Komputerowa analiza zagadnień różniczkowych 5. Metody Rungego-Kutty (II) P. F. Góra

Wielkość: px
Rozpocząć pokaz od strony:

Download "Komputerowa analiza zagadnień różniczkowych 5. Metody Rungego-Kutty (II) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/"

Transkrypt

1 Komputerowa analiza zagadnień różniczkowych 5. Metody Rungego-Kutty (II) P. F. Góra

2 Metody DIRK Jeśli spodziewamy się problemów ze stabilnościa, w szczególności jeśli rozwiazujemy problemy sztywne, powinniśmy stosować metody niejawne. Sa one jednak bardzo kosztowne obliczeniowo: jeżeli przy użyciu metody s-etapowej rozwiazkujemy problem m-wymiarowy, w każdym kroku musimy rozwiazywać s m wymiarowy układ równań algebraicznych, w ogólności nieliniowych. Aby zmniejszyć ten koszt nie tracac stabilności metod niejawnych, stosuje się metody DIRK (ang. Diagonally Implicit Runge-Kutta), zwane też metodami półniejawnymi (ang. semi-implicit). W metodach tych macierz B ma niezerowe elementy diagonalne i poddiagonalne elementy ponaddiago- Copyright c 9- P. F. Góra 5

3 nalne sa zerowe: α β α β β..... α s β s β s β s3 β ss w w w w s Dzięki temu, stosujac s-etapowa metodę do problemu m-wymiarowego, zamiast rozwiazywać jeden układ równań algebraicznych o wymiarze s m, należy rozwiazać s układów o wymiarze m po jednym układzie na każdy etap. Jest to numerycznie prostsze. () Jeżeli dodatkowo β = β = = β ss = γ, taka metodę nazywa się metoda SDIRK (Singly Diagonally Implicit Runge-Kutta). Copyright c 9- P. F. Góra 5 3

4 Przykład γ γ γ γ γ, γ = Sprawdzamy rzad metody. Nietrywialnymi wyrażeniami, które trzeba sprawdzić, sa: γ + ( γ) = metoda jest rzędu drugiego. γ + ( γ) = γ γ+ = 3, γ γ+ (( γ) γ+γ ( γ)) = γ +γ = 6 metoda jest rzędu trzeciego. γ3 + ( γ)3 = 3γ 3γ+ = 6 4, γ γ γ+ ( γ) (( γ) γ + γ ( γ)) = 4γ 3 5γ +γ = 6+ 3 metoda nie jest rzędu czwartego () Copyright c 9- P. F. Góra 5 4

5 Obszar stabilności tej metody dany jest przez {z C: G(z) < }, gdzie G(z) = 6 (+ 3)z + 3z 6 [(3+ 3)z 6] Obszar niezacieniony jest obszarem niestabilności. Copyright c 9- P. F. Góra 5 5

6 Przykład Ciagle publikuje się i bada nowe metody RK. W pracy G. Yu. Kulikov, S. K. Shindin, Appl. Num. Math. 59, 77 (9), dyskutowane sa, między innymi, własności metody c 6(c +θ) 5 θ θ 6(c +θ) 5 c 7 6(c +θ) θ θ 5 6(c +θ) c = 3 3, θ = Copyright c 9- P. F. Góra 5 6

7 Adaptacyjne podwajanie/połowienie kroku Całkowanie ze stałym krokiem to numeryczne samobójstwo. Dobre algorytmy numerycznego całkowania ODE powinny, w miarę możności, same ustalać krok, z jakim przechodza zadany przedział. W tym celu algorytm musi znać oszacowanie błędu popełnionego w ciagu jednego kroku. Dla metod Rungego-Kutty najprostszym tego typu algorytmem jest algorytm adaptacyjnego podwajania/połowienia kroku. Przypuśćmy, że żadam, aby bład na jeden krok nie przekraczał max. Niech aktualny krok całkowania wynosi h. Przechodzę przedział [x n, x n + h] dwa razy: raz dwoma krokami o długości h i raz krokiem o długości h. Copyright c 9- P. F. Góra 5 7

8 y n y () n+ x n x n + h x n + h dwa razy z małym krokiem } {{ }} {{ } h h y n y () n+ x n x n + h raz z dużym krokiem } {{ } h Copyright c 9- P. F. Góra 5 8

9 W ten sposób otrzymuję dwa oszacowania wartości y n+. Dla metody rzędu p spełniaja one Różnica y(x n + h) = y () n+ + hp+ φ + O(h p+ ), (3a) y(x n + h) = y () n+ + (h)p+ φ + O(h p+ ). (3b) = y () n+ y() n+ (4) stanowi oszacowanie błędu. Zachodza dwa przypadki:. max : Wówczas przechodzę do punktu x n+ = x n + h, jako rozwiazanie przyjmuję y(x n + h) = y () n+, zwiększam krok Copyright c 9- P. F. Góra 5 9

10 h h i próbuję przejść następny przedział z dwa razy większym krokiem.. > max : Wówczas cofam się do punktu x n, zmniejszam krok h h/ i ponawiam cała procedurę. W tym wypadku należy się zabezpieczyć przed zmniejszeniem się kroku poniżej pewnego h min. Istotne może być jaka normę weźmiemy. Dla klasycznej metody czteroetapowej wymaga to = obliczeń prawej strony. Metoda adaptacyjnego podwajania/połowienia kroku może być stosowana także przy obliczeniach za pomoca metod niejawnych. Copyright c 9- P. F. Góra 5

11 Przykład oscylator Duffinga i podwajanie/połowienie kroku x(t) ẍ + x 3 5x = x() = 3., ẋ() = x (t) h t Mały rysunek pokazuje potencjał Duffinga. Copyright c 9- P. F. Góra 5

12 Lokalna ekstrapolacja Jeśli popełniany bład nie przekracza maksymalnego błędu dopuszczalnego, można jeszcze poprawić rozwiazanie za pomoca tak zwanej lokalnej ekstrapolacji: Przyjmijmy, że lewe strony obu równań (3) sa sobie równe. Wówczas eliminujac h p+ φ otrzymujemy y(x n + h) = y () n+ + p + O(hp+ ). (5) Może to poprawić numeryczne własności rozwiazania, ale tak naprawdę zysk na rzędzie metody jest pozorny. Copyright c 9- P. F. Góra 5

13 Zagnieżdżone (embedded) metody Rungego-Kutty Rozważmy dwie jawne s-etapowe metody Rungego-Kutty: y () n+ = y n + h y () n+ = y n + h k i = y n + hf s i= s i= w () i k i + O(h p+ ), (6a) w () i k i + O(h p+ ), (6b) x n + α i h, y n + h i j= β ij k j (6c) Metody te sa tak skonstruowane, że różnia się jedynie wagami, maja takie same punkty pośrednie, a więc taki sam zestaw wektorów {k i }, a ich rzędy różnia się o jeden. Copyright c 9- P. F. Góra 5 3

14 Obliczajac jeden zestaw pochodnych w punktach pośrednich, mamy oszacowanie błędu: = y () s ( n+ y() n+ = h w () i w () ) i k i, h p+. (7) i= Skoro h p+, to max h p+ max. Mam więc oszacowanie h max = h ( max ) /(p+). (8) Jeśli > max, zmniejszam krok h h max i powtarzam bieżacy krok. Jeśli < max, zwiększam krok h h max i z powiększonym krokiem próbuję iść dalej. Metody zagnieżdżone pozwalaja zatem na bardziej precyzyjna kontrolę kroku od podwajania/połowienia, wymagaja także mniej obliczeń (s obliczeń funkcji f). Copyright c 9- P. F. Góra 5 4

15 Przykład: Metoda Bogackiego-Shampine a 3() Puste miejsca oznaczaja zera. Uwaga: Dwa zestawy wag! Metoda typu FSAL (First Same As Last). Copyright c 9- P. F. Góra 5 5

16 Sprawdzamy rzędy tych metod: pierwszy zestaw wag drugi zestaw wag = = ; = = ; = jest rzędu drugiego ( ) ( ) + (... ) = ( 3 4 ) + = = jest rzędu drugiego ( ) + 3 ( 3 4 ( ) + 8 = ) = + 4 = 3 ; = = 6 jest rzędu trzeciego ( ) + = nie jest rzędu trzeciego Copyright c 9- P. F. Góra 5 6

17 Obszary stabilności metody Bogackiego-Shampine a dane sa przez następujace wyrażenia: Dla metody rzędu trzeciego, służacej do obliczania następnych wartości poszukiwanej funkcji: ( z 3 + 3z + 6z + 6 ) < (9a) 6 Dla metody rzędu drugiego, służacej do kontroli błędu: 48 ( z 4 + 9z 3 + 4z + 48z + 48 ) < (9b) Krok powinien być tak dobrany, aby nie wyjść poza obszar stabilności żadnej z metod. Copyright c 9- P. F. Góra 5 7

18 Obszary stabilności metody Bogackiego-Shampine a nd order 3 rd order Copyright c 9- P. F. Góra 5 8

19 Jawnie rozpisana metoda Bogackiego-Shampine a: k = f(x n, y n ) (a) k = f ( x n + h, y n + hk k 3 = f ( x n h, y n hk ) ) (b) (c) y n+ = y n + h ( 9 k + 3 k k 3 (d) k 4 = f(x n + h, y n+ ) (e) z = y n + h ( 7 4 k + 4 k + 3 k k ) 4 (f) k = k 4 (g) Wektor (e) staje się wektorem (a) w następnym kroku całkowania, a więc oblicza się go tylko raz. Wektor z bierze udział tylko w szacowaniu błędów. ) Copyright c 9- P. F. Góra 5 9

20 Metoda Fehlberga 4(5) Pierwszy zestaw wag daje rozwiazanie rzędu czwartego, drugi rzędu piatego. 55 Copyright c 9- P. F. Góra 5

21 Metoda Casha-Karpa 5(4) Pierwszy zestaw wag daje rozwiazanie rzędu piatego, drugi rzędu czwartego. Mniejsze błędy, niż Fehlberg. 4 Copyright c 9- P. F. Góra 5

22 Metoda Dormanda-Prince a 5(4), FSAL Pierwszy zestaw wag daje rozwiazanie rzędu czwartego, drugi rzędu piatego. Taka sama złożoność, jak Cash-Karp (sześć obliczeń funkcji na krok), ale mniejsze błędy. Copyright c 9- P. F. Góra 5

23 State of the art Zagnieżdżone metody Rungego-Kutty wysokiego rzędu, typu metoda Dormanda-Prince a, pozwalajace na adaptacyjna zmianę kroku, kontrolujace stabilność i wyprowadzajace wyniki ze stałym krokiem, stanowia obecnie state of the art w numerycznym rozwiazywaniu zagadnień poczatkowych dla równań nie-sztywnych. Sprawdzanie stabilności na ogół odbywa się automatycznie narastajacy bład jest oznaka niestabilności, a metoda i tak zmniejsza krok, gdy bład jest za duży. Copyright c 9- P. F. Góra 5 3

24 Pewien wariant metody punktu środkowego Przypuśćmy, iż rozwiazuj ac pewien problem Cauchy ego decydujemy się wyprowadzać wyniki z krokiem H, krok ten jednak jest za duży do obliczeń (powodowałby zbyt duży bład). Wykonujemy więc m małych kroków o długości h = H/m. () Copyright c 9- P. F. Góra 5 4

25 Stosujemy metodę z y n, (a) z = z + hf(x n, z ) (Euler) (b) dla j =, 3,..., m z j = z j + hf(x n + (j )h, z j ) (c) (pochodna w punkcie środkowym) y(x n + H) y n+ = ( zm + z m + hf(x n + H, z m ) ) (d) Copyright c 9- P. F. Góra 5 5

26 Metoda ta wymaga m + obliczeń prawej strony równania na kroku o długości H. Można pokazać, iż bład tej metody zawiera tylko parzyste potęgi h: y(x n + H) y n+ = j= a j h j. (3) W szczególności, jeśli m jest parzyste i zastosujemy metodę () dwa razy, z m i m/ kroków, dostaniemy y(x n + H) 4y m y m/ + O(h 5 ) (4) 3 a więc jest to metoda rzędu czwartego. (y m/ oznacza końcowy wynik po zastosowaniu m/ kroków o długości H/m, nie zaś połowę kroków o długości H/m.) Wyrażenia (3) i (4) bardzo przypominaja analogiczne wyrażenia dla całkowania metodami ekstrapolacji Richardsona i Romberga, a skoro tak, narzuca się zastosowanie jakiegoś ekstrapolacyjnego algorytmu całkowania ODE. Copyright c 9- P. F. Góra 5 6

27 Metoda Bulirscha-Stoera Przypuśmy, iż przechodzimy przedział [x n, x n + H] przy użyciu metody () kolejno z krokami h m = H/m dla m =, 4, 8,.... Otrzymujemy w ten sposób ciag kolejnych przybliżeń wartości y(x n + H). Jeśli tak otrzymany ciag ekstrapolujemy do nieskończonej liczby kroków pośrednich lub też, w innym sformułowaniu, do h m oszacujemy jak powinno wygladać numeryczne rozwiazanie badanego ODE w granicy infinitezymalnie małych kroków. Możemy użyć ekstrapolacji wielomianowej lub poprzez funkcje wymierne. Cała ta procedura jest dość (ale nie przesadnie) kosztowna i warto ja stosować, gdy zależy nam na szczególnie dokładnych rozwiazaniach, prawa strona równania zmienia się powoli. Copyright c 9- P. F. Góra 5 7

28 Podobnie jak w ekstrapolacji Richardsona, w zasadzie podejście to można stosować tylko gdy ciag kolejnych przybliżeń jest monotoniczny. Proces dzielenia odcinka kończymy gdy bład ekstrapolacji jest mniejszy od zadanej tolerancji. m= m=4 m=8 m= y x n x x n+ Copyright c 9- P. F. Góra 5 8

29 log m obliczenie ekstrapolacja Copyright c 9- P. F. Góra 5 9

30 .638 Graficzna ilustracja powyższych danych: obliczone ekstrapolowane h Copyright c 9- P. F. Góra 5 3

31 Zbyt duży stopień wielomianu ekstrapolacyjnego: obliczone ekstrapolowane oscylacje Rungego h Ekstrapolacja funkcjami wymiernymi byłaby lepsza. Copyright c 9- P. F. Góra 5 3

32 Przykład zastosowania metody Bulirscha-Stoera:.6.5 Bulirsch-Stoer, H=/8 rozw. biblioteczne x d y dx + xdy dx + (x )y = x Copyright c 9- P. F. Góra 5 3

33 Odpowiednik metody Bulirscha-Stoera dla układów sztywnych Jeśli spodziewamy się problemów ze stabilnościa, używamy metod niejawnych, czasami jednak dokonujemy pseudolinearyzacji celem uproszczenia obliczeń. Punktem wyjścia jest następujaca metoda niejawna: y n+ y n = hf = hf ( x n, y n+ + y n ) x n, y n + y n+ + y n y n. (5) } {{ } poprawka Copyright c 9- P. F. Góra 5 33

34 Rozwijam prawa stronę (5) wokół (x n, y n ) i porzadkuję wyrazy: I h f y xn,y n y n+ = I + h f y y n xn,y n + h f(x n, y n ) h f y y n xn,y n.(6) Powyższe wyrażenie jest liniowym (w odróżnieniu od nieliniowego wyrażenia (5)) równaniem na nieznana wielkość y n+. Opierajac się na (6), można skonstruować odpowiednik metody (). Będa w nim występowały Jakobiany f/ y obliczane w kolejnych punktach pośrednich. Dokonuję następnego uproszczenia: wszystkie Jakobiany wyliczam w lewym krańcu dużego przedziału. Ostatecznie dostaję (h = H/m): Dziękuję panu Piotrowi Kiełkowiczowi za wskazanie błędu. Copyright c 9- P. F. Góra 5 34

35 H = [ I h f y xn,y n ], (7a) z = y n, (7b) = H hf(x n, z ), (7c) z = z +, (7d) j = j + H [hf(x n + jh, z j ) j ], (7e) z j+ = z j + j, (7f) dla j =,,..., m m = H [hf(x n + H, z m ) m ], (7g) y(x n + H) z m + m. (7h) Równania H = można rozwiazać na przykład metoda rozkładu LU. Ponieważ zgodnie z przyjętym uproszczeniem macierz H jest taka sama we wszystkich krokach iteracji (7), rozkładu tego można dokonać tylko raz. Dalej postępuję tak, jak poprzednio: h. Zagęszczam podział i stosuję ekstrapolację do Copyright c 9- P. F. Góra 5 35

u(t) RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy

u(t) RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy u(t) t Dt RRZ: u (t)=f(t,u) Jednokrokowy schemat różnicowy u(t+dt)=u(t)+f(t,u(t),dt) klasyczna formuła RK4: u(t) k 1 u k 2 k 3 k 4 4 wywołania f na krok, błąd lokalny O(Dt 5 ) gdy f tylko funkcja czasu

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

Wstęp do metod numerycznych 9. Minimalizacja: funkcje jednej zmiennej. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/

Wstęp do metod numerycznych 9. Minimalizacja: funkcje jednej zmiennej. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ Wstęp do metod numerycznych 9. Minimalizacja: funkcje jednej zmiennej P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Lokalna minimalizacja ciagła Minimalizacja funkcji jest jedna z najważniejszych

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Laboratorium II: Modelowanie procesów fizycznych Skrypt do ćwiczeń

Laboratorium II: Modelowanie procesów fizycznych Skrypt do ćwiczeń PJWSTK/KMKT-07082006 Laboratorium II: Modelowanie procesów fizycznych Katedra Metod Komputerowych Techniki Polsko Japońska Wyższa Szkoła Technik Komputerowych I. KINETYKA Kinetyka zajmuje się ruchem ciał

Bardziej szczegółowo

Matematyka licea ogólnokształcące, technika

Matematyka licea ogólnokształcące, technika Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem

Bardziej szczegółowo

OBLICZANIE POCHODNYCH FUNKCJI.

OBLICZANIE POCHODNYCH FUNKCJI. OBLICZANIE POCHODNYCH FUNKCJI. ROZWIĄZYWANIE RÓWNAŃ RÓŻNICZKOWYCH. ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ LINIOWYCH. Obliczanie pochodnych funkcji. Niech będzie dana funkcja y(x określona i różniczkowalna na przedziale

Bardziej szczegółowo

Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie = Rozwiąż układ równań: (( + 1 ( + 2 = = 1

Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie  = Rozwiąż układ równań: (( + 1 ( + 2 = = 1 Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/). Rozwiąż układ równań: (( + ( + 2 = 3 = 4. http://www.zadania.info/d38/2287 2. Rozwiąż układ równań: ( + 2 (

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

Wstęp do metod numerycznych 9. Miejsca zerowe wielomianów. P. F. Góra

Wstęp do metod numerycznych 9. Miejsca zerowe wielomianów. P. F. Góra Wstęp do metod numerycznych 9. Miejsca zerowe wielomianów P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2014 Podstawowe Twierdzenie Algebry Rozwiazywanie równań wielomianowych P n (z) = a n z n + a n

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

na egzaminach z matematyki

na egzaminach z matematyki Błędy studentów na egzaminach z matematyki W opracowaniu omówiłem typowe błędy popełniane przez studentów na kolokwiach i egzaminach z algebry oraz analizy. Ponadto podaję błędy rzadziej spotykane, które

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Równania liniowe i nieliniowe

Równania liniowe i nieliniowe ( ) Lech Sławik Podstawy Maximy 11 Równania.wxmx 1 / 8 Równania liniowe i nieliniowe 1 Symboliczne rozwiązanie równania z jedną niewiadomą 1.1 solve -- Funkcja: solve() MENU: "Równania->Rozwiąż..."

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Wstęp do metod numerycznych 11. Całkowanie numeryczne

Wstęp do metod numerycznych 11. Całkowanie numeryczne Wstęp do metod numerycznych 11. Całkowanie numeryczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011/12 Całka oznaczona Obliczanie całek oznaczonych jest (lub też raczej, było) jednym z głównych

Bardziej szczegółowo

12.Rozwiązywanie równań i nierówności liniowych oraz ich układów.

12.Rozwiązywanie równań i nierówności liniowych oraz ich układów. matematyka /.Rozwiązywanie równań i nierówności liniowych oraz ich układów. I. Przypomnij sobie:. Co to jest równanie /nierówność? Rodzaje nierówności. Ogólnie: Równaniem nazywamy dwa wyrażenia algebraiczne

Bardziej szczegółowo

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE

27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27. RÓWNANIA RÓŻNICZKOWE CZĄSTKOWE 27.1. Wiadomości wstępne Równaniem różniczkowym cząstkowym nazywamy związek w którym występuje funkcja niewiadoma u dwóch lub większej liczby zmiennych niezależnych i

Bardziej szczegółowo

czyli o szukaniu miejsc zerowych, których nie ma

czyli o szukaniu miejsc zerowych, których nie ma zerowych, których nie ma Instytut Fizyki im. Mariana Smoluchowskiego Centrum Badania Systemów Złożonych im. Marka Kaca Uniwersytet Jagielloński Metoda Metoda dla Warszawa, 9 stycznia 2006 Metoda -Raphsona

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II

Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II Funkcja liniowa Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa II Zakres Dopuszczający Dostateczny Dobry Bardzo dobry - rozpoznaje funkcję liniową na podstawie wzoru - zna postać

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1

Bardziej szczegółowo

Algorytmy i struktury danych.

Algorytmy i struktury danych. Algorytmy i struktury danych. Wykład 4 Krzysztof M. Ocetkiewicz Krzysztof.Ocetkiewicz@eti.pg.gda.pl Katedra Algorytmów i Modelowania Systemów, WETI, PG Problem plecakowy mamy plecak o określonej pojemności

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe Zagadnienie transportowe Firma X zawarła kontrakt na dostarczenie trawnika do wykończenia terenów wokół trzech zakładów U, V i W. Trawnik ma być dostarczony z trzech farm A, B i C. Zapotrzebowanie zakładów

Bardziej szczegółowo

Analiza matematyczna. 1. Ciągi

Analiza matematyczna. 1. Ciągi Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n

Bardziej szczegółowo

Wstęp do metod numerycznych 5. Numeryczne zagadnienie własne. P. F. Góra

Wstęp do metod numerycznych 5. Numeryczne zagadnienie własne. P. F. Góra Wstęp do metod numerycznych 5. Numeryczne zagadnienie własne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Zagadnienie własne Definicja: Niech A C N N. Liczbę λ C nazywam wartościa własna macierzy

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax, a R \ {0}.

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa

Bardziej szczegółowo

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie: Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 14 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba)

1. Liczby wymierne. x dla x 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) 1. Liczby wymierne. - wartość bezwzględna liczby. dla 0 (wartością bezwzględną liczby nieujemnej jest ta sama liczba) - dla < 0 ( wartością bezwzględną liczby ujemnej jest liczba do niej przeciwna) W interpretacji

Bardziej szczegółowo

Złożoność obliczeniowa zadania, zestaw 2

Złożoność obliczeniowa zadania, zestaw 2 Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 6

Obliczenia naukowe Wykład nr 6 Obliczenia naukowe Wykład nr 6 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego) 27 lutego 2007

Liczby zespolone. P. F. Góra (w zastępstwie prof. K. Rościszewskiego)  27 lutego 2007 Liczby zespolone P. F. Góra (w zastępstwie prof. K. Rościszewskiego) http://th-www.if.uj.edu.pl/zfs/gora/ 27 lutego 2007 Definicja C zbiór par liczb rzeczywistych w którym określono następujace działania:

Bardziej szczegółowo

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03 METODY OBLICZENIOWE Projekt nr 3.4 Dariusz Ostrowski, Wojciech Muła 2FD/L03 Zadanie Nasze zadanie składało się z dwóch części: 1. Sformułowanie, przy użyciu metody Lagrange a II rodzaju, równania różniczkowego

Bardziej szczegółowo

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych wyliczamy według wzoru (x, x 2,..., x n ) f(x, x 2,..., x n )

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer.

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer. METODY NUMERYCZNE Wykład 3. dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. wykład 3 1 Plan Aproksymacja Interpolacja wielomianowa Przykłady Met.Numer. wykład 3 2 1 Aproksymacja Metody numeryczne

Bardziej szczegółowo

8. Neuron z ciągłą funkcją aktywacji.

8. Neuron z ciągłą funkcją aktywacji. 8. Neuron z ciągłą funkcją aktywacji. W tym ćwiczeniu zapoznamy się z modelem sztucznego neuronu oraz przykładem jego wykorzystania do rozwiązywanie prostego zadania klasyfikacji. Neuron biologiczny i

Bardziej szczegółowo

1 Całki funkcji wymiernych

1 Całki funkcji wymiernych Całki funkcji wymiernych Definicja. Funkcją wymierną nazywamy iloraz dwóch wielomianów. Całka funkcji wymiernej jest więc postaci: W (x) W (x) = an x n + a n x n +... + a x + a 0 b m x m + b m x m +...

Bardziej szczegółowo

Zagadnienie transportowe

Zagadnienie transportowe 9//9 Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne

1 Równania różniczkowe zwyczajne Równania różniczkowe zwyczajne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki Politechnika Białostocka Równania różniczkowe Równaniem

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 1 Kwantyzacja skalarna Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11, 10.05.005 Kwantyzacja polega na reprezentowaniu dużego zbioru wartości (być może nieskończonego) za pomocą wartości

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

Wstęp do metod numerycznych Miejsca zerowe wielomianów Układy równań algebraicznych. P. F. Góra

Wstęp do metod numerycznych Miejsca zerowe wielomianów Układy równań algebraicznych. P. F. Góra Wstęp do metod numerycznych Miejsca zerowe wielomianów Układy równań algebraicznych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2010 Podstawowe Twierdzenie Algebry Rozwiazywanie równań wielomianowych

Bardziej szczegółowo

Analiza szeregów czasowych: 6. Liniowe modele niestacjonarne

Analiza szeregów czasowych: 6. Liniowe modele niestacjonarne Analiza szeregów czasowych: 6. Liniowe modele niestacjonarne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Warunki stacjonarności modelu AR(p) y n = β 1 y n 1 + β 2 y n 2 + + β

Bardziej szczegółowo

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych.

4. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. Jarosław Wróblewski Matematyka dla Myślących, 008/09. Postęp arytmetyczny i geometryczny. Wartość bezwzględna, potęgowanie i pierwiastkowanie liczb rzeczywistych. 15 listopada 008 r. Uwaga: Przyjmujemy,

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Komputerowa analiza zagadnień różniczkowych 5. Metody Rungego-Kutty. P. F. Góra

Komputerowa analiza zagadnień różniczkowych 5. Metody Rungego-Kutty. P. F. Góra Komputerowa analiza zagadnień różniczkowych 5. Metody Rungego-Kutty P. F. Góra http://th-www.if.u.edu.pl/zfs/gora/ 203 Definica metody Poszukuemy rozwiazania problemu zmienności pochodne (prawe strony

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Wykład X Rozwiązywanie zagadnień początkowych dla równań różniczkowych zwyczajnych

Wykład X Rozwiązywanie zagadnień początkowych dla równań różniczkowych zwyczajnych Wykład X Rozwiązywanie zagadnień początkowych dla równań różniczkowych zwyczajnych Postawienie zadania i podstawowe idee jego rozwiązania Metody samostartujące (Eulera, Rungego-Kutty) Metody niesamostartujące

Bardziej szczegółowo

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4 " 5 3$ 7&=0 5$+7&=4

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4  5 3$ 7&=0 5$+7&=4 17. Układ równań 17.1 Co nazywamy układem równań liniowych? Jak zapisać układ w postaci macierzowej (pokazać również na przykładzie) Co to jest rozwiązanie układu? Jaki układ nazywamy jednorodnym, sprzecznym,

Bardziej szczegółowo

Wielomiany podstawowe wiadomości

Wielomiany podstawowe wiadomości Rozdział Wielomiany podstawowe wiadomości Funkcję postaci f s = a n s n + a n s n + + a s + a 0, gdzie n N, a i R i = 0,, n, a n 0 nazywamy wielomianem rzeczywistym stopnia n; jeżeli współczynniki a i

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony)

Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony) Szczegółowe wymagania edukacyjne z matematyki w klasie 2c (poziom rozszerzony) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinny być zatem opanowane

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11; środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.

Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np. Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona f(x 0, f ( f, f,..., f n gdzie 2 x ( x, x 2,..., x n dla n2 np. f ( x, y 0 g( x, y 0 dla każdej wielowymiarowej rozwinięcie w szereg Taylora

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

Przykładowe zadania z teorii liczb

Przykładowe zadania z teorii liczb Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę

Bardziej szczegółowo

Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów

Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów W ramach zajęć oprogramujemy jedną, wybraną metodę numeryczną: metodę bisekcji numerycznego rozwiązywania równania nieliniowego

Bardziej szczegółowo

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJACE WYKRACZAJĄCE czytać teksty w stylu

Bardziej szczegółowo

Wprowadzenie do Mathcada 1

Wprowadzenie do Mathcada 1 Wprowadzenie do Mathcada Ćwiczenie. - Badanie zmienności funkcji kwadratowej Ćwiczenie. pokazuje krok po kroku tworzenie prostego dokumentu w Mathcadzie. Dokument ten składa się z następujących elementów:.

Bardziej szczegółowo

Zagadnienia z matematyki dla klasy II oraz przykładowe zadania

Zagadnienia z matematyki dla klasy II oraz przykładowe zadania Zagadnienia z matematyki dla klasy II oraz przykładowe zadania FUNKCJA KWADRATOWA Wykres funkcji f () = a Przesunięcie wykresu funkcji f() = a o wektor Postać kanoniczna i postać ogólna funkcji kwadratowej

Bardziej szczegółowo

Specjalistyczna Pracownia Komputerowa Obliczanie widma Lapunowa

Specjalistyczna Pracownia Komputerowa Obliczanie widma Lapunowa Arkadiusz Neubauer IV rok, Fizyka z Informatyką. Specjalistyczna Pracownia Komputerowa Obliczanie widma Lapunowa 1 Problem fizyczny W poniższej pracy przedstawiono numeryczną metodę obliczania widma Lapunowa

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I GEOMETRIA ANALITYCZNA 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie

Bardziej szczegółowo

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1 Założenie: f(x) funkcja którą aproksymujemy X jest przestrzenią liniową Aproksymacja liniowa funkcji f(x) polega na wyznaczeniu współczynników a 0,a 1,a 2,...,a m funkcji: Gdzie: - są funkcjami bazowymi

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

Wartości i wektory własne

Wartości i wektory własne Dość często przy rozwiązywaniu problemów naukowych czy technicznych pojawia się konieczność rozwiązania dość specyficznego układu równań: Zależnego od n nieznanych zmiennych i pewnego parametru. Rozwiązaniem

Bardziej szczegółowo

Wyznaczanie miejsc zerowych funkcji

Wyznaczanie miejsc zerowych funkcji Wyznaczanie miejsc zerowych funkcji Piotr Modliński 6 października 010 Spis treści 1 Wstęp 1 Metody iteracyjne 1.1 Zbieżność metody............ Lokalizacja zer.............3 Metody odnajdywania zer.......3.1

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający

Bardziej szczegółowo

Przykładowy program ćwiczeń

Przykładowy program ćwiczeń Przykładowy program ćwiczeń Ćwiczenie 1. Obliczenie funkcji elementarnych za pomocą szeregów. Opracowanie wyrażeń rekurencyjnych. 3 4 Realizacja w Ecelu funkcji e 1. 1!! 3! 4! Przykład 1: Obliczenie wartości

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. Rozwiązywanie równań nieliniowych z jedną niewiadomą

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. Rozwiązywanie równań nieliniowych z jedną niewiadomą METODY NUMERYCZNE Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. Wykład 4 1 Rozwiązywanie równań nieliniowych z jedną niewiadomą

Bardziej szczegółowo

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień. Zadanie Należy zacząć od sprawdzenia, co studenci pamiętają ze szkoły średniej na temat funkcji jednej zmiennej. Na początek można narysować kilka krzywych na tle układu współrzędnych (funkcja gładka,

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Środowiska obowiązuje studentów rozpoczynających studia w roku akademickim 206/207 Kierunek studiów: Budownictwo Profil:

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci

Bardziej szczegółowo

Interpolacja krzywymi sklejanymi stopnia drugiego (SPLINE-2)

Interpolacja krzywymi sklejanymi stopnia drugiego (SPLINE-2) Jacek Złydach (JW) Wstęp Interpolacja krzywymi sklejanymi stopnia drugiego (SPLINE-) Implementacja praktyczna Poniższa praktyczna implementacja stanowi uzupełnienie teoretycznych rozważań na temat interpolacji

Bardziej szczegółowo

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1 Równania różniczkowe pierwszego rzędu Równaniem różniczkowym zwyczajnym pierwszego rzędu nazywamy równanie postaci (R) y = f(x, y). Najogólniejszą

Bardziej szczegółowo

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0, 2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d

Bardziej szczegółowo

Matematyka Dyskretna Zestaw 2

Matematyka Dyskretna Zestaw 2 Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje

Bardziej szczegółowo

Dział I FUNKCJE I ICH WŁASNOŚCI

Dział I FUNKCJE I ICH WŁASNOŚCI MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: II Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE I ICH WŁASNOŚCI Lp. Zagadnienie Osiągnięcia ucznia. 1. Podstawowe własności funkcji.. Podaje określenie

Bardziej szczegółowo