Wpływ macierzy przejścia systemu bonus-malus ubezpieczeń komunikacyjnych OC na jego efektywność taryfikacyjną

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wpływ macierzy przejścia systemu bonus-malus ubezpieczeń komunikacyjnych OC na jego efektywność taryfikacyjną"

Transkrypt

1 Wpływ macierzy przejścia systemu bonus-malus ubezpieczeń komunikacyjnych OC na jego efektywność taryfikacyjną Anna Szymańska Katedra Metod Statystycznych Uniwersytet Łódzki

2 Taryfikacja w ubezpieczeniach komunikacyjnych OC Taryfikacja a priori Taryfikacja a posteriori

3 Łańcuch Markowa jako model przejść pomiędzy klasami systemu bonus-malus dla pojedynczego ubezpieczonego Załóżmy, że portfel to zbiór ubezpieczonych podzielonych w wyniku taryfikacji a priori na grupy taryfowe, a następnie w wyniku taryfikacji a posteriori na klasy taryfowe. Liczba klas taryfowych jest skończona i wynosi s. Oznaczmy przez S={1,2,...,s} zbiór numerów klas taryfowych. Przyjmijmy, że klasa j=1 jest obciążana największymi zwyżkami, natomiast j=s największymi zniżkami. Przynależność ubezpieczonego do klasy i w danym roku zależy od klasy, w której znajdował się w roku poprzednim oraz liczby szkód spowodowanych w roku poprzednim. Przy czym ubezpieczeni bez historii szkodowości trafiają do klasy startowej. Niech C t będzie zmienną losową oznaczającą klasę do której należy ubezpieczony w okresie ( t 1, t]. Każdej i-tej klasie taryfowej przyporządkowana jest stawka składki b i, i = 1,...,s stanowiąca procent składki podstawowej. Liczba szkód w danym roku dla dowolnego ubezpieczonego z danej klasy jest zmienną losową o znanym i stałym w czasie rozkładzie prawdopodobieństwa.

4 Łańcuch Markowa jako model przejść pomiędzy klasami systemu bonus-malus dla pojedynczego ubezpieczonego Modelem systemu bonus-malus dla pojedynczego ubezpieczonego o stałym współczynniku intensywności szkód λ>0 jest jednorodny łańcuch Markowa {C t } tєn o przestrzeni stanów S={1,2,...,s}, macierzy prawdopodobieństw przejścia: M( ) pk ( ) T( k) (1) k0 oraz prawdopodobieństwie przejścia ubezpieczonego z klasy taryfowej C i do klasy C j w jednym roku: p ij k0 ( k) ( ) p ( ) t, (2) gdzie pk () jest prawdopodobieństwem, że ubezpieczony w ciągu roku spowoduje ( k) 1 dla Tk i j k szkód oraz tij tij ( k) dla i,jєs, k = 0,1,2,... Funkcję T: S S, 0 dla Tk i j S={1,2,...,s} nazywamy funkcją transformacji, przy czym T k (i) = j oznacza, że ubezpieczony przechodzi z klasy i do klasy j, gdy spowodował k szkód w ciągu jednego roku. k ij

5 Łańcuch Markowa jako model przejść pomiędzy klasami systemu bonus-malus dla pojedynczego ubezpieczonego Zasady przejścia można zapisać w postaci k zerojedynkowych macierzy: t11 t12 t1s T(k) = [ t ( )] ij k. t s1 ts2 tss Dla każdego nierozkładalnego, ergodycznego łańcucha Markowa istnieje rozkład stacjonarny postaci: (3) a ( ) [ a1( ),..., a ( )], (4) n gdzie a j ( ) lim p ( ) oraz p n () jest prawdopodobieństwem przejścia n ij ij ubezpieczonego w okresie n-lat z klasy C i do klasy C j. Rozkład stacjonarny uzyskuje się rozwiązując równanie: gdzie s j1 a j s i1 s a j ( ) ai ( ) pij( ), j 1,..., s, (5) () 1, oraz a j () są frakcją ubezpieczonych znajdujących się w klasie C j po osiągnięciu przez system stanu stacjonarnego lub prawdopodobieństwem, że ubezpieczony znajdzie się w klasie C j po n okresach, gdy liczba okresów dąży do nieskończoności. Przy powyższych założeniach wektor a(λ) można wyznaczyć jako unormowany lewostronny wektor własny macierzy przejść M.

6 Miary efektywności taryfikacyjnej systemów bonus-malus Efektywność Loimaranty (ang. elasticity of the mean stationary premium with respect to the claim frequency) jest określona wzorem: db( ) d ( ), (6) B( ) gdzie oczekiwana stacjonarna składka za pojedynczy okres po osiągnięciu przez system stanu stacjonarnego wynosi: s B( ) a j ( ) b j. (7) i1

7 Miary efektywności taryfikacyjnej systemów bonus-malus Elastyczność ogólna (łączna):. ) ( ) ( 0 d (8) Załóżmy, że rozkład liczby szkód jest Poissona, a parametr intensywności szkód ma rozkład gamma. Całkę we wzorze (8) można przybliżyć wyznaczając całkę w d 0 ) ( ) ( (9) gdzie całkę we wzorze (9) można obliczyć za pomocą metody trapezów. Przybliżenie całki jest postaci k i k i k i k i k d k w i w ) ( ) ( 1 0 (10) Do obliczeń przyjęto w=3 i k=500. Zwiększenie wartości parametrów w i k poprawia dokładność aproksymacji na dziewiątym miejscu po przecinku.

8 Miary efektywności taryfikacyjnej systemów bonus-malus Względny stacjonarny oczekiwany poziom składki (ang. relative stationary average level) RSAL: RSAL( B( ) min j ( b j ) ). max j ( b j ) min j ( b j ) (11)

9 Przykładowe systemy bonus-malus Tabela nr 1. BMS PZU Nr klasy BM C j Liczba szkód w Stawka składki roku [%] 0 1 i więcej 1 C C C C C C C C C C C C C

10 Przykładowe systemy bonus-malus Tabela nr 2. BMS I Nr klasy BM C j Stawka składki Liczba szkód w roku [%] i więcej 1 C C C C C C C C C C C C C

11 Przykładowe systemy bonus-malus Tabela nr 3. BMS II Nr klasy BM C j Stawka składki Liczba szkód w roku [%] i więcej 1 C C C C C C C C C C C C C

12 Przykładowe systemy bonus-malus Tabela nr 4. BMS III Nr klasy BM C j Stawka składki Liczba szkód w roku [%] i więcej 1 C C C C C C C C C C C C C

13 Przykładowe systemy bonus-malus Tabela nr 5. BMS IV Nr Klasy BM C j Stawka składki Liczba szkód w roku [%] i więcej 1 C C C C C C C C C C C C C C C C C C

14 Przykładowe systemy bonus-malus Tabela nr 6. BMS V Nr klasy BM C j Stawka składki Liczba szkód w roku [%] i więcej 1 C C C C C C C C C C C C C C C C C C

15 Przykładowe systemy bonus-malus Tabela nr 7. BMS VI Nr klasy BM C j Stawka składki Liczba szkód w roku [%] i więcej 1 C C C C C C C C C C C C C C C C C C

16 Ocena efektywności taryfikacyjnej badanych systemów bonus-malus Tabela nr 8. Miary efektywności taryfikacyjnej systemów bonus-malus System Miara efektywności taryfikacyjnej systemu bonus-malus () () B RSAL () BMS PZU 0, , , , BMS I 0, , , , BMS II 0, , , , BMS III 0, , , , BMS IV 0, , , , BMS V 0, , , , BMS VI 0, , , ,108860

17 Ocena efektywności taryfikacyjnej badanych systemów bonus-malus 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 η(λ) η B(λ) RSAL miara efektywności BMS PZU BMS I BMS II BMS III BMS IV BMS V BMS VI

18 Ocena efektywności taryfikacyjnej badanych systemów bonus-malus System bonus-malus PZU, BMS I, BMS II, BMS IV i BMS V charakteryzują się niską efektywnością taryfikacyjną. W tych systemach stawki składki nie będą odpowiednie do ryzyka, jakie reprezentują ubezpieczeni a polisy będą się koncentrować w klasach zniżkowych, co może być powodem braku równowagi finansowej w portfelu. Systemy bonus-malus BMS III i BMS VI będą lepiej spełniać funkcję taryfikacyjną niż pozostałe badane systemy - oczekiwana stacjonarna składka będzie większa, a skoncentrowanie polis w klasach zniżkowych mniejsze. Miary efektywności taryfikacyjnej wskazują na lepszą elastyczność stawek względem intensywności szkód w tych systemach.

19 Wnioski Zwiększenie liczby klas systemu przy tych samych zasadach przejścia pomiędzy klasami, nie zawsze poprawia jego efektywność taryfikacyjną, czego przykładem są systemy: BMS IV w stosunku do BMS I oraz BMS V w porównaniu z BMS II. W wymienionych parach systemów wszystkie oceniane miary efektywności taryfikacyjnej mają mniejsze wartości nawet po zwiększeniu liczby klas, co świadczy o zmniejszeniu ich efektywności taryfikacyjnej. Wyjątek stanowi tutaj system BMS VI w stosunku do BMS III, czyli systemy bardzo surowo karzące ubezpieczonych zgłaszających szkody. Zwiększenie liczby klas dla takich systemów znacznie poprawia efektywność taryfikacyjną

20 Wnioski Niewielkie zaostrzenie kar, w porównaniu z systemem PZU, tylko dla ubezpieczonych powodujących w roku co najmniej dwie szkody, jak w systemach BMS I i BMS IV nie poprawia efektywności taryfikacyjnej systemu, a wręcz powoduje pogorszenie jego efektywności taryfikacyjnej. Należy tutaj zauważyć, że system BMS IV ma mniejsze wartości efektywności: Loimaranty i ogólnej, w porównaniu z BMS I i PZU, przy takich samych zasadach przejścia pomiędzy klasami i większej liczbie klas.

21 Wnioski Zaostrzenie kar dla wszystkich ubezpieczonych zgłaszających szkody przy tej samej liczbie klas, jak w systemach BMS I, BMS II i BMS III oraz BMS IV, BMS V i BMS VI, poprawia efektywność taryfikacyjną systemu. Należy jednak zauważyć, że w przypadku systemów z większą liczbą klas poprawa funkcji taryfikacyjnej jest większa.

22 Bibliografia Antonio K., Valez E., Statistical concepts of a priori and a posteriori risk classification in insurance, AStA Adv Stat Anal 2012, vol.96, s Bonsdorff H., On the Convergence rate of bonus-malus Systems, ASTIN Bulletin 1992, vol.22, s Denuit M., Marechal X., Pitrebois S., Walhin J., Actuarial Modelling of Claim Counts. Risk Classification, Credibility and Bonus-Malus Systems, Wiley, England 2007, s Lemaire J., Bonus-Malus Systems in Automobile Insurance, Kluwer, Boston, Niemiec M., Bonus-Malus Systems as Markov Set-Chains, ASTIN Bulletin 2007, vol. 37, s Podgórska M., Śliwka P., Tobolewski M., Wrzosek M., Łańcuchy Markowa w teorii i w zastosowaniach, Oficyna Wydawnicza SGH, Warszawa 2002, s.16 Szymańska A., Małecka M., Zastosowanie metody trapezów w ocenie efektywności taryfikacyjnej systemów bonus-malus ubezpieczeń komunikacyjnych OC, w: Z. Zieliński (red.), Rola informatyki w naukach ekonomicznych i społecznych. Innowacje i implikacje interdyscyplinarne, Wydawnictwo Wyższej Szkoły Handlowej, Kielce 2013, s

Wpływ liczby klas i reguł przejścia systemu bonus-malus na jego efektywność taryfikacyjną

Wpływ liczby klas i reguł przejścia systemu bonus-malus na jego efektywność taryfikacyjną Anna Szymańska Wydział Ekonomiczno-Socjologiczny Uniwersytet Łódzki Wpływ liczby klas i reguł przejścia systemu bonus-malus na jego efektywność taryfikacyjną Streszczenie Towarzystwa ubezpieczeniowe konkurują

Bardziej szczegółowo

System bonus-malus z mechanizmem korekty składki

System bonus-malus z mechanizmem korekty składki System bonus-malus z mechanizmem korekty składki mgr Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny dr hab. Wojciech Bijak, prof. SGH Ubezpieczeniowy Fundusz Gwarancyjny, Szkoła Główna Handlowa Zagadnienia

Bardziej szczegółowo

Wykorzystanie informacji kredytowej w procesie oceny ryzyka ubezpieczeniowego w ubezpieczeniach komunikacyjnych

Wykorzystanie informacji kredytowej w procesie oceny ryzyka ubezpieczeniowego w ubezpieczeniach komunikacyjnych Wykorzystanie informacji kredytowej w procesie oceny ryzyka ubezpieczeniowego w ubezpieczeniach komunikacyjnych Ubezpieczeniowy Fundusz Gwarancyjny mgr Karolina Pasternak-Winiarska mgr Kamil Gala Zagadnienia

Bardziej szczegółowo

Łączenie i agregacja systemów bonus-malus w ubezpieczeniach komunikacyjnych

Łączenie i agregacja systemów bonus-malus w ubezpieczeniach komunikacyjnych Wojciech Bijak Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie Ubezpieczeniowy Fundusz Gwarancyjny Łączenie i agregacja systemów bonus-malus w ubezpieczeniach komunikacyjnych Streszczenie

Bardziej szczegółowo

Wokół wyszukiwarek internetowych

Wokół wyszukiwarek internetowych Wokół wyszukiwarek internetowych Bartosz Makuracki 23 stycznia 2014 Przypomnienie Wzór x 1 = 1 d N x 2 = 1 d N + d N i=1 p 1,i x i + d N i=1 p 2,i x i. x N = 1 d N + d N i=1 p N,i x i Oznaczenia Gdzie:

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 1.10.2012 r.

Matematyka ubezpieczeń majątkowych 1.10.2012 r. Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna

Bardziej szczegółowo

System bonus-malus z korektą składki

System bonus-malus z korektą składki Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny Wojciech Bijak Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie Ubezpieczeniowy Fundusz Gwarancyjny System bonus-malus z korektą składki Streszczenie

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka Biomatematyka Załóżmy, że częstości genotypów AA, Aa i aa w całej populacji wynoszą p 2, 2pq i q 2. Wiadomo, że czynnik selekcyjny sprawia, że osobniki o genotypie aa nie rozmnażają się. 1. Wyznacz częstości

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku.

Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku. Procesy Markowa zawdzięczają swoją nazwę ich twórcy Andriejowi Markowowi, który po raz pierwszy opisał problem w 1906 roku. Uogólnienie na przeliczalnie nieskończone przestrzenie stanów zostało opracowane

Bardziej szczegółowo

Zadanie 1. są niezależne i mają rozkład z atomami: ( ),

Zadanie 1. są niezależne i mają rozkład z atomami: ( ), Zadanie. Zmienne losowe są niezależne i mają rozkład z atomami: ( ) ( ) i gęstością: ( ) na przedziale ( ). Wobec tego ( ) wynosi: (A) 0.2295 (B) 0.2403 (C) 0.2457 (D) 0.25 (E) 0.269 Zadanie 2. Niech:

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną

Bardziej szczegółowo

Wykład 9: Markov Chain Monte Carlo

Wykład 9: Markov Chain Monte Carlo RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa

Bardziej szczegółowo

Predykcja szkód z uwzględnieniem zależności w ubezpieczeniach AC i OC komunikacyjnym

Predykcja szkód z uwzględnieniem zależności w ubezpieczeniach AC i OC komunikacyjnym Daniel Sobiecki 1 Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie Predykcja szkód z uwzględnieniem zależności w ubezpieczeniach AC i OC komunikacyjnym Streszczenie Przedmiotem opracowania

Bardziej szczegółowo

Lista 1. Procesy o przyrostach niezależnych.

Lista 1. Procesy o przyrostach niezależnych. Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)

Bardziej szczegółowo

Modelowanie komputerowe

Modelowanie komputerowe Modelowanie komputerowe wykład 5- Klasyczne systemy kolejkowe i ich analiza dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 16,23listopada2015r. Analiza

Bardziej szczegółowo

Anna Celczyńska. Liczebność próby badawczej

Anna Celczyńska. Liczebność próby badawczej A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 296, 2013 * OCENA WYBRANYCH CZYNNIKÓW RYZYKA W UBEZPIECZENIU OC POSIADACZY POJAZDÓW MECHANICZNYCH 1. WPROWADZENIE Jedną z najważniejszych

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka Biomatematyka W 200-elementowej próbie losowej z diploidalnej populacji wystąpiło 89 osobników genotypu AA, 57 osobników genotypu Aa oraz 54 osobników genotypu aa. Na podstawie tych danych (a) dokonaj

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6. Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych

Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6. Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych Nazwa modułu: teoria ryzyka Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6 Wydział: Matematyki Stosowanej Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych

Bardziej szczegółowo

Deterministyczna analiza systemu bonus-malus

Deterministyczna analiza systemu bonus-malus Barbara Cieślik, Damian Sulik Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa w Warszawie Deterministyczna analiza systemu bonus-malus Streszczenie Przedmiotem artykułu jest deterministyczna analiza

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, Biomatematyka

EGZAMIN DYPLOMOWY, część II, Biomatematyka Biomatematyka Niech X n oznacza proporcję pozycji w nici DNA, które po n replikacjach są obsadzone takimi samymi nukleotydami, jak w chwili początkowej, tak więc X 0 = 1. Zakładamy, że w każdej replikacji

Bardziej szczegółowo

Spis treści. 1. Analiza zmian i tendencje rozwoju rynku ubezpieczeń komunikacyjnych

Spis treści. 1. Analiza zmian i tendencje rozwoju rynku ubezpieczeń komunikacyjnych Spis treści Wstęp... 9 1. Analiza zmian i tendencje rozwoju rynku ubezpieczeń komunikacyjnych w Polsce... 11 1.1. Charakterystyka i regulacje prawne rynku ubezpieczeń komunikacyjnych w Europie... 11 1.2.

Bardziej szczegółowo

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i )

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i ) Rachunek prawdopodobieństwa - Teoria - Przypomnienie Podstawy Definicja 1. Schemat klasyczny - wszystkie zdarzenia elementarne są równo prawdopodobne, licząc prawdopodobieństwo liczymy stosunek liczby

Bardziej szczegółowo

ISBN (wersja drukowana) 978-83-7969-266-8 ISBN (ebook) 978-83-7969-736-6

ISBN (wersja drukowana) 978-83-7969-266-8 ISBN (ebook) 978-83-7969-736-6 Anna Szymańska Uniwersytet Łódzki, Wydział Ekonomiczno-Socjologiczny Katedra Metod Statystycznych, 90-214 Łódź, ul. Rewolucji 1905 r. nr 41/43 RECENZENT Wojciech Bijak REDAKTOR WYDAWNICTWA UŁ Elżbieta

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład I: Formalizm statystyki matematycznej 17 lutego 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Zagadnienia omawiane na wykładach Forma zaliczenia przedmiotu Forma zaliczenia Literatura

Bardziej szczegółowo

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie METODY ESTYMACJI PUNKTOWEJ X 1,..., X n - próbka z rozkładu P θ, θ Θ, θ jest nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie P θ. Definicja. Estymatorem

Bardziej szczegółowo

Wykorzystanie informacji kredytowej w procesie oceny ryzyka ubezpieczeniowego w ubezpieczeniach komunikacyjnych

Wykorzystanie informacji kredytowej w procesie oceny ryzyka ubezpieczeniowego w ubezpieczeniach komunikacyjnych Kamil Gala, Karolina Kolak Ubezpieczeniowy Fundusz Gwarancyjny Wykorzystanie informacji kredytowej w procesie oceny ryzyka ubezpieczeniowego w ubezpieczeniach komunikacyjnych Streszczenie W pracy przedstawiono

Bardziej szczegółowo

Punkty ECTS Matematyka 11049 8

Punkty ECTS Matematyka 11049 8 STUDIA LICENCJACKIE PRZEDMIOTY PODSTAWOWE Przedmiot Matematyka 11049 8 PRZEDMIOTY KIERUNKOWE MIESI Przedmiot Algebra 12100 6 Analiza matematyczna 12101 6 Deterministyczne modele badań operacyjnych 12014

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 6.04.2009 r.

Matematyka ubezpieczeń majątkowych 6.04.2009 r. Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie. Niech N oznacza liczbę szkód zaszłych w ciągu roku z pewnego ubezpieczenia z czego: M to liczba szkód zgłoszonych przed końcem tego roku K to liczba

Bardziej szczegółowo

Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych

Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Elżbieta Krajewska Instytut Matematyki Politechnika Łódzka Elżbieta Krajewska Immunizacja ubezpieczycieli życiowych 1/22 Plan prezentacji

Bardziej szczegółowo

K A R T A P R Z E D M I O T U ( S Y L L A B U S )

K A R T A P R Z E D M I O T U ( S Y L L A B U S ) K A R T A P R Z E D M I O T U ( S Y L L A B U S ) Kod Nazwa w języku polskim: Ubezpieczenie odpowiedzialności cywilnej posiadaczy pojazdów mechanicznych w języku angielskim: Motor Third Party Liability

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (I)

Równanie przewodnictwa cieplnego (I) Wykład 4 Równanie przewodnictwa cieplnego (I) 4.1 Zagadnienie Cauchy ego dla pręta nieograniczonego Rozkład temperatury w jednowymiarowym nieograniczonym pręcie opisuje funkcja u = u(x, t), spełniająca

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

Quick Launch Manual:

Quick Launch Manual: egresja Odds atio Quick Launch Manual: regresja logistyczna i odds ratio Uniwesytet Warszawski, Matematyka 28.10.2009 Plan prezentacji egresja Odds atio 1 2 egresja egresja logistyczna 3 Odds atio 4 5

Bardziej szczegółowo

RAPORT. szkodowość w roku polisowym 2011 stan na dzień przygotowany dla Urzędu Miasta Łodzi. Raport szkód za rok polisowy 2011.

RAPORT. szkodowość w roku polisowym 2011 stan na dzień przygotowany dla Urzędu Miasta Łodzi. Raport szkód za rok polisowy 2011. RAPORT szkodowość w roku polisowym 2011 stan na dzień 31-03- 2012 przygotowany dla Urzędu Miasta Łodzi Raport szkód za rok polisowy 2011. 1 Program ubezpieczenia mienia, odpowiedzialności cywilnej, ubezpieczeń

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2016 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, czerwiec 2016 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Dana jest następująca macierz wypłat gry o sumie zero: Podaj rozwiązanie tej gry. M = 3 2 2 2 3 4 5 2 3 3 2 2 4 2 0 3 3 3 Kredyt ma być spłacany na początku roku

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

K A R T A P R Z E D M I O T U ( S Y L L A B U S )

K A R T A P R Z E D M I O T U ( S Y L L A B U S ) K A R T A P R Z E D M I O T U ( S Y L L A B U S ) Kod UTHRad/E/A/HES / Nazwa w języku polskim: Ubezpieczenie odpowiedzialności cywilnej posiadaczy pojazdów mechanicznych w języku angielskim: Motor Third

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład I: Formalizm teorii prawdopodonieństwa 6 października 2014 Forma zaliczenia przedmiotu Forma zaliczenia Literatura Dostępność treści wykładów 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin dwuczęściowy:

Bardziej szczegółowo

Zbigniew S. Szewczak Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki. Graniczne własności łańcuchów Markowa

Zbigniew S. Szewczak Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki. Graniczne własności łańcuchów Markowa Zbigniew S. Szewczak Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Graniczne własności łańcuchów Markowa Toruń, 2003 Co to jest łańcuch Markowa? Każdy skończony, jednorodny łańcuch Markowa

Bardziej szczegółowo

Monitoring kształtowania wysokości taryf w świetle zmieniających się czynników ryzyka

Monitoring kształtowania wysokości taryf w świetle zmieniających się czynników ryzyka Monitoring kształtowania wysokości taryf w świetle zmieniających się czynników ryzyka 1 Przepisy prawa ustawa z dnia 22 maja 2003r. o działalności ubezpieczeniowej art. 18. 1. Wysokość składek ubezpieczeniowych

Bardziej szczegółowo

Jądrowe klasyfikatory liniowe

Jądrowe klasyfikatory liniowe Jądrowe klasyfikatory liniowe Waldemar Wołyński Wydział Matematyki i Informatyki UAM Poznań Wisła, 9 grudnia 2009 Waldemar Wołyński () Jądrowe klasyfikatory liniowe Wisła, 9 grudnia 2009 1 / 19 Zagadnienie

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,5,,0,0) jest rozwiązaniem dopuszczalnym zagadnienia programowania liniowego: Zminimalizować 3x 1 +x +x 3 +4x 4 +6x 5, przy ograniczeniach

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

Metoda największej wiarygodności

Metoda największej wiarygodności Metoda największej wiarygodności Próbki w obecności tła Funkcja wiarygodności Iloraz wiarygodności Pomiary o różnej dokładności Obciążenie Informacja z próby i nierówność informacyjna Wariancja minimalna

Bardziej szczegółowo

Zasady przyjmowania zniżek/zwyżek w Liberty Direct. Agenci 2011

Zasady przyjmowania zniżek/zwyżek w Liberty Direct. Agenci 2011 Zasady przyjmowania zniżek/zwyżek w Liberty Direct Agenci 2011 tel. 1 95 21 www.libertydirect.pl Bonus Malus System zniżek zwyżek Dwa oddzielne systemy Bonus - Malus Jeden w OC a drugi w AC Takie same

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

Zestaw 12- Macierz odwrotna, układy równań liniowych

Zestaw 12- Macierz odwrotna, układy równań liniowych Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną

Bardziej szczegółowo

Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, Spis treści

Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, Spis treści Wstęp do rachunku prawdopodobieństwa. Cz. 2 / William Feller. wyd. 4, dodr. 3. Warszawa, 2012 Spis treści Przedmowa 5 Oznaczenia i konwencje 7 Rozdział I Rozkład wykładniczy i rozkład jednostajny 1. Wprowadzenie

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Generacja liczb pseudolosowych

Generacja liczb pseudolosowych Generacja liczb pseudolosowych Zapis liczb w komputerze Generatory liczb pseudolosowych Liniowe kongruentne Liniowe mutiplikatywne kongruentne Jakość generatorów Test widmowy Generowanie liczb losowych

Bardziej szczegółowo

MODEL OCENY SYSTEMU REMONTU TECHNIKI WOJSKOWEJ

MODEL OCENY SYSTEMU REMONTU TECHNIKI WOJSKOWEJ ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK LII NR 1 (184) 2011 Marian Brzeziń ski Wojskowa Akademia Techniczna MODEL OCENY SYSTEMU REMONTU TECHNIKI WOJSKOWEJ STRESZCZENIE W artykule scharakteryzowano

Bardziej szczegółowo

Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d.

Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d. Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d. Oprócz zmiennych i wektorów strukturami danych w R są: macierze; ramki (ang. data frames); listy; klasy S3 1 Macierze Macierze

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

1 Funkcja użyteczności

1 Funkcja użyteczności 1 Funkcja użyteczności Funkcja użyteczności to funkcja, której wartościami są wartości użyteczności (satysfakcji, komfortu psychicznego). Można mówić o użyteczności różnych zjawisk. Użyteczność pieniądza

Bardziej szczegółowo

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1. 1. W p r owadze n ie 1 Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1.1. WPROWADZENIE SYGNAŁ nośnik informacji ANALIZA SYGNAŁU badanie, którego celem jest identyfikacja własności, cech, miar sygnału; odtwarzanie

Bardziej szczegółowo

ZWIĄZKI MIĘDZY WSPÓŁCZYNNIKAMI WRAŻLIWOŚCI W MODELU WYCENY OPCJI GARMANA-KOHLHAGENA

ZWIĄZKI MIĘDZY WSPÓŁCZYNNIKAMI WRAŻLIWOŚCI W MODELU WYCENY OPCJI GARMANA-KOHLHAGENA STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR Beata Bieszk-Stolorz Uniwersytet Szczeciński ZWIĄZKI MIĘDZY WSPÓŁCZYNNIKAMI WRAŻLIWOŚCI W MODELU WYCENY OPCJI GARMANA-KOHLHAGENA Streszczenie

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Rozkład normalny, niepewność standardowa typu A

Rozkład normalny, niepewność standardowa typu A Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy

Bardziej szczegółowo

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015 Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III Komisja Egzaminacyjna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III Matematyka ubezpieczeń majątkowych Imię i nazwisko osoby egzaminowanej:. Czas egzaminu: 100 minut Komisja

Bardziej szczegółowo

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 244, 2010. Anna Szyma ska *

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 244, 2010. Anna Szyma ska * A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 44, 010 * WPŁYW PARAMETRÓW ROZKŁADU WIELKO CI SZKÓD NA WYSOKOS SKŁADKI NETTO W UBEZPIECZENIACH KOMUNKACYJNYCH OC 1. TEORETYCZNE ZASADY

Bardziej szczegółowo

WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI

WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI Zał. nr do ZW WYDZIAŁ ELEKTRONIKI MIKROSYSTEMÓW I FOTONIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Matematyka (Zao EA EiT stopień) Nazwa w języku angielskim: Mathematics Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

Optymalizacja reguł przejścia systemu bonus-malus

Optymalizacja reguł przejścia systemu bonus-malus Optymalizaca rguł przścia systmu onus-malus Dr Marcin Topolwski Dr Michał Brnardlli Instytut Ekonomtrii Szkoła Główna Handlowa w Warszawi Plan: Inspiraca, motywaca, cl i zakrs adania Ryzyko Systm onus-malus

Bardziej szczegółowo

4. Ubezpieczenie Życiowe

4. Ubezpieczenie Życiowe 4. Ubezpieczenie Życiowe Składka ubezpieczeniowa musi brać pod uwagę następujące czynniki: 1. Kwotę wypłaconą przy śmierci ubezpieczonego oraz jej wartość aktualną. 2. Rozkład czasu do śmierci ubezpieczonego

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

WYDZIAŁ EKONOMII KARTA OPISU MODUŁU KSZTAŁCENIA

WYDZIAŁ EKONOMII KARTA OPISU MODUŁU KSZTAŁCENIA WYDZIAŁ EKONOMII KARTA OPISU MODUŁU KSZTAŁCENIA Nazwa modułu Ubezpieczenia Nazwa modułu w języku angielskim Insurance Kod modułu Kody nie zostały jeszcze przypisane Kierunek studiów Kierunek prawno-ekonomiczny

Bardziej szczegółowo

Fuzja sygnałów i filtry bayesowskie

Fuzja sygnałów i filtry bayesowskie Fuzja sygnałów i filtry bayesowskie Roboty Manipulacyjne i Mobilne dr inż. Janusz Jakubiak Katedra Cybernetyki i Robotyki Wydział Elektroniki, Politechnika Wrocławska Wrocław, 10.03.2015 Dlaczego potrzebna

Bardziej szczegółowo

FAQ nowa klasa BM w segmencie C - ścieżki wejścia Klienta

FAQ nowa klasa BM w segmencie C - ścieżki wejścia Klienta FAQ nowa klasa BM w segmencie C - ścieżki wejścia Klienta FAQ NOWA KLASA BM W SEGMENCIE C - ŚCIEŻKI WEJŚCIA KLIENTA 1) Klient nieposiadający innego aktywnego ubezpieczenia w Ergo Hestii Klasa BM określana

Bardziej szczegółowo

Aktuariat i matematyka finansowa. Metody kalkulacji składki w ubezpieczeniach typu non - life

Aktuariat i matematyka finansowa. Metody kalkulacji składki w ubezpieczeniach typu non - life Aktuariat i matematyka finansowa Metody kalkulacji składki w ubezpieczeniach typu non - life Budowa składki ubezpieczeniowej Składka ubezpieczeniowa cena jaką ubezpieczający płaci za ochronę ubezpieczeniowa

Bardziej szczegółowo

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I

Matematyka finansowa 08.01.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Komisja Egzaminacyjna dla Aktuariuszy XLI Egzamin dla Aktuariuszy z 8 stycznia 2007 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut . Ile

Bardziej szczegółowo

Wykład z modelowania matematycznego. Zagadnienie transportowe.

Wykład z modelowania matematycznego. Zagadnienie transportowe. Wykład z modelowania matematycznego. Zagadnienie transportowe. 1 Zagadnienie transportowe zostało sformułowane w 1941 przez F.L.Hitchcocka. Metoda rozwiązania tego zagadnienia zwana algorytmem transportowymópracowana

Bardziej szczegółowo

Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów

Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 14

Bardziej szczegółowo

Zastosowanie łańcuchów Markowa w badaniu stopnia stabilności dochodów podatników

Zastosowanie łańcuchów Markowa w badaniu stopnia stabilności dochodów podatników Robert ORPYCH Zastosowanie łańcuchów Markowa w badaniu stopnia stabilności dochodów podatników Nierównomiernoć rozkładu płac i dochodów to ważny i złożony problem, który wywiera znaczący wpływ na kształtowanie

Bardziej szczegółowo

Rachunek całkowy - całka oznaczona

Rachunek całkowy - całka oznaczona SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej

Bardziej szczegółowo

KARTA PRZEDMIOTU. 12. Przynależność do grupy przedmiotów: Prawdopodobieństwo i statystyka

KARTA PRZEDMIOTU. 12. Przynależność do grupy przedmiotów: Prawdopodobieństwo i statystyka (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: RACHUNEK PRAWDOPODOBIEŃSTWA 2. Kod przedmiotu: RPr 3. Karta przedmiotu ważna od roku akademickiego: 20152016 4. Forma

Bardziej szczegółowo

Hierarchiczna analiza skupień

Hierarchiczna analiza skupień Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym

Bardziej szczegółowo

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1

Teoria gier. wstęp. 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier wstęp 2011-12-07 Teoria gier Zdzisław Dzedzej 1 Teoria gier zajmuje się logiczną analizą sytuacji, gdzie występują konflikty interesów, a także istnieje możliwość kooperacji. Zakładamy zwykle,

Bardziej szczegółowo

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=

Bardziej szczegółowo

OFERTA. ubezpieczenia następstw nieszczęśliwych wypadków dla. dzieci, młodzieży oraz personelu. Placówek Oświatowo - Wychowawczych

OFERTA. ubezpieczenia następstw nieszczęśliwych wypadków dla. dzieci, młodzieży oraz personelu. Placówek Oświatowo - Wychowawczych OFERTA ubezpieczenia następstw nieszczęśliwych wypadków dla dzieci, młodzieży oraz personelu Placówek Oświatowo - Wychowawczych na rok szkolny 2010/2011 Łódź 2010 1 Szanowni Państwo, Polskie Towarzystwo

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Ubezpieczenia majątkowe 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/6

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Ubezpieczenia majątkowe 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/6 KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Ubezpieczenia majątkowe 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/6 5. LICZBA PUNKTÓW ECTS: 5 6. LICZBA GODZIN: 30 / 30 7.

Bardziej szczegółowo