCIE Autor: Adam Śliwiński, Wstęp Zadania badawcze wyznaczają strukturę pracy. Składa się ona z ośmiu rozdziałów. Rozdział

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta

Bardziej szczegółowo

Analiza matematyczna - 14. Analiza zmiennych dyskretnych: ciągi i szeregi liczbowe

Analiza matematyczna - 14. Analiza zmiennych dyskretnych: ciągi i szeregi liczbowe Analiza matematyczna - 4. Analiza zmiennych dyskretnych: ciągi i szeregi liczbowe Wstęp: zmienne ciągłe i zmienne dyskretne Podczas dotychczasowych wykładów rozważaliśmy przede wszystkim zależności funkcyjne

Bardziej szczegółowo

Z Wikipedii, wolnej encyklopedii.

Z Wikipedii, wolnej encyklopedii. Rozkład normalny Rozkład normalny jest niezwykle ważnym rozkładem prawdopodobieństwa w wielu dziedzinach. Nazywa się go także rozkładem Gaussa, w szczególności w fizyce i inżynierii. W zasadzie jest to

Bardziej szczegółowo

VADEMECUM (komunikacja)

VADEMECUM (komunikacja) Klauzula nr 10 - ZzZ Nowe OC Nowe AC Lux car (AC) zniżka specjalna (AC) zniżka specjalna (OC) AC 4 ROK zniżka incydentalna zniżka pracownicza Programy Branżowe (dawne karty stand.) VADEMECUM (komunikacja)

Bardziej szczegółowo

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d) Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem

Bardziej szczegółowo

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie

Bardziej szczegółowo

Rachunek prawdopodobieństwa dla informatyków

Rachunek prawdopodobieństwa dla informatyków Rachunek prawdopodobieństwa dla informatyków Adam Roman Instytut Informatyki UJ Wykład 7 teoria kolejek prawo Little a systemy jedno- i wielokolejkowe 1/75 System kolejkowy System kolejkowy to układ złożony

Bardziej szczegółowo

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych dr Piotr Sulewski POMORSKA AKADEMIA PEDAGOGICZNA W SŁUPSKU KATEDRA INFORMATYKI I STATYSTYKI Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych Wprowadzenie Obecnie bardzo

Bardziej szczegółowo

TARYFA SKŁADEK ZA UBEZPIECZENIE AUTOCASCO STANDARD (ACS)

TARYFA SKŁADEK ZA UBEZPIECZENIE AUTOCASCO STANDARD (ACS) TARYFA SKŁADEK ZA UBEZPIECZENIE AUTOCASCO STANDARD (ACS) 1 1. Niniejsza taryfa składek ma zastosowanie do umów ubezpieczenia zawieranych na podstawie ogólnych warunków ubezpieczenia Autocasco Standard

Bardziej szczegółowo

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Karolina Kalińska MATEMATYKA: PRZYKŁADY I ZADANIA Włocławek 2011 REDAKCJA WYDAWNICTWA PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Matematyka:

Bardziej szczegółowo

Program Agent Underwriter Izabella Skrzypczyk

Program Agent Underwriter Izabella Skrzypczyk Program Agent Underwriter Izabella Skrzypczyk Menadżer Sprzedaży PD Opole Ergo Hestia 1 Program Agent UWR Trwa od 1 października do 31 grudnia b.r. 20% maksymalna wysokość zniżki, jaką można udzielić w

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

Matematyka bankowa 1 1 wykład

Matematyka bankowa 1 1 wykład Matematyka bankowa 1 1 wykład Dorota Klim Department of Nonlinear Analysis, Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland E-mail address: klimdr@math.uni.ldz.pl

Bardziej szczegółowo

UBEZPIECZENIA KOMUNIKACYJNE NA PRZYKŁADZIE OC I AC

UBEZPIECZENIA KOMUNIKACYJNE NA PRZYKŁADZIE OC I AC UBEZPIECZENIA KOMUNIKACYJNE NA PRZYKŁADZIE OC I AC Paula Malina Wyższa Szkoła Informatyki i Zarządzania w Rzeszowie Streszczenie Celem niniejszego artykułu jest przedstawienie polskiego rynku ubezpieczeń

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4) Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego

Bardziej szczegółowo

Wartości i wektory własne

Wartości i wektory własne Dość często przy rozwiązywaniu problemów naukowych czy technicznych pojawia się konieczność rozwiązania dość specyficznego układu równań: Zależnego od n nieznanych zmiennych i pewnego parametru. Rozwiązaniem

Bardziej szczegółowo

ćwiczenia Katedra Rozwoju Regionalnego i Metod Ilościowych

ćwiczenia Katedra Rozwoju Regionalnego i Metod Ilościowych Kod Nazwa Powszechne rozumienie statystyki- umiejętność odczytywania wskaźników Wersja Wydział Kierunek Specjalność Specjalizacja/kier. dyplomowania Poziom (studiów) Forma prowadzenia studiów Przynależność

Bardziej szczegółowo

Systemy kolejkowe z histerezą- wprowadzenie

Systemy kolejkowe z histerezą- wprowadzenie Systemy kolejkowe z histerezą- wprowadzenie dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 25 kwietnia 2014 r. System kolejkowy z histerezą System kolejkowy

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

Raport: Wycena opcji metodą Quasi Monte Carlo

Raport: Wycena opcji metodą Quasi Monte Carlo Raport: Wycena opcji metodą Quasi Monte Carlo Autor: Dominik Winnicki Spis treści Opis problemu... 2 Wstęp teoretyczny... 2 Liczby Haltona... 4 Liczby Sobol a... 4 Ocena uzyskanych ciągów Haltona i Sobol

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, 25.06.2009 Biomatematyka

EGZAMIN MAGISTERSKI, 25.06.2009 Biomatematyka Biomatematyka 80...... Zadanie 1. (8 punktów) Rozpatrzmy prawo Hardy ego Weinberga dla loci związanej z chromosomem X o dwóch allelach A 1 i A 2. Załóżmy, że początkowa częstość allelu A 2 u kobiet jest

Bardziej szczegółowo