region bezwzględnej stabilności dla ogólnej niejawnej metody RK R(z) 1 może być nieograniczony niejawna 1 stopniowa

Wielkość: px
Rozpocząć pokaz od strony:

Download "region bezwzględnej stabilności dla ogólnej niejawnej metody RK R(z) 1 może być nieograniczony niejawna 1 stopniowa"

Transkrypt

1 region bezwzględnej stabilności dla ogólnej niejawnej metody RK u =λu u=λu, z=λδt dla metod niejawnych: ij nie można ż obciąć bićrozwinięcia i i Taylora, bo A pełnał współczynnik wzmocnienia nie jest wielomianem, okazuje się, że jest funkcją wymierną R(z) 1 może być nieograniczony niejawna 1 stopniowa

2 region bezwzględnej stabilności dla ogólnej niejawnej metody RK wsp wzmocnienia niejawnego RK metoda rzędu p ma współczynnik wzmocnienia, który do O(z p+1 ) zgadza się z eksponentą Współczynniki wzmocnienia jawnych RK wielomany, niejawnych funkcje wymierne przybliżenie Padé (j,k) funkcji exp(z) [funkcja wymierna będącą przybliżeniem exp(z) maksymalnego rzędu] P k Q j nie mają wspólnych czynników (nie można uprościć ułamka) Warunek normalizacji: q 0 =1 Do wyznaczenia k+j+1 wartości. Rząd dokładności do uzyskania: k+j (bo od wykładnika 0 zaczynamy uzgadniać). R jk (z)=exp(z)+o(z k+j+1 )

3 przykład: wyznaczyć przybliżenie Padé (j,k)=(2,0) funkcji exp(z) +O(z 3 ) +O(z 3 ) p 0 =1 q +1=0 =1, = 1, =1/2) (p 0 q 1 q exp q 1 +1/2+q 2 /2= R R 20 pozostaje skończone dla rzeczywistego z, w przeciwieństwie do obciętego rozw. Taylora

4 przybliżenia Padé R jk funkcji exp(z): współczynniki wzmocnienia metod RK jawny RK1 (Euler) RK2 (jawna) niejawny Euler RK Radaua s=1 RK Radaua rzędu 2 dla s odsłon metoda rzędu 2s jest tylko jedna, a jej błąd wzmocnienia jest przybliżeniem Padé eksponenty R ss niejawny jednostopniowy RK niejawny dwustopniowy RK RK Legendre a 2stopniowy Metody, które prowadzą dodiagonali diagonali orazdwóch pierwszych poddiagonali tabeli Padé są A stabilne (bezwzględnie stabilne dla Re(z) 0) na diagonali R ss : q s = p s więc R(z) 1 gdy z poniżej diagonali dla (1,0),(1,2)(2,1) : R(z) 0 gdy z

5 definicja: metoda jest L stabilna jeśli jest A stabilna oraz R(z) 0 gdy z L stabilne A stabilne najwyższego rzędu dokładności (czyli nie L stabilne) przydatne, gdy rozwiązanie szybko oscyluje, czyli Re(λ) 0, ale Im(λ) >>1 metody L stabilne przydatne w problemach sztywnych gdy Re(λ)<<0 wtedy okazuje się być opłacalne zrezygnować z wysokiej dokładności na rzecz stabilności

6 Punkty kolokacji wybrane wg zer wielomianu Legendre a : maksymalny rząd 2s, metody A stabilne, nie L stabilne : ze współczynnikami wzmocnienia z diagonali tabeli Pade Osobna klasa to metody RK pochodzące od wielomianów i Radaua Rd (2s 1) definiowanych na podstawie wielomianu Legendre a P jedno z zer wielomianu: na prawym końcu przedziału R s =P s ±P s-1 Tabela Butchera dla RK Radaua s=2: RK Radaua: odpowiadają poddiagonali w tabeli Pade : są ą L stabilne (lepsze od RK Legendre a w problemach sztywnych)

7 NJRK 2, sposób rozwiązywania równań predyktor= układ równań nieliniowych korektor (podstawienie po rozwiązaniu równań predyktora na U1, U2)

8 Niejawne metody RK = sposób rozwiązywania jawne RK = stosuje się ę kolejne podstawienia = łatwo niejawne RK = metoda Newtona m. Newtona jedno równanie korektor = tylko podstawienie F(x)=0 F(x n +Δx)=F(x n )+Δx F (x n ) F(x n )=Δx F (x n ) predyktor: układ s równań nieliniowych do rozwiązania M. Newtona dla układu 2 równań macierz Jakobiego

9 Niejawne metody RK rozwiązywanie równań predyktora układ s : równań nieliniowych układ równań rozwiązywany w jednej iteracji na przesunięcia ΔU i było:

10 Niejawne metody RK rozwiązywanie równań predyktora układ s : równań nieliniowych układ równań rozwiązywany w jednej iteracji na przesunięcia ΔU i w każdej iteracji musimy wyliczyć s pochodnych f po u (w s chwilach czasowych)

11 niejawne RK dla układu 2 równań (laboratorium) predyktor dla pojedynczego równania:

12 niejawne RK dla układu 2 równań (laboratorium) predyktor dla pojedynczego równania: numer szukanej funkcji nr chwili predyktor dla dwóch równań ń

13 niejawne RK dla układu 2 równań (laboratorium) predyktor dla pojedynczego równania: numer szukanej funkcji nr chwili predyktor dla dwóch równań ń w zapisie wektorowym: wracamy do formy dla pojedynczego równania U 1 =[U 11,U 12 ] T na laboratorium - f liniowe więc układ równań liniowych

14 Układ m równań różniczkowych rozwiązywany niejawną metodą RK u, f, U i wektory o m zmiennych niejawny schemat RK: (wzory jak dla pojedynczego równania, ale z arytmetyką wektorową) s równań predyktora to układ nieliniowy do rozwiązania predyktor zapisany w formie układu s równań nieliniowych: gdy już mamy U korektor ma formę podstawienia [jak w jawnych RK] tyle równań nieliniowych ile etapów w RK (s) każde przybliżenie U i ma m składowych s wektorów o m składowych łącznie ms niewiadomych macierz m na m

15 Układ równań różniczkowych rozwiązywany niejawną metodą RK z iteracją Newtona macierz m na m z oznaczeniem: macierz Jakobianu policzona w l tej odsłonie (macierz m na m) to jest przepis na jeden krok iteracyjny, a iteracji może być wiele dla układów wielu (setek tysięcy) układów równań wyliczenie (oszacowanie) Jakobianu w s odsłonach nowych w każdej iteracji może być kosztowne, wtedy rezygnujemy z liczenia J w każdej odsłonie

16 pomysł: zastosować Jakobiany wyliczone w chwili początkowej u n 1 i nie zmieniać ich w czasie iteracji wtedy: ted przybliżony Jkbi Jakobian nie zmienia i rozwiązania i gdy osiągniemy zbieżność może ją spowolnić albo uniemożliwić, ale przy dużych macierzach zazwyczaj się opłaca odpadają indeksy przy J i mamy J policzymy tylko raz, ale wykonamy więcej iteracji często opłaca ł się raczej dłużej ż iterowaćć niż w każdej iteracji wyliczać s macierzy Jakobiego

17 Metody RK produkuje się na zamówienie ze względu na 1) dokładność 2) A/L-stabilność 3) łatwość iterowania równań predyktora SDIRK

18 DIRK: macierz A jest dolnoprzekątniowa (diagonally implicit RK) SDIRK: wszystkie wyrazy na diagonali są identyczne (singly diagonally implicit...) metody DIRK: iteracja Newtona (układ równań) rozwiązywany blokowo metody SDIRK: dodatkowo pojedyncza faktoryzacja macierzy m na m (nie sm na sm) [dokładność najwyżej j s+1 [zamiast maksymalnej j( (2s)] ale tania iteracja Newtona] wtedy macierz układu równań pojedynczej iteracji Newtona: wtedy macierz układu równań pojedynczej iteracji Newtona: ma postać ć

19 DIRK: macierz A jest dolnoprzekątniowa (diagonally implicit RK) SDIRK: wszystkie wyrazy na diagonali są identyczne (singly diagonally implicit...) metody DIRK: iteracja Newtona (układ równań) rozwiązywany blokowo metody SDIRK: dodatkowo pojedyncza faktoryzacja macierzy m na m (nie sm na sm) [dokładność najwyżej j s+1 [zamiast maksymalnej j( (2s)] ale tania iteracja Newtona] wtedy macierz układu równań F = MΔU pojedynczej iteracji Newtona: ma postać zamiast faktoryzacji macierzy sm na sm (złożoność [sm] 3 ) : 1) faktoryzujemy tylko jedną macierze m na m : blok diagonalny [złożoność [m] 3 ] dla s=4: 64 x szybciej 2) rozwiązujemy ą równanie m na m na ΔU 1 z pierwszego wiersza blokowego i przechodzimy do drugiego gdzie ΔU 1 wykorzystana do złożenia prawej strony równania na ΔU 2 itd..

20 skonstruujmy SDIRK dla s=2, max p=s+1 warunki konieczne na wsp RK: l p dla k p niezależne dla k>2 1-a 1-2a ½ ½ ta z minusem : A stabilna ta z plusem nie

21

22 Równania różniczkowe zwyczajne: problem brzegowy [1D] 1) Równania różniczkowe zwyczajne jako szczególny przypadek problemów opisywanych przez eliptyczne równania cząstkowe 2) Problem brzegowy a problem początkowy (case study) ) 3) Metoda różnic skończonych (idea, rozwinięcie później) 4) Metoda Numerowa 5) Mtd Metoda strzałów problem początkowy problem brzegowy:

23 mówiliśmy, o równaniach różniczkowych zwyczajnych opisujących wielkości ilk ś i dane funkcjami wyłącznie czasu, z warunkiem początkowym. Rozwiązaniem ą równań różniczkowych cząstkowych są zazwyczaj funkcje zarówno czasu i położenia (pole elektryczne, rozkładu temperatury, prędkości przepływu itp.) modelowe równania przy jednym wymiarze przestrzennym u(x,t): dyfuzji ciepła (paraboliczne) fl falowe (hiperboliczne) Poissona (eliptyczne)

24 eliptyczne niezależne od czasu: u =u(x) () wyłącznie ą funkcja położenia stany ustalone, równowagowe itp. równania elektrostatyki, ustalony transport ciepła, przepływy cieczy w stanie ustalonym, etc. +S(x) Problem brzegowy: równanie różniczkowe (na razie zwyczajne) + warunek na rozwiązanie na brzegu. Brzeg w 1D: 2 punkty warunki brzegowe w 1D: napoczątku (x=0) i końcu pudła obliczeniowego (x=l) 1) na wartość funkcji (Dirichleta) u(0)=a, u(l)=b 2) na pochodną funkcji (Neumanna) u (0)=a, u (L)=b 3) mieszane (Robina) u(0)+cu (0)=a (0)=a, u(l)+du (L)=b (L)=b

25 opis jednowymiarowy problemów wielowymiarowych Przykład nr 1) równanie Poissona (jednostki atomowe), gęstość ładunku zależna tylko od x albo rozkład temperatury w jednorodnej sztabce ze źródłami ciepła w kąpieli cieplnej z x y układ jednorodny i rozległy w (y,z) + warunki brzegowe niezależne od y i z [płaski kondensator] interesuje nas rozkład potencjału w środku układu warunki brzegowe: Dirichleta: wartość potencjału (temperatury) : Neumana: wartość pola elektrycznego (strumienia ciepła)

26 P2: problem o wysokiej sferycznej symetrii r odległość od początku układu wsp. + atom wodoru: obiekt sferyczny 3D jądro + elektron gęstość ładunku jądra: p(r)=+δ 3 (r) (jednostki atomowe) gęstość ładunku elektronowego zależy tylko od odległości od jądra: n(r)= exp( 2r)/π. równanie jest liniowe zasada superpozycji:

27 laplasjan we współrzędnych sferycznych punktowy ładunek o nieskończonej gęstości w r=0 φ + =1/r składowa od gęstości elektronowej n(r)= exp( 2r)/π. 1/r φ(r) -n(r) r

28 n(r)= exp( 2r)/π. gdy n(r) nieznane w postaci analitycznej pozostaje rachunek numeryczny numeryczny rachunek φ dla rozciągłej gęstości ładunku o symetrii sferycznej n: n(r) () r r=0 zdyskretyzować ć równanie zamiast wartości ś dla ciągłych ł r wartości ś dyskretne Zamiast pochodnych ilorazy różnicowe zamiast równania różniczkowego algebraiczny układ równań ń

29 potrzebne warunki brzegowe na potencjał φ (dla r=0 oraz dla dużego r) cała sztuka w rozwiązywaniu problemów brzegowych to dobór odpowiednich w.b. i skuteczne ich wprowadzenie do równania tw. Gaussa r. Poissona 1/r φ(r) (*) jakobian -n(r) duże R całka potrójna dąży jedynki (z normalizacji n) duże R: E(R)=1/R 2, φ= 1/R gdy powierzchnia pudła obliczeniowego obejmuje r cały ładunek potencjał jak dla punktowego ładunku gdy rozkład gęstości rozciągły: 2) potencjał skończony dla r=0 (zamiast osobliwości 1/r) 3) jego pochodna znika w r=0 [E=zero dla małego r patrz drugie równanie (*)] WB: dla dużego r: φ(r)=1/r (Dirichlet) g φ( ) / ( ) dla małego r: dφ(r)/dr=0 (Neumann)

30 WB Neumanna trudniejszy w zastosowaniu, chcemy go przekształcić w warunek Dirichleta warunki brzegowe na f f(0)=0 bo φ(0) skończone, f (r=duże)= 1 bo φ (r=duże) 1/r.

31 spróbujmy ten problem rozwiązać numerycznie + f(0)=0, f(r)= 1, gdzie R promień pudła obliczeniowego obejmujący całe n Iloraz różnicowy drugiej pochodnej (1) (2) (1) plus (2) trójpunktowy iloraz drugiej pochodnej do rozwiązania problem algebraiczny: f 0 =0, f N = 1 Δr r f 0 f 1 f 2

32 f 0 =0, f N = 1 Układ równań liniowych rozwiązać i po sprawie. ale: dokładność rachunku ograniczona dokładnością ilorazu różnicowego drugiej pochodnej poznaliśmy świetne metody do rozwiązania problemu początkowego może je spróbować zastosować?

33 alternatywa: ustawmy ten wzór jak dla problemu początkowego (jak liniową metodę wielokrokową): nasz problem początkowy drugiego rzędu dla warunku początkowego: potrzebna funkcja+pochodna tzn. f 0 i f 1 Powiedzmy, że znamy 1) f 0 [bo znamy] 2) f 1 [to powiedzmy] możemy wyliczyć f 2 i następne. następnie: sprawdzimy, czy f N spełni WB na prawym końcu. as ęp e sp a d y, cyf N spe a pa y o cu Jeśli tak problem rozwiązany

34 znamy f 0 i f 1 wstawiamy analityczne, liczymy f 2 i następne f 0.5 Δr = 0.1 analityczne 1 (r+1)exp( 2r) numeryczne Katastrofa! f(analitycz zne)-f(numerycz zne) Krzyżyki = r r r (WB na prawym końcu ń nie spełniony: ł Błąd ł okazuje się liniowy i rachunek numeryczny łamie prawo Gaussa z r! potencjał daleko od źródła nie będzie 1/r )

35 0.06 numeryczne) f(analityczne)-f(n Błąd f jest tli linowy z r! Jak to zrozumieć? Pod nieobecność ładunku: d k (równanie Laplace a) g(r)=ar+b. W naszym problemie n istotnie znika dla dużych r, gdzie rozwiązanie powinno być postaci g(r)= 1 (czyli a=0,b= 1) Z drugiej strony: rozwiązanie równania Laplace a a g (jednorodnego) możemy zawsze dodać do rozwiązania równania Poissona f g+f spełni równanie Poissona, ale warunki brzegowe niekoniecznie W naszym wyniku: błąd polega na niezerowej wartości a. Skąd ą się ę ona bierze? f+g Trójpunktowy schemat różnicowy drugiej pochodnej dokładnie różniczkuje nawet parabolę, 0.5 więc dla funkcji typu ar+b się nie myli! wniosek: Z obszaru w którym n<>0 iteracja wychodzi z błędem. n(r) błąd pochodzi z całkowania n(r) r f f

36 Cóż można poradzić żeby rozwiązanie numeryczne nie odklejało się od dokładnego dla dużych r? 1.0 f f 0.5 Δr = 0.1 f+g rozwiązać ć jednak jd problem (URL) z narzuconymi warunkami brzegowymi z obydwu stron zagęścić siatkę n(r) r scałkować równanie wstecz spróbować wykorzystać lepszą (dokładniejszą) metodę f 1 zamiast analitycznego przyjąć taki, aby prawy warunek był spełniony (metoda strzałów)

37 Zagęścić siatkę (metoda brutalnej siły) 1.0 f f+g 1.0 f f+g f 0.5 Δr = f 0.5 Δr = 0.01 n(r) r n(r) r w f 1 wstawiona wartość analityczna w f 1 wstawiona wartość analityczna przy drobnym kroku przestrzennym nie generuje widocznego błędu

38 widzieliśmy, że schemat wychodził poza zakres n(r)<>0 z błędem, pomysł: scałkować równanie wstecz Zamiast do przodu: scałkujemy wstecz: 1.0 f 0 = 1, f 1 =analityczne f N = 1, f N 1 =1 znamy potrzebne 2 wartości! 0.8 Δr = f 0.4 Całkowanie wstecz (od r=20) zoom do kółka analityczne krzyżyki numeryczne r dla r=0 : f (numeryczne) = zamiast zera Δr = 0.1 r Tam gdzie pojawia się ładunek, tam pojawiają się również błędy, ale nie narastają.

39 tajemnica naszego sukcesu: Startowaliśmy w obszarze, gdzie n(r) znika czyli tam obowiązuje r. Laplace a: g(r)=ar+b. Ustawiliśmy jego rozwiązanie na: a=0, b= 1. Dzięki temu: nie pozwoliliśmy domieszać się rozwiązaniu Laplace a z innymi a i b błąd pojawia się tam gdzie ładunek, ale zbytnio nie rośnie

40 metoda różnic skończonych dla ustalonych WB f 0 =0, f N = 1 układ równań rozwiązany iteracyjnie, (relaksacja) Δr = r r rozwiązanie wstecz (gdzie właściwy WB w r=0 został odnaleziony) nie gorsze od relaksacji, gdzie spełnienie obydwu WB jest wymuszone. dlaczego błąd w rozwiązaniu do przodu jest tak wielki?

41 znowu całkowanie do przodu, ale tym razem: f 0 = 0, f 1 = wyliczone z relaksacji zamiast wzoru analitycznego dla Δr=0.1 dokładne rozwiązanie numeryczne jest nieco inne niż analityczne. a (dokładne numeryczne: dokładne analityczne: ) r wniosek: błąd pierwszego podejścia polegał na zastosowaniu analitycznego wyniku na f 1! Uwaga: to samo rozwiązanie uzyskujemy każdą z 3 metod. cały ł błąd leży ż teraz w ograniczonej jdokładności d ś ilorazu różnicowego.

42 dla całkowania do przodu: Jeśli f 1 = analitycznie nie jest to najlepsze = odgadniemy: metoda strzałów 1.2 f 0 =0, f 1 = dobieramy tak aby prawy wb był odtworzony f(r=daleko)=1, lub f (r=daleko = 0) 0.8 metoda strzałów: Służy do rozwiązania problemu brzegowego przy pomocy podejścia dedykowanego dla problemu początkowego: wstrzelić należy się w (nieznany) parametr 0.4 f1= (analityczny) f1=0.1 f1= określający przebieg = u nas f 1.

u(t) RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy

u(t) RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy u(t) t Dt RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy u(t+dt)=u(t)+f(t,u(t),dt) klasyczna formuła RK4: u(t) k 1 u k 2 k 3 k 4 4 wywołania f na krok, błąd lokalny O(Dt 5 ) gdy f tylko funkcja czasu

Bardziej szczegółowo

Równania różniczkowe zwyczajne: problem brzegowy [1D]

Równania różniczkowe zwyczajne: problem brzegowy [1D] Równania różniczkowe zwyczajne: problem brzegowy [1D] 1) Równania różniczkowe zwyczajne jako szczególny przypadek problemów opisywanych przez eliptyczne równania cząstkowe 2) Problem brzegowy a problem

Bardziej szczegółowo

Równania różniczkowe zwyczajne: problem brzegowy [1D]

Równania różniczkowe zwyczajne: problem brzegowy [1D] Równania różniczkowe zwyczajne: problem brzegowy [1D] 1) Równania różniczkowe zwyczajne jako szczególny przypadek problemów opisywanych przez eliptyczne równania cząstkowe 2) Problem brzegowy a problem

Bardziej szczegółowo

y i b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta

y i b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta przedział (a,b) dzielimy na siatkę, powiedzmy o stałym kroku: punkty siatki: u A y i w metodzie strzałów używamy

Bardziej szczegółowo

Równania różniczkowe zwyczajne: problem brzegowy [1D]

Równania różniczkowe zwyczajne: problem brzegowy [1D] Równania różniczkowe zwyczajne: problem brzegowy [1D] 1) Równania różniczkowe zwyczajne jako szczególny przypadek problemów opisywanych przez eliptyczne równania cząstkowe 2) Problem brzegowy a problem

Bardziej szczegółowo

t. sztywny problem w pojedynczym równaniu: u(t)=cos(t) dla dużych ż t rozwiązanie i ustalone

t. sztywny problem w pojedynczym równaniu: u(t)=cos(t) dla dużych ż t rozwiązanie i ustalone Problem opisany RRZ jest sztywny gdy: 1.... jest charakteryzowany yróżnymi skalami czasowymi. 2. Stabilność bezwzględna nakłada silniejsze ograniczenia na krok czasowy niż dokładność. 3. Metody jawne się

Bardziej szczegółowo

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Tomasz Chwiej 6 czerwca 2016 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów różnicowych: iloraz

Bardziej szczegółowo

pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera

pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera pozbyć się ograniczenia na krok czasowy ze strony bezwzględnej stabilności: niejawna metoda Eulera jawna metoda Eulera niejawna metoda Eulera jawna metoda Eulera (funkcjonuje jak podstawienie) funkcjonuje

Bardziej szczegółowo

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Tomasz Chwiej 22 stycznia 2019 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów

Bardziej szczegółowo

x y

x y Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka

Bardziej szczegółowo

Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład

Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład Inżynierskie metody numeryczne II Konsultacje: wtorek 8-9:30 Wykład Metody numeryczne dla równań hiperbolicznych Równanie przewodnictwa cieplnego. Prawo Fouriera i Newtona. Rozwiązania problemów 1D metodą

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści

Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, Spis treści Inżynierskie metody analizy numerycznej i planowanie eksperymentu / Ireneusz Czajka, Andrzej Gołaś. Kraków, 2017 Spis treści Od autorów 11 I. Klasyczne metody numeryczne Rozdział 1. Na początek 15 1.1.

Bardziej szczegółowo

Δt)] niejawny schemat Eulera [globalny błąd O(Δt)] u(t) f(t,u) f(t,u) u(t) [t+ Δt,u(t+Δt)]

Δt)] niejawny schemat Eulera [globalny błąd O(Δt)] u(t) f(t,u) f(t,u) u(t) [t+ Δt,u(t+Δt)] jawny schemat Eulera [globalny błąd O(Δt)] niejawny schemat Eulera [globalny błąd O(Δt)] u(t) f(t,u) [t,u(t)] )]dokładne d u(t) () f(t,u) [t+ Δt,u(t+Δt)] [t+ Δt,u(t+Δt)] Δt)] Δt t Δt t u(t) [t,u(t)] dokładne

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

Wstęp do metod numerycznych 9a. Układy równań algebraicznych. P. F. Góra

Wstęp do metod numerycznych 9a. Układy równań algebraicznych. P. F. Góra Wstęp do metod numerycznych 9a. Układy równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Układy równań algebraicznych Niech g:r N równanie R N będzie funkcja klasy co najmniej

Bardziej szczegółowo

Metoda różnic skończonych dla

Metoda różnic skończonych dla Metoda różnic skończonych dla cząstkowych równań różniczkowych na laboratorium rozwiązywać będziemy typowe równania: dyfuzji (również przewodnictwo cieplne) paraboliczne równanie Poissona (np. pole elektrostatyczne,

Bardziej szczegółowo

równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji

równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji Równania różniczkowe: równania funkcyjne opisujące relacje spełniane przez pochodne nieznanej (poszukiwanej) funkcji cząstkowe: funkcja więcej niż jednej zmienna, np.: czas i położenie np. wychylenie u(x,t)

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp

Bardziej szczegółowo

numeryczne rozwiązywanie równań całkowych r i

numeryczne rozwiązywanie równań całkowych r i numeryczne rozwiązywanie równań całkowych r i Γ Ω metoda elementów brzegowych: punktem wyjściowym było rozwiązanie równania całkowego na brzegu obszaru całkowania równanie: wygenerowane z równania różniczkowego

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe

Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Problem Cauchy ego dy dx = f(x, y) (1) y(x

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 5. Terminologia. Metody Eulera, metody punktu środkowego i metody trapezowe

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 5. Terminologia. Metody Eulera, metody punktu środkowego i metody trapezowe Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 5. Terminologia. Metody Eulera, metody punktu środkowego i metody trapezowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów.

Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Rozwiązywanie równań nieliniowych i ich układów. Wyznaczanie zer wielomianów. Plan wykładu: 1. Wyznaczanie pojedynczych pierwiastków rzeczywistych równań nieliniowych metodami a) połowienia (bisekcji)

Bardziej szczegółowo

Równania różniczkowe cząstkowe (RRCz) równanie eliptyczne równanie Poissona

Równania różniczkowe cząstkowe (RRCz) równanie eliptyczne równanie Poissona Równania różniczkowe cząstkowe (RRCz) równanie eliptyczne równanie Poissona 1. Klasyfikacja RRCz, przykłady 2. Metody numerycznego rozwiązywania równania Poissona a) FFT (met. bezpośrednia) b) metoda różnic

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 5. Metody Rungego-Kutty (II) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/

Komputerowa analiza zagadnień różniczkowych 5. Metody Rungego-Kutty (II) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ Komputerowa analiza zagadnień różniczkowych 5. Metody Rungego-Kutty (II) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ Metody DIRK Jeśli spodziewamy się problemów ze stabilnościa, w szczególności jeśli

Bardziej szczegółowo

Całkowanie numeryczne

Całkowanie numeryczne Całkowanie numeryczne Poniżej omówione zostanie kilka metod przybliżania operacji całkowania i różniczkowania w szczególności uzależnieniu pochodnej od jej różnic skończonych gdy równanie różniczkowe mamy

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe

Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Problem Cauchy ego dy dx = f(x, y) (1) y(x

Bardziej szczegółowo

Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.

Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np. Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora

Bardziej szczegółowo

Rozwiązywanie równań nieliniowych

Rozwiązywanie równań nieliniowych Rozwiązywanie równań nieliniowych Marcin Orchel 1 Wstęp Przykłady wyznaczania miejsc zerowych funkcji f : f(ξ) = 0. Wyszukiwanie miejsc zerowych wielomianu n-tego stopnia. Wymiar tej przestrzeni wektorowej

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 7a. Metody wielokrokowe

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 7a. Metody wielokrokowe Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 7a. Metody wielokrokowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Motywacja Metody wielokrokowe sa

Bardziej szczegółowo

[ równanie liniowe II rzędu, bez pierwszej pochodnej]

[ równanie liniowe II rzędu, bez pierwszej pochodnej] najprostszy iloraz drugiej pochodnej produkuje przepis z błądem lokalnym rzędu 4 całkiem nieźle, ale: można lepiej = metoda Numerowa błąd lokalny rzędu 6 metoda Numerowa: [przepis na kolejne wartości rozwiązania

Bardziej szczegółowo

Elementy równań różniczkowych cząstkowych

Elementy równań różniczkowych cząstkowych Elementy równań różniczkowych cząstkowych Magdalena Jakubek kwiecień 2016 1 Równania różniczkowe cząstkowe Problem brzegowy i problem początkowy Klasyfikacja równań Rodzaje warunków brzegowych Najważniejsze

Bardziej szczegółowo

Całkowanie numeryczne przy użyciu kwadratur

Całkowanie numeryczne przy użyciu kwadratur Całkowanie numeryczne przy użyciu kwadratur Plan wykładu: 1. Kwadratury Newtona-Cotesa a) wzory: trapezów, parabol etc. b) kwadratury złożone 2. Ekstrapolacja a) ekstrapolacja Richardsona b) metoda Romberga

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany

Bardziej szczegółowo

Metoda rozdzielania zmiennych

Metoda rozdzielania zmiennych Rozdział 12 Metoda rozdzielania zmiennych W tym rozdziale zajmiemy się metodą rozdzielania zmiennych, którą można zastosować, aby wyrazić jawnymi wzorami rozwiązania pewnych konkretnych równań różniczkowych

Bardziej szczegółowo

użyteczne, gdy problem nie wymaga zmiany dt ważne: schematy do rozwiązywania równań cząstkowych mają często wielokrokowy charakter

użyteczne, gdy problem nie wymaga zmiany dt ważne: schematy do rozwiązywania równań cząstkowych mają często wielokrokowy charakter Liniowe metody wielokrokowe dla równań zwyczajnych starsze niż RKo50lat użyteczne, gdy problem nie wymaga zmiany dt ważne: schematy do rozwiązywania równań cząstkowych mają często wielokrokowy charakter

Bardziej szczegółowo

Elektrostatyka, cz. 1

Elektrostatyka, cz. 1 Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych

Bardziej szczegółowo

Równania różniczkowe cząstkowe. Wojciech Szewczuk

Równania różniczkowe cząstkowe. Wojciech Szewczuk Równania różniczkowe cząstkowe Równania różniczkowe cząstkowe - wstęp u x = lim x u(x + x, y) u(x, y) x u u(x, y + y) u(x, y) y = lim y y () (2) 2 u x 2 + 2xy 2 u y 2 + u = 3 u x 2 y + x 2 u + 8u = 5y

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

Metoda elementów brzegowych

Metoda elementów brzegowych Metoda elementów brzegowych Tomasz Chwiej, Alina Mreńca-Kolasińska 9 listopada 8 Wstęp Rysunek : a) Geometria układu z zaznaczonymi: elementami brzegu (czerwony), węzłami (niebieski). b) Numeracja: elementów

Bardziej szczegółowo

Metody numeryczne rozwiązywania równań różniczkowych

Metody numeryczne rozwiązywania równań różniczkowych Metody numeryczne rozwiązywania równań różniczkowych Marcin Orchel Spis treści Wstęp. Metody przybliżone dla równań pierwszego rzędu................ Metoda kolejnych przybliżeń Picarda...................2

Bardziej szczegółowo

5. Twierdzenie Weierstrassa

5. Twierdzenie Weierstrassa Pytania egzaminacyjne z Metod Numerycznych 1. Jaką największą liczbę można zapisać w postaci znormalizowanej w dwójkowym systemie liczenia na 8-miu bitach podzielonych 4 + 4 na mantysę i cechę, jeśli zarówno

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer.

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer. METODY NUMERYCZNE Wykład 3. dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. wykład 3 1 Plan Aproksymacja Interpolacja wielomianowa Przykłady Met.Numer. wykład 3 2 1 Aproksymacja Metody numeryczne

Bardziej szczegółowo

Układy równań liniowych. Krzysztof Patan

Układy równań liniowych. Krzysztof Patan Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych

Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych Metody przybliżonego rozwiązywania równań różniczkowych zwyczajnych Rozwiązywanie równań różniczkowych zwyczajnych za pomocą szeregów metody dyskretne Metoda współczynników nieoznaczonych Metoda kolejnego

Bardziej szczegółowo

METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH

METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH METODY ROZWIĄZYWANIA RÓWNAŃ NIELINIOWYCH Jednym z zastosowań metod numerycznych jest wyznaczenie pierwiastka lub pierwiastków równania nieliniowego. W tym celu stosuje się szereg metod obliczeniowych np:

Bardziej szczegółowo

adwekcja rzadko występuje w formie czystej przeważnie: łącznie z dyfuzją na razie znamy tylko dyfuzję numeryczną Adwekcja=unoszenie

adwekcja rzadko występuje w formie czystej przeważnie: łącznie z dyfuzją na razie znamy tylko dyfuzję numeryczną Adwekcja=unoszenie adwekcja rzadko występuje w formie czystej przeważnie: łącznie z dyfuzją na razie znamy tylko dyfuzję numeryczną dziś: dyfuzja prawdziwa Dyfuzja+adwekcja: występuje w problemach transportu masy i energii

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski

II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski II. RÓŻNICZKOWANIE I CAŁKOWANIE NUMERYCZNE Janusz Adamowski 1 1 Różniczkowanie numeryczne Rozważmy funkcję f(x) określoną na sieci równoodległyc węzłów. Funkcja f(x) może być dana za pomocą wzoru analitycznego

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice

Metody Obliczeniowe w Nauce i Technice 23. Rozwiązywanie równań różniczkowych cząstkowych Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Magdalena

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Programowanie celowe #1

Programowanie celowe #1 Programowanie celowe #1 Problem programowania celowego (PC) jest przykładem problemu programowania matematycznego nieliniowego, który można skutecznie zlinearyzować, tzn. zapisać (i rozwiązać) jako problem

Bardziej szczegółowo

Metoda różnic wstecznych: interpolujemy u wielomianem od chwili n-k aż do n-1

Metoda różnic wstecznych: interpolujemy u wielomianem od chwili n-k aż do n-1 Metoda różnic wstecznych: interpolujemy u wielomianem od chwili n-k aż do n-1 następnie żądamy, aby jego pochodna w chwili n spełniała równania różniczkowe (kolokacja) z tego warunku wyliczamy z niego

Bardziej szczegółowo

OBLICZANIE POCHODNYCH FUNKCJI.

OBLICZANIE POCHODNYCH FUNKCJI. OBLICZANIE POCHODNYCH FUNKCJI. ROZWIĄZYWANIE RÓWNAŃ RÓŻNICZKOWYCH. ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ LINIOWYCH. Obliczanie pochodnych funkcji. Niech będzie dana funkcja y(x określona i różniczkowalna na przedziale

Bardziej szczegółowo

1 Równania nieliniowe

1 Równania nieliniowe 1 Równania nieliniowe 1.1 Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym jest numeryczne poszukiwanie rozwiązań równań nieliniowych, np. algebraicznych (wielomiany),

Bardziej szczegółowo

Metody rozwiązania równania Schrödingera

Metody rozwiązania równania Schrödingera Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania

Bardziej szczegółowo

Projekt 6: Równanie Poissona - rozwiązanie metodą algebraiczną.

Projekt 6: Równanie Poissona - rozwiązanie metodą algebraiczną. Projekt 6: Równanie Poissona - rozwiązanie metodą algebraiczną. Tomasz Chwiej 9 sierpnia 18 1 Wstęp 1.1 Dyskretyzacja n y V V 1 V 3 1 j= i= 1 V 4 n x Rysunek 1: Geometria układu i schemat siatki obliczeniowej

Bardziej szczegółowo

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;

Bardziej szczegółowo

Metoda Różnic Skończonych (MRS)

Metoda Różnic Skończonych (MRS) Metoda Różnic Skończonych (MRS) METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek () Równania różniczkowe zwyczajne

Bardziej szczegółowo

Metody Obliczeniowe Mikrooptyki i Fotoniki

Metody Obliczeniowe Mikrooptyki i Fotoniki Metody Obliczeniowe Mikrooptyki i Fotoniki https://www.igf.fuw.edu.pl/pl/courses/lectures/metody-obliczen-95-021c/ Podstawy metody różnic skończonych (Basics of finite-difference methods) Podstawy metody

Bardziej szczegółowo

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 3 Specjalne metody elektrostatyki 3 3.1 Równanie Laplace

Bardziej szczegółowo

Metoda elementów brzegowych

Metoda elementów brzegowych Metoda elementów brzegowych Lu=f plus warunki brzegowe możliwe podejścia: 1) Metoda różnic skończonych 2) Metoda elementów skończonych silna postać równania + ilorazy różnicowe obszar podzielony na elementy,

Bardziej szczegółowo

Metoda różnic skończonych dla

Metoda różnic skończonych dla Metoda różnic skończonych dla cząstkowych równań różniczkowych na laboratorium rozwiązywać będziemy typowe równania: dyfuzji (również przewodnictwo cieplne) paraboliczne równanie Poissona (np. pole elektrostatyczne,

Bardziej szczegółowo

ZAKRESY NATERIAŁU Z-1:

ZAKRESY NATERIAŁU Z-1: Załącznik nr 2 do SIWZ Nr postępowania: ZP/47/055/U/13 ZAKRESY NATERIAŁU Z-1: 1) Funkcja rzeczywista jednej zmiennej: ciąg dalszy a) Definicja granicy funkcji, b) Twierdzenie o trzech funkcjach, o granicy

Bardziej szczegółowo

jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru.

jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru. Układy liniowe Układ liniowy pierwszego rzędu, niejednorodny. gdzie Jeśli to układ nazywamy jednorodnym Pamiętamy, Ŝe kaŝde równanie liniowe rzędu m moŝe zostać sprowadzone do układu n równań liniowych

Bardziej szczegółowo

Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE

Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Zazwyczaj nie można znaleźć

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50

Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Metody numeryczne Układy równań liniowych, część II Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50 Układy równań liniowych, część II 1. Iteracyjne poprawianie

Bardziej szczegółowo

RÓWNANIA NIELINIOWE Maciej Patan

RÓWNANIA NIELINIOWE Maciej Patan RÓWNANIA NIELINIOWE Maciej Patan Uniwersytet Zielonogórski Przykład 1 Prędkość v spadającego spadochroniarza wyraża się zależnością v = mg ( 1 e c t) m c gdzie g = 9.81 m/s 2. Dla współczynnika oporu c

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)

Bardziej szczegółowo

wartość oczekiwana choinki

wartość oczekiwana choinki wartość oczekiwana choinki Plan seminarium cośo równaniu Schrödingera analityczne metody rozwiązywania algorytm & obliczenia Schrödinger w studni koniec choinka ortogonalna Coś o równaniu Schrödingera

Bardziej szczegółowo

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x

Bardziej szczegółowo

Γ D Γ Ν. Metoda elementów skończonych, problemy dwuwymiarowe. problem modelowy: w Ω. warunki brzegowe: Dirichleta. na Γ D. na Γ N.

Γ D Γ Ν. Metoda elementów skończonych, problemy dwuwymiarowe. problem modelowy: w Ω. warunki brzegowe: Dirichleta. na Γ D. na Γ N. Metoda elementów skończonych, problemy dwuwymiarowe Ω Γ D v problem modelowy: Γ Ν warunki brzegowe: na Γ D w Ω Dirichleta na Γ N Neumanna problem ma jednoznaczne rozwiązanie, jeśli brzeg Γ D nie ma zerowej

Bardziej szczegółowo

1 Symulacja procesów cieplnych 1. 2 Algorytm MES 2. 3 Implementacja rozwiązania 2. 4 Całkowanie numeryczne w MES 3. k z (t) t ) k y (t) t )

1 Symulacja procesów cieplnych 1. 2 Algorytm MES 2. 3 Implementacja rozwiązania 2. 4 Całkowanie numeryczne w MES 3. k z (t) t ) k y (t) t ) pis treści ymulacja procesów cieplnych Algorytm ME 3 Implementacja rozwiązania 4 Całkowanie numeryczne w ME 3 ymulacja procesów cieplnych Procesy cieplne opisuje równanie różniczkowe w postaci: ( k x (t)

Bardziej szczegółowo

Modelowanie rynków finansowych z wykorzystaniem pakietu R

Modelowanie rynków finansowych z wykorzystaniem pakietu R Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie

Bardziej szczegółowo

Różniczkowanie numeryczne

Różniczkowanie numeryczne Różniczkowanie numeryczne Przyjmijmy, że funkcja ciągła y = f(x) = 4sin(3x)e -x/2, gdzie x 0,2π, dana jest w postaci dyskretnej jako ciąg wartości y odpowiadających zmiennej niezależnej x, również danej

Bardziej szczegółowo

Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra

Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam

Bardziej szczegółowo

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze

Bardziej szczegółowo

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne. pytania teoretyczne:. Co to znaczy, że wektory v, v 2 i v 3

Bardziej szczegółowo

BŁĘDY OBLICZEŃ NUMERYCZNYCH

BŁĘDY OBLICZEŃ NUMERYCZNYCH BŁĘDY OBLICZEŃ NUMERYCZNYCH błędy zaokrągleń skończona liczba cyfr (bitów) w reprezentacji numerycznej błędy obcięcia rozwinięcia w szeregi i procesy iteracyjne - w praktyce muszą być skończone błędy metody

Bardziej szczegółowo

Numeryczne rozwiązywanie równań i układów równań

Numeryczne rozwiązywanie równań i układów równań Lekcja Strona z 2 Numeryczne rozwiązywanie równań i układów równań Rozwiązywanie pojedynczego równania - funkcja root Do rozwiązywania jednego równania z jedną niewiadomą służy funkcja root(f(z), z), gdzie:

Bardziej szczegółowo

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku Egzamin pisemny zestaw. ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x n, to funkcja x0 x gx ( ) + [ gx (

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

15 Potencjały sferycznie symetryczne

15 Potencjały sferycznie symetryczne z ϕ θ r y x Rysunek : Definicje zmiennych we współrzędnych sferycznych r, θ, ϕ) 5 Potencjały sferycznie symetryczne 5. Separacja zmiennych Do tej pory omawialiśmy problemy jednowymiarowe, które służyły

Bardziej szczegółowo

Wstęp do metod numerycznych 9. Minimalizacja: funkcje jednej zmiennej. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/

Wstęp do metod numerycznych 9. Minimalizacja: funkcje jednej zmiennej. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ Wstęp do metod numerycznych 9. Minimalizacja: funkcje jednej zmiennej P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Lokalna minimalizacja ciagła Minimalizacja funkcji jest jedna z najważniejszych

Bardziej szczegółowo

Wstęp do metod numerycznych 14. Kilka wstępnych uwag na temat numerycznego rozwiazywania równań różniczkowych zwyczajnych

Wstęp do metod numerycznych 14. Kilka wstępnych uwag na temat numerycznego rozwiazywania równań różniczkowych zwyczajnych Wstęp do metod numerycznych 14. Kilka wstępnych uwag na temat numerycznego rozwiazywania równań różniczkowych zwyczajnych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012/13 Równania różniczkowe zwyczajne

Bardziej szczegółowo

Informatyka i komputerowe wspomaganie prac inżynierskich

Informatyka i komputerowe wspomaganie prac inżynierskich Informatyka i komputerowe wspomaganie prac inżynierskich Dr Zbigniew Kozioł - wykład Dr Grzegorz Górski - laboratorium Wykład III Numeryczne rozwiązywanie równań różniczkowych. MES, Metoda Elementów Skończonych

Bardziej szczegółowo

Równania różniczkowe cząstkowe drugiego rzędu

Równania różniczkowe cząstkowe drugiego rzędu Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 14 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładów Błędy obliczeń Błędy można podzielić na: modelu, metody, wejściowe (początkowe), obcięcia, zaokrągleń..

Bardziej szczegółowo

Wstęp do metod numerycznych 9. Rozwiazywanie równań algebraicznych. P. F. Góra

Wstęp do metod numerycznych 9. Rozwiazywanie równań algebraicznych. P. F. Góra Wstęp do metod numerycznych 9. Rozwiazywanie równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co to znaczy rozwiazać równanie? Przypuśmy, że postawiono przed nami problem rozwiazania

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

Kubatury Gaussa (całka podwójna po trójkącie)

Kubatury Gaussa (całka podwójna po trójkącie) Kubatury Gaussa (całka podwójna po trójkącie) Całka podwójna po trójkącie Dana jest funkcja dwóch zmiennych f (x, y) ciągła i ograniczona w obszarze trójkątnym D. Wierzchołki trójkąta wyznaczają punkty

Bardziej szczegółowo

Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D

Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D Równanie konstytutywne opisujące sposób w jaki ciepło przepływa w materiale o danych właściwościach, prawo Fouriera Macierz konstytutywna (właściwości) materiału Wektor gradientu temperatury Wektor strumienia

Bardziej szczegółowo