Komputerowa analiza zagadnień różniczkowych 5. Metody Rungego-Kutty (II) P. F. Góra

Wielkość: px
Rozpocząć pokaz od strony:

Download "Komputerowa analiza zagadnień różniczkowych 5. Metody Rungego-Kutty (II) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/"

Transkrypt

1 Komputerowa analiza zagadnień różniczkowych 5. Metody Rungego-Kutty (II) P. F. Góra

2 Metody DIRK Jeśli spodziewamy się problemów ze stabilnościa, w szczególności jeśli rozwiazujemy problemy sztywne, powinniśmy stosować metody niejawne. Sa one jednak bardzo kosztowne obliczeniowo: jeżeli przy użyciu metody s-etapowej rozwiazkujemy problem m-wymiarowy, w każdym kroku musimy rozwiazywać s m wymiarowy układ równań algebraicznych, w ogólności nieliniowych. Aby zmniejszyć ten koszt nie tracac stabilności metod niejawnych, stosuje się metody DIRK (ang. Diagonally Implicit Runge-Kutta), zwane też metodami półniejawnymi (ang. semi-implicit). W metodach tych macierz B ma niezerowe elementy diagonalne i poddiagonalne elementy ponaddiago- Copyright c 9- P. F. Góra 5

3 nalne sa zerowe: α β α β β..... α s β s β s β s3 β ss w w w w s Dzięki temu, stosujac s-etapowa metodę do problemu m-wymiarowego, zamiast rozwiazywać jeden układ równań algebraicznych o wymiarze s m, należy rozwiazać s układów o wymiarze m po jednym układzie na każdy etap. Jest to numerycznie prostsze. () Jeżeli dodatkowo β = β = = β ss = γ, taka metodę nazywa się metoda SDIRK (Singly Diagonally Implicit Runge-Kutta). Copyright c 9- P. F. Góra 5 3

4 Przykład γ γ γ γ γ, γ = Sprawdzamy rzad metody. Nietrywialnymi wyrażeniami, które trzeba sprawdzić, sa: γ + ( γ) = metoda jest rzędu drugiego. γ + ( γ) = γ γ+ = 3, γ γ+ (( γ) γ+γ ( γ)) = γ +γ = 6 metoda jest rzędu trzeciego. γ3 + ( γ)3 = 3γ 3γ+ = 6 4, γ γ γ+ ( γ) (( γ) γ + γ ( γ)) = 4γ 3 5γ +γ = 6+ 3 metoda nie jest rzędu czwartego () Copyright c 9- P. F. Góra 5 4

5 Obszar stabilności tej metody dany jest przez {z C: G(z) < }, gdzie G(z) = 6 (+ 3)z + 3z 6 [(3+ 3)z 6] Obszar niezacieniony jest obszarem niestabilności. Copyright c 9- P. F. Góra 5 5

6 Przykład Ciagle publikuje się i bada nowe metody RK. W pracy G. Yu. Kulikov, S. K. Shindin, Appl. Num. Math. 59, 77 (9), dyskutowane sa, między innymi, własności metody c 6(c +θ) 5 θ θ 6(c +θ) 5 c 7 6(c +θ) θ θ 5 6(c +θ) c = 3 3, θ = Copyright c 9- P. F. Góra 5 6

7 Adaptacyjne podwajanie/połowienie kroku Całkowanie ze stałym krokiem to numeryczne samobójstwo. Dobre algorytmy numerycznego całkowania ODE powinny, w miarę możności, same ustalać krok, z jakim przechodza zadany przedział. W tym celu algorytm musi znać oszacowanie błędu popełnionego w ciagu jednego kroku. Dla metod Rungego-Kutty najprostszym tego typu algorytmem jest algorytm adaptacyjnego podwajania/połowienia kroku. Przypuśćmy, że żadam, aby bład na jeden krok nie przekraczał max. Niech aktualny krok całkowania wynosi h. Przechodzę przedział [x n, x n + h] dwa razy: raz dwoma krokami o długości h i raz krokiem o długości h. Copyright c 9- P. F. Góra 5 7

8 y n y () n+ x n x n + h x n + h dwa razy z małym krokiem } {{ }} {{ } h h y n y () n+ x n x n + h raz z dużym krokiem } {{ } h Copyright c 9- P. F. Góra 5 8

9 W ten sposób otrzymuję dwa oszacowania wartości y n+. Dla metody rzędu p spełniaja one Różnica y(x n + h) = y () n+ + hp+ φ + O(h p+ ), (3a) y(x n + h) = y () n+ + (h)p+ φ + O(h p+ ). (3b) = y () n+ y() n+ (4) stanowi oszacowanie błędu. Zachodza dwa przypadki:. max : Wówczas przechodzę do punktu x n+ = x n + h, jako rozwiazanie przyjmuję y(x n + h) = y () n+, zwiększam krok Copyright c 9- P. F. Góra 5 9

10 h h i próbuję przejść następny przedział z dwa razy większym krokiem.. > max : Wówczas cofam się do punktu x n, zmniejszam krok h h/ i ponawiam cała procedurę. W tym wypadku należy się zabezpieczyć przed zmniejszeniem się kroku poniżej pewnego h min. Istotne może być jaka normę weźmiemy. Dla klasycznej metody czteroetapowej wymaga to = obliczeń prawej strony. Metoda adaptacyjnego podwajania/połowienia kroku może być stosowana także przy obliczeniach za pomoca metod niejawnych. Copyright c 9- P. F. Góra 5

11 Przykład oscylator Duffinga i podwajanie/połowienie kroku x(t) ẍ + x 3 5x = x() = 3., ẋ() = x (t) h t Mały rysunek pokazuje potencjał Duffinga. Copyright c 9- P. F. Góra 5

12 Lokalna ekstrapolacja Jeśli popełniany bład nie przekracza maksymalnego błędu dopuszczalnego, można jeszcze poprawić rozwiazanie za pomoca tak zwanej lokalnej ekstrapolacji: Przyjmijmy, że lewe strony obu równań (3) sa sobie równe. Wówczas eliminujac h p+ φ otrzymujemy y(x n + h) = y () n+ + p + O(hp+ ). (5) Może to poprawić numeryczne własności rozwiazania, ale tak naprawdę zysk na rzędzie metody jest pozorny. Copyright c 9- P. F. Góra 5

13 Zagnieżdżone (embedded) metody Rungego-Kutty Rozważmy dwie jawne s-etapowe metody Rungego-Kutty: y () n+ = y n + h y () n+ = y n + h k i = y n + hf s i= s i= w () i k i + O(h p+ ), (6a) w () i k i + O(h p+ ), (6b) x n + α i h, y n + h i j= β ij k j (6c) Metody te sa tak skonstruowane, że różnia się jedynie wagami, maja takie same punkty pośrednie, a więc taki sam zestaw wektorów {k i }, a ich rzędy różnia się o jeden. Copyright c 9- P. F. Góra 5 3

14 Obliczajac jeden zestaw pochodnych w punktach pośrednich, mamy oszacowanie błędu: = y () s ( n+ y() n+ = h w () i w () ) i k i, h p+. (7) i= Skoro h p+, to max h p+ max. Mam więc oszacowanie h max = h ( max ) /(p+). (8) Jeśli > max, zmniejszam krok h h max i powtarzam bieżacy krok. Jeśli < max, zwiększam krok h h max i z powiększonym krokiem próbuję iść dalej. Metody zagnieżdżone pozwalaja zatem na bardziej precyzyjna kontrolę kroku od podwajania/połowienia, wymagaja także mniej obliczeń (s obliczeń funkcji f). Copyright c 9- P. F. Góra 5 4

15 Przykład: Metoda Bogackiego-Shampine a 3() Puste miejsca oznaczaja zera. Uwaga: Dwa zestawy wag! Metoda typu FSAL (First Same As Last). Copyright c 9- P. F. Góra 5 5

16 Sprawdzamy rzędy tych metod: pierwszy zestaw wag drugi zestaw wag = = ; = = ; = jest rzędu drugiego ( ) ( ) + (... ) = ( 3 4 ) + = = jest rzędu drugiego ( ) + 3 ( 3 4 ( ) + 8 = ) = + 4 = 3 ; = = 6 jest rzędu trzeciego ( ) + = nie jest rzędu trzeciego Copyright c 9- P. F. Góra 5 6

17 Obszary stabilności metody Bogackiego-Shampine a dane sa przez następujace wyrażenia: Dla metody rzędu trzeciego, służacej do obliczania następnych wartości poszukiwanej funkcji: ( z 3 + 3z + 6z + 6 ) < (9a) 6 Dla metody rzędu drugiego, służacej do kontroli błędu: 48 ( z 4 + 9z 3 + 4z + 48z + 48 ) < (9b) Krok powinien być tak dobrany, aby nie wyjść poza obszar stabilności żadnej z metod. Copyright c 9- P. F. Góra 5 7

18 Obszary stabilności metody Bogackiego-Shampine a nd order 3 rd order Copyright c 9- P. F. Góra 5 8

19 Jawnie rozpisana metoda Bogackiego-Shampine a: k = f(x n, y n ) (a) k = f ( x n + h, y n + hk k 3 = f ( x n h, y n hk ) ) (b) (c) y n+ = y n + h ( 9 k + 3 k k 3 (d) k 4 = f(x n + h, y n+ ) (e) z = y n + h ( 7 4 k + 4 k + 3 k k ) 4 (f) k = k 4 (g) Wektor (e) staje się wektorem (a) w następnym kroku całkowania, a więc oblicza się go tylko raz. Wektor z bierze udział tylko w szacowaniu błędów. ) Copyright c 9- P. F. Góra 5 9

20 Metoda Fehlberga 4(5) Pierwszy zestaw wag daje rozwiazanie rzędu czwartego, drugi rzędu piatego. 55 Copyright c 9- P. F. Góra 5

21 Metoda Casha-Karpa 5(4) Pierwszy zestaw wag daje rozwiazanie rzędu piatego, drugi rzędu czwartego. Mniejsze błędy, niż Fehlberg. 4 Copyright c 9- P. F. Góra 5

22 Metoda Dormanda-Prince a 5(4), FSAL Pierwszy zestaw wag daje rozwiazanie rzędu czwartego, drugi rzędu piatego. Taka sama złożoność, jak Cash-Karp (sześć obliczeń funkcji na krok), ale mniejsze błędy. Copyright c 9- P. F. Góra 5

23 State of the art Zagnieżdżone metody Rungego-Kutty wysokiego rzędu, typu metoda Dormanda-Prince a, pozwalajace na adaptacyjna zmianę kroku, kontrolujace stabilność i wyprowadzajace wyniki ze stałym krokiem, stanowia obecnie state of the art w numerycznym rozwiazywaniu zagadnień poczatkowych dla równań nie-sztywnych. Sprawdzanie stabilności na ogół odbywa się automatycznie narastajacy bład jest oznaka niestabilności, a metoda i tak zmniejsza krok, gdy bład jest za duży. Copyright c 9- P. F. Góra 5 3

24 Pewien wariant metody punktu środkowego Przypuśćmy, iż rozwiazuj ac pewien problem Cauchy ego decydujemy się wyprowadzać wyniki z krokiem H, krok ten jednak jest za duży do obliczeń (powodowałby zbyt duży bład). Wykonujemy więc m małych kroków o długości h = H/m. () Copyright c 9- P. F. Góra 5 4

25 Stosujemy metodę z y n, (a) z = z + hf(x n, z ) (Euler) (b) dla j =, 3,..., m z j = z j + hf(x n + (j )h, z j ) (c) (pochodna w punkcie środkowym) y(x n + H) y n+ = ( zm + z m + hf(x n + H, z m ) ) (d) Copyright c 9- P. F. Góra 5 5

26 Metoda ta wymaga m + obliczeń prawej strony równania na kroku o długości H. Można pokazać, iż bład tej metody zawiera tylko parzyste potęgi h: y(x n + H) y n+ = j= a j h j. (3) W szczególności, jeśli m jest parzyste i zastosujemy metodę () dwa razy, z m i m/ kroków, dostaniemy y(x n + H) 4y m y m/ + O(h 5 ) (4) 3 a więc jest to metoda rzędu czwartego. (y m/ oznacza końcowy wynik po zastosowaniu m/ kroków o długości H/m, nie zaś połowę kroków o długości H/m.) Wyrażenia (3) i (4) bardzo przypominaja analogiczne wyrażenia dla całkowania metodami ekstrapolacji Richardsona i Romberga, a skoro tak, narzuca się zastosowanie jakiegoś ekstrapolacyjnego algorytmu całkowania ODE. Copyright c 9- P. F. Góra 5 6

27 Metoda Bulirscha-Stoera Przypuśmy, iż przechodzimy przedział [x n, x n + H] przy użyciu metody () kolejno z krokami h m = H/m dla m =, 4, 8,.... Otrzymujemy w ten sposób ciag kolejnych przybliżeń wartości y(x n + H). Jeśli tak otrzymany ciag ekstrapolujemy do nieskończonej liczby kroków pośrednich lub też, w innym sformułowaniu, do h m oszacujemy jak powinno wygladać numeryczne rozwiazanie badanego ODE w granicy infinitezymalnie małych kroków. Możemy użyć ekstrapolacji wielomianowej lub poprzez funkcje wymierne. Cała ta procedura jest dość (ale nie przesadnie) kosztowna i warto ja stosować, gdy zależy nam na szczególnie dokładnych rozwiazaniach, prawa strona równania zmienia się powoli. Copyright c 9- P. F. Góra 5 7

28 Podobnie jak w ekstrapolacji Richardsona, w zasadzie podejście to można stosować tylko gdy ciag kolejnych przybliżeń jest monotoniczny. Proces dzielenia odcinka kończymy gdy bład ekstrapolacji jest mniejszy od zadanej tolerancji. m= m=4 m=8 m= y x n x x n+ Copyright c 9- P. F. Góra 5 8

29 log m obliczenie ekstrapolacja Copyright c 9- P. F. Góra 5 9

30 .638 Graficzna ilustracja powyższych danych: obliczone ekstrapolowane h Copyright c 9- P. F. Góra 5 3

31 Zbyt duży stopień wielomianu ekstrapolacyjnego: obliczone ekstrapolowane oscylacje Rungego h Ekstrapolacja funkcjami wymiernymi byłaby lepsza. Copyright c 9- P. F. Góra 5 3

32 Przykład zastosowania metody Bulirscha-Stoera:.6.5 Bulirsch-Stoer, H=/8 rozw. biblioteczne x d y dx + xdy dx + (x )y = x Copyright c 9- P. F. Góra 5 3

33 Odpowiednik metody Bulirscha-Stoera dla układów sztywnych Jeśli spodziewamy się problemów ze stabilnościa, używamy metod niejawnych, czasami jednak dokonujemy pseudolinearyzacji celem uproszczenia obliczeń. Punktem wyjścia jest następujaca metoda niejawna: y n+ y n = hf = hf ( x n, y n+ + y n ) x n, y n + y n+ + y n y n. (5) } {{ } poprawka Copyright c 9- P. F. Góra 5 33

34 Rozwijam prawa stronę (5) wokół (x n, y n ) i porzadkuję wyrazy: I h f y xn,y n y n+ = I + h f y y n xn,y n + h f(x n, y n ) h f y y n xn,y n.(6) Powyższe wyrażenie jest liniowym (w odróżnieniu od nieliniowego wyrażenia (5)) równaniem na nieznana wielkość y n+. Opierajac się na (6), można skonstruować odpowiednik metody (). Będa w nim występowały Jakobiany f/ y obliczane w kolejnych punktach pośrednich. Dokonuję następnego uproszczenia: wszystkie Jakobiany wyliczam w lewym krańcu dużego przedziału. Ostatecznie dostaję (h = H/m): Dziękuję panu Piotrowi Kiełkowiczowi za wskazanie błędu. Copyright c 9- P. F. Góra 5 34

35 H = [ I h f y xn,y n ], (7a) z = y n, (7b) = H hf(x n, z ), (7c) z = z +, (7d) j = j + H [hf(x n + jh, z j ) j ], (7e) z j+ = z j + j, (7f) dla j =,,..., m m = H [hf(x n + H, z m ) m ], (7g) y(x n + H) z m + m. (7h) Równania H = można rozwiazać na przykład metoda rozkładu LU. Ponieważ zgodnie z przyjętym uproszczeniem macierz H jest taka sama we wszystkich krokach iteracji (7), rozkładu tego można dokonać tylko raz. Dalej postępuję tak, jak poprzednio: h. Zagęszczam podział i stosuję ekstrapolację do Copyright c 9- P. F. Góra 5 35

u(t) RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy

u(t) RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy u(t) t Dt RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy u(t+dt)=u(t)+f(t,u(t),dt) klasyczna formuła RK4: u(t) k 1 u k 2 k 3 k 4 4 wywołania f na krok, błąd lokalny O(Dt 5 ) gdy f tylko funkcja czasu

Bardziej szczegółowo

Wstęp do metod numerycznych 9. Minimalizacja: funkcje jednej zmiennej. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/

Wstęp do metod numerycznych 9. Minimalizacja: funkcje jednej zmiennej. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ Wstęp do metod numerycznych 9. Minimalizacja: funkcje jednej zmiennej P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Lokalna minimalizacja ciagła Minimalizacja funkcji jest jedna z najważniejszych

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Laboratorium II: Modelowanie procesów fizycznych Skrypt do ćwiczeń

Laboratorium II: Modelowanie procesów fizycznych Skrypt do ćwiczeń PJWSTK/KMKT-07082006 Laboratorium II: Modelowanie procesów fizycznych Katedra Metod Komputerowych Techniki Polsko Japońska Wyższa Szkoła Technik Komputerowych I. KINETYKA Kinetyka zajmuje się ruchem ciał

Bardziej szczegółowo

Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie = Rozwiąż układ równań: (( + 1 ( + 2 = = 1

Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie  = Rozwiąż układ równań: (( + 1 ( + 2 = = 1 Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/). Rozwiąż układ równań: (( + ( + 2 = 3 = 4. http://www.zadania.info/d38/2287 2. Rozwiąż układ równań: ( + 2 (

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

12.Rozwiązywanie równań i nierówności liniowych oraz ich układów.

12.Rozwiązywanie równań i nierówności liniowych oraz ich układów. matematyka /.Rozwiązywanie równań i nierówności liniowych oraz ich układów. I. Przypomnij sobie:. Co to jest równanie /nierówność? Rodzaje nierówności. Ogólnie: Równaniem nazywamy dwa wyrażenia algebraiczne

Bardziej szczegółowo

Równania liniowe i nieliniowe

Równania liniowe i nieliniowe ( ) Lech Sławik Podstawy Maximy 11 Równania.wxmx 1 / 8 Równania liniowe i nieliniowe 1 Symboliczne rozwiązanie równania z jedną niewiadomą 1.1 solve -- Funkcja: solve() MENU: "Równania->Rozwiąż..."

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II

Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II Funkcja liniowa Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II Zakres Dopuszczający Dostateczny Dobry Bardzo dobry - rozpoznaje funkcję liniową na podstawie wzoru - zna postać

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 6

Obliczenia naukowe Wykład nr 6 Obliczenia naukowe Wykład nr 6 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe Zagadnienie transportowe Firma X zawarła kontrakt na dostarczenie trawnika do wykończenia terenów wokół trzech zakładów U, V i W. Trawnik ma być dostarczony z trzech farm A, B i C. Zapotrzebowanie zakładów

Bardziej szczegółowo

Algorytmy i struktury danych.

Algorytmy i struktury danych. Algorytmy i struktury danych. Wykład 4 Krzysztof M. Ocetkiewicz Krzysztof.Ocetkiewicz@eti.pg.gda.pl Katedra Algorytmów i Modelowania Systemów, WETI, PG Problem plecakowy mamy plecak o określonej pojemności

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Analiza szeregów czasowych: 6. Liniowe modele niestacjonarne

Analiza szeregów czasowych: 6. Liniowe modele niestacjonarne Analiza szeregów czasowych: 6. Liniowe modele niestacjonarne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Warunki stacjonarności modelu AR(p) y n = β 1 y n 1 + β 2 y n 2 + + β

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne

1 Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie: Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11

Bardziej szczegółowo

Wykład X Rozwiązywanie zagadnień początkowych dla równań różniczkowych zwyczajnych

Wykład X Rozwiązywanie zagadnień początkowych dla równań różniczkowych zwyczajnych Wykład X Rozwiązywanie zagadnień początkowych dla równań różniczkowych zwyczajnych Postawienie zadania i podstawowe idee jego rozwiązania Metody samostartujące (Eulera, Rungego-Kutty) Metody niesamostartujące

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 5. Metody Rungego-Kutty. P. F. Góra

Komputerowa analiza zagadnień różniczkowych 5. Metody Rungego-Kutty. P. F. Góra Komputerowa analiza zagadnień różniczkowych 5. Metody Rungego-Kutty P. F. Góra http://th-www.if.u.edu.pl/zfs/gora/ 203 Definica metody Poszukuemy rozwiazania problemu zmienności pochodne (prawe strony

Bardziej szczegółowo

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03 METODY OBLICZENIOWE Projekt nr 3.4 Dariusz Ostrowski, Wojciech Muła 2FD/L03 Zadanie Nasze zadanie składało się z dwóch części: 1. Sformułowanie, przy użyciu metody Lagrange a II rodzaju, równania różniczkowego

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJACE WYKRACZAJĄCE czytać teksty w stylu

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

Analiza kongruencji. Kongruencje Wykład 3. Analiza kongruencji

Analiza kongruencji. Kongruencje Wykład 3. Analiza kongruencji Kongruencje Wykład 3 Kongruencje algebraiczne Kongruencje jak już podkreślaliśmy mają własności analogiczne do równań algebraicznych. Zajmijmy się więc problemem znajdowania pierwiastka równania algebraicznego

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

Wartości i wektory własne

Wartości i wektory własne Dość często przy rozwiązywaniu problemów naukowych czy technicznych pojawia się konieczność rozwiązania dość specyficznego układu równań: Zależnego od n nieznanych zmiennych i pewnego parametru. Rozwiązaniem

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe 9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M Prof. dr hab. inż. Radosław TRĘBIŃSKI dm Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: NUMERYCZNE METODY OBLICZENIOWE

Bardziej szczegółowo

Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.

Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np. Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów

Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów W ramach zajęć oprogramujemy jedną, wybraną metodę numeryczną: metodę bisekcji numerycznego rozwiązywania równania nieliniowego

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

Interpolacja krzywymi sklejanymi stopnia drugiego (SPLINE-2)

Interpolacja krzywymi sklejanymi stopnia drugiego (SPLINE-2) Jacek Złydach (JW) Wstęp Interpolacja krzywymi sklejanymi stopnia drugiego (SPLINE-) Implementacja praktyczna Poniższa praktyczna implementacja stanowi uzupełnienie teoretycznych rozważań na temat interpolacji

Bardziej szczegółowo

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0, 2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION Mirosław GUZIK Grzegorz KOSZŁKA PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION W artykule przedstawiono niektóre

Bardziej szczegółowo

Matematyka Dyskretna Zestaw 2

Matematyka Dyskretna Zestaw 2 Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy MODEL REGRESJI LINIOWEJ. METODA NAJMNIEJSZYCH KWADRATÓW Analiza regresji zajmuje się badaniem zależności pomiędzy interesującymi nas wielkościami (zmiennymi), mające na celu konstrukcję modelu, który dobrze

Bardziej szczegółowo

Rozkład wyników ogólnopolskich

Rozkład wyników ogólnopolskich Rozkład wyników ogólnopolskich 1 9 8 7 procent uczniów 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3 31 32 33 34 35 36 37 38 39 4 41 42 43 44 45 46 47 48 49

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures.

ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. Algorytmy i struktury danych. Metody numeryczne ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. dzienne magisterskie Numerical methods. (Part 2. Numerical methods)

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. Rozwiązywanie równań nieliniowych z jedną niewiadomą

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. Rozwiązywanie równań nieliniowych z jedną niewiadomą METODY NUMERYCZNE Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. Wykład 4 1 Rozwiązywanie równań nieliniowych z jedną niewiadomą

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów 4. Wartości własne i wektory własne 4.1. Podstawowe definicje, własności i twierdzenia 4.2. Lokalizacja wartości własnych 4.3. Metoda potęgowa znajdowania

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 6. Metody Rungego-Kutty

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 6. Metody Rungego-Kutty Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 6. Metody Rungego-Kutty P. F. Góra http://th-www.if.u.edu.pl/zfs/gora/ semestr letni 2006/07 Definica metody Poszukuemy rozwiazania

Bardziej szczegółowo

Sponsorem wydruku schematu odpowiedzi jest wydawnictwo

Sponsorem wydruku schematu odpowiedzi jest wydawnictwo Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Sponsorem wydruku schematu odpowiedzi jest wydawnictwo KRYTERIA OCENIANIA POZIOM PODSTAWOWY Katalog poziom podstawowy

Bardziej szczegółowo

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0 Równania różnicowe 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp Zamiast tego pisać będziemy x (n), y (n) itp Ponadto

Bardziej szczegółowo

PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA

PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA PRZYBLI ONE METODY ROZWI ZYWANIA RÓWNA Metody kolejnych przybli e Twierdzenie. (Bolzano Cauchy ego) Metody kolejnych przybli e Je eli funkcja F(x) jest ci g a w przedziale domkni tym [a,b] i F(a) F(b)

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci

Bardziej szczegółowo

Elementy równań różniczkowych cząstkowych

Elementy równań różniczkowych cząstkowych Elementy równań różniczkowych cząstkowych Magdalena Jakubek kwiecień 2016 1 Równania różniczkowe cząstkowe Problem brzegowy i problem początkowy Klasyfikacja równań Rodzaje warunków brzegowych Najważniejsze

Bardziej szczegółowo

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76 . p. 1 Algorytmem nazywa się poddający się interpretacji skończony zbiór instrukcji wykonania zadania mającego określony stan końcowy dla każdego zestawu danych wejściowych W algorytmach mogą występować

Bardziej szczegółowo

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO

Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Zakres materiału obowiązujący do egzaminu poprawkowego z matematyki klasa 1 d LO Dział programowy. Zakres realizacji 1. Liczby, działania i procenty Liczby wymierne i liczby niewymierne-działania, kolejność

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi

Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi . Cele ćwiczenia Laboratorium nr Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi zapoznanie się z metodami symbolicznego i numerycznego rozwiązywania równań różniczkowych w Matlabie,

Bardziej szczegółowo

Wyznaczanie miejsc zerowych funkcji

Wyznaczanie miejsc zerowych funkcji Wyznaczanie miejsc zerowych funkcji Piotr Modliński 31 października 010 Spis treści 1 Wstęp 1 Metody iteracyjne 1.1 Zbieżność metody............ Lokalizacja zer.............3 Metody odnajdywania zer.......3.1

Bardziej szczegółowo

Zakres Dopuszczający Dostateczny Dobry Bardzo dobry

Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Kryteria oceniania z matematyki ( poziom rozszerzony) klasa 2 Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja liniowa Uczeń: - rozpoznaje funkcję liniową na podstawie wzoru - zna postać ogólną

Bardziej szczegółowo

MATEMATYKA KL II LO zakres podstawowy i rozszerzony

MATEMATYKA KL II LO zakres podstawowy i rozszerzony MATEMATYKA KL II LO zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania

Bardziej szczegółowo

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI

9. BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI BADANIE PRZEBIEGU ZMIENNOŚCI FUNKCJI Ekstrema i monotoniczność funkcji Oznaczmy przez D f dziedzinę funkcji f Mówimy, że funkcja f ma w punkcie 0 D f maksimum lokalne (minimum lokalne), gdy dla każdego

Bardziej szczegółowo

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/ Paweł Gładki Algebra http://www.math.us.edu.pl/ pgladki/ Konsultacje: Środa, 14:00-15:00 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go o tym przed lub po zajęciach,

Bardziej szczegółowo

Łagodne wprowadzenie do Metody Elementów Skończonych

Łagodne wprowadzenie do Metody Elementów Skończonych Łagodne wprowadzenie do Metody Elementów Skończonych dr inż. Grzegorz DZIERŻANOWSKI dr hab. inż. Wojciech GILEWSKI Katedra Mechaniki Budowli i Zastosowań Informatyki 10 XII 2009 - część I 17 XII 2009 -

Bardziej szczegółowo

Matlab (5) Matlab równania różniczkowe, aproksymacja

Matlab (5) Matlab równania różniczkowe, aproksymacja Matlab (5) Matlab równania różniczkowe, aproksymacja Równania różniczkowe - funkcja dsolve() Funkcja dsolve oblicza symbolicznie rozwiązania równań różniczkowych zwyczajnych. Równania są określane przez

Bardziej szczegółowo

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski

METODA SYMPLEKS. Maciej Patan. Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski METODA SYMPLEKS Maciej Patan Uniwersytet Zielonogórski WSTĘP Algorytm Sympleks najpotężniejsza metoda rozwiązywania programów liniowych Metoda generuje ciąg dopuszczalnych rozwiązań x k w taki sposób,

Bardziej szczegółowo

Stabilność. Krzysztof Patan

Stabilność. Krzysztof Patan Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji

Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji Materiały do ćwiczeń z matematyki - przebieg zmienności funkcji Kierunek: chemia Specjalność: podstawowa Zadanie 1. Zbadać przebieg zmienności funkcji Rozwiązanie. I Analiza funkcji f(x) = x 3 3x 2 + 2.

Bardziej szczegółowo

Zakres Dopuszczający Dostateczny Dobry Bardzo dobry

Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Kryteria oceniania z matematyki ( poziom rozszerzony) klasa 2 Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja liniowa Uczeń: - rozpoznaje funkcję liniową na podstawie wzoru - zna postać ogólną

Bardziej szczegółowo

Plan wynikowy z przedmiotu: MATEMATYKA

Plan wynikowy z przedmiotu: MATEMATYKA Plan wynikowy z przedmiotu: MATEMATYKA Szkoła: Liceum Ogólnokształcące Klasa: pierwsza Poziom nauczania: podstawowy Numer programu: DPN-5002-31/08 Podręcznik: MATEMATYKA Anna Jatczak, Monika Ciołkosz,

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM EKONOMIKA W ELEKTROTECHNICE INSTRUKCJA DO ĆWICZENIA 6 Analiza decyzji

Bardziej szczegółowo

2. Równania nieliniowe i ich uk lady

2. Równania nieliniowe i ich uk lady Metoda Newtona stycznych dla równania f(x) 0: x n+ x n f(x n) f (x n ) Chcemy rozwia ι zać uk lad N równań dla N niewiadomych f (x,x,,x N ) 0 f (x,x,,x N ) 0, f N (x,x,,x N ) 0 krócej: Czy jest jakaś analogia?

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad / ZADANIA Z MATEMATYKI Zestaw Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y +x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

Kombinacje liniowe wektorów.

Kombinacje liniowe wektorów. Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku

Bardziej szczegółowo

MODELOWANIE I SYMULACJA CEWKI NIELINIOWEJ ZE STRATAMI W ŻELAZIE

MODELOWANIE I SYMULACJA CEWKI NIELINIOWEJ ZE STRATAMI W ŻELAZIE Joanna KOLAŃSKA-PŁUSKA Barbara GROCHOWICZ MODELOWANIE I SYMULACJA CEWKI NIELINIOWEJ ZE STRATAMI W ŻELAZIE STRESZCZENIE Praca dotyczy badania dynamiki obwodu z cewką nieliniową z uwzględnieniem strat w

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego.

Bardziej szczegółowo