Zadanie Cyfryzacja grida i analiza geometrii stropu pułapki w kontekście geologicznym

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zadanie Cyfryzacja grida i analiza geometrii stropu pułapki w kontekście geologicznym"

Transkrypt

1 Zadanie 1 1. Cyfryzacja grida i analiza geometrii stropu pułapki w kontekście geologicznym Pierwszym etapem wykonania zadania było przycięcie danego obrazu tak aby pozostał tylko obszar grida. Obrobiony w ten sposób plik graficzny wczytano do programu Surfer jako mapę bazową przypisując jej zakresy współrzędnych x i y odpowiadające zakresom grida. Otrzymaną w ten sposób mapę bazową przedstawia figura 1. Figura 1 - Obraz grida wczytany do programu Surfer jako mapa bazowa Następnym krokiem była cyfryzacja przedstawionych danych odzwierciedlających strop potencjalnej pułapki w skali czasu podwójnego (TWT). W tym celu wykorzystano narzędzie digitize, którego wyniki prezentuje tabela 1. W związku z niedokładnością wynikającą z manualnego wskazywania węzłów grida kursorem, otrzymane wartości x i y zaokrąglono do wielokrotności 100. Na podstawie uzyskanych danych stworzono plik grd pozwalający na wykreślanie map w programie Surfer. Używając wspomnianego pliku utworzono wstępną mapę strukturalną stropu pułapki w jednostkach czasu podwójnego (TWT) przedstawioną na figurze 2. Zasięg mapy ograniczono do obszaru kontrolowanego danymi 1

2 Tabela 1 - Otrzymane w wyniku cyfryzacji wartości czasu podwójnego w węzłach grida Przed poprawką Po poprawce X [m] Y [m] TWT [ms] X [m] Y [m] TWT [ms] 799, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

3 Figura 2 Wstępna mapa strukturalna stropu pułapki w skali czasu podwójnego, stworzona metodą krigingu w programie Surfer Figura 3 - Wstępna mapa strukturalna stropu pułapki z zaznaczonymi węzłami grida przez które nie przebiegają odpowiadające im izolinie (niebieskie elipsy), fragmentami konturów o nienaturalnych wygięciach (białe elipsy) oraz proponowanym przebiegiem izolinii 1600 ms (czerwone linie) 3

4 Wstępna mapa wykonana metodą krigingu charakteryzowała się nienaturalnym przebiegiem niektórych konturów, a w kilku miejscach także brakiem izolinii w węzłach grida o odpowiadających im wartościach. Co więcej geometria izolinii 1600 ms odbiegała znacząco od trendu pozostałych izolinii i miała nienaturalny charakter. W związku z wymienionymi cechami mapy rozważano możliwość jej reinterpretacji i wprowadzenia izolinii arbitralnych. Wykonano kilka wariantów interpretacji analizowanej struktury (figura 4). Dwa z nich zakładały, że struktura stanowi fałd o przebiegu osi NW-SE wygiętej w kierunku południowo zachodnim, trzeci wariant natomiast dążył do osiągnięcia symetrycznej kopuły. Po wykonaniu map na podstawie przedstawionych interpretacji stwierdzono jednak, że pierwotny kształt mapy był znacznie bardzie j wiarygodny i że geometria pułapki może odpowiadać budowli węglanowej. Podjęto zatem decyzję o zachowaniu pierwotnej wersji mapy, korygując jedynie nienaturalne wygięcia konturów oraz przebieg izolinii 1600 ms. Uzyskaną po korektach mapę stropu pułapki w jednostkach TWT przedstawia figura 5. Figura 4 Rozważane warianty reinterpretacji wstępnej mapy stropu pułapki 4

5 Figura 5 - Mapa strukturalna stropu pułapki złożowej w skali czasu podwójnego (TWT) po korektach 2. Określenie funkcji prędkości oraz wykreślenie mapy rozkładu prędkości średniej w nadkładzie struktury Do celu obliczenia funkcji prędkości użyto danych głębokości nawiercenia stropu struktury. Głębokości podane zostały dla trzech punktów występujących w węzłach grida. Używając wspomnianych wartości głębokości oraz czasu podwójnego obliczono średnią prędkość fali podłużnej w nadkładzie struktury według wzoru: V = 2000 H TWT Gdzie: V prędkość średnia w nadkładzie [m/s] H głębokość stropu struktury [m] TWT czas podwójny propagacji fali dla stropu struktury [ms] Następnie uzyskane wartości prędkości zestawiono z odpowiadającymi im wartościami czasu podwójnego na wykresie krzyżowym (figura 6) i znaleziono li nię trendu określającą zależność tych dwóch parametrów. Wzór linii trendu stanowi funkcję prędkości opisaną następującym wzorem Oznaczenia jak wyżej. V = 0, 5196 TWT ,2 5

6 Prędkość [m/s] Otrzymaną funkcję prędkości użyto następnie do wykreślenia mapy średniej prędkości w nadkładzie (figura 7). Wykorzystano do tego celu dostępny w programie Surfer kalkulator, pozwalający na przeprowadzanie operacji matematycznych na gridzie. Uczyniono zatem założenie że prędkość średnia w nadkładzie jest liniowo zależna od TWT. Uzasadnienie tego założenia przedstawiono w załączniku. Mapę średnich prędkości wykreślono w postaci ciągłej (image map), która jest bardziej odpowiednia dla tego parametru niż mapa konturowa Wykres krzyżowy prędkości w funkcji TWT Wzór linii trendu: V = 0,5196*TWT ,2 Współczynnik korelacji: R² = 0, TWT [ms] Figura 6 - Wykres krzyżowy przedstawiający zależność prędkości średniej w nadkładzie od TWT wraz z linią trendu oraz jej wzorem Figura 7 - Mapa rozkładu średniej prędkości w nadkładzie obliczona na podstawie funkcji prędkości 6

7 3. Wykreślenie mapy strukturalnej stropu struktury w dziedzinie głębokości. Znając dla danej komórki grida wartość czasu podwójnego do stropu struktury oraz uśrednioną prędkość w nadkładzie, można określić głębokość występowania tej powierzchni. Wzór opisujący głębokość w funkcji TWT i prędkości ma następującą postać: Oznaczenia jak wyżej. H = V (TWT 2000) Podzielenie prędkości przez 2000 pozwala na przeliczenie wartości czasu podwójnego w milisekundach na wartość czasu pojedynczego (OWT) w sekundach. Używając powyższego wzoru w kalkulatorze programu Surfer obliczono grid głębokościowy na podstawie gridów TWT i prędkości oraz wykreślono mapę strukturalną powierzchni stropu pułapki w skali głębokości (figura 8). Na mapie zaznaczono również punkty w których nawiercono strukturę opisane głębokością jej nawiercenia. Widoczne jest bardzo dobre dowiązanie mapy do danych otworowych. Strop struktury przedstawiono również w formie modelu trój-wymiarowego (figura 9) Figura 8 - Mapa strukturalna stropu pułapki złożowej w skali głębokościowej, jasnoniebieskimi punktami wskazano punkty w których nawiercono strukturę wraz z głębokością jej nawiercenia. 7

8 Figura 9 Model 3D stropu pułapki złożowej W tabeli 2 prezentowanej poniżej, przedstawiono wyniki obliczeń dla trzech punktów, w których znana była głębokość nawiercenia struktury. W tabeli przedstawiono również różnicę między danymi wartościami głębokości a obliczonymi w tym samym punkcie głębokościami za pomocą określonej funkcji prędkości. Tabela 2 - Dane oraz obliczenia dla punktów w których podano głębokość nawiercenia stropu struktury X [m] Y [m] H [m] TWT [ms] V [m/s] V obliczone [m/s] H obliczone [m] , , , , , , , , , ,95 8

9 ZAŁĄCZNIK 1 Uzasadnienie założenia liniowej zależności prędkości średniej w nadkładzie od TWT W celu przedstawienia zasadności przyjętych założeń stworzono model prędkości nadkładu składający się z płasko-równoległych warstw, przy czym ostatnia warstwa obleka strukturę co jest zasadne przy założeniu, że pułapkę stanowi budowla węglanowa. Starano się dobrać wiarygodne prędkości i miąższości warstw, przy czym nie mają one dużego znaczenia w kontekście celu modelowania. Model przedstawiono na figurze 10. Wzdłuż zaznaczonych profili P1-P5 obliczono sumaryczną głębokość profilu oraz średnie prędkości w nadkładzie. Prędkość obliczono jako średnią ważoną, gdzie wagę stanowiła miąższość warstwy. Znając średnią prędkość w nadkładzie i sumaryczną głębokość profilu obliczono TWT w milisekundach za pomocą wzoru: Gdzie: H sumaryczna głębokość profilu [m] V średnia prędkość w nadkładzie [m/s] TWT=(H V) 2000 Parametry modelu dla poszczególnych profili i obliczone dla nich prędkości oraz czasy podwójne przedstawia tabela 3. Dla podanych w tabeli 3 obliczeń wykonano wykres zależności prędkości od TWT przedstawiony na figurze 11. Figura 10 Płasko-równoległy model prędkości ośrodka 9

10 Prędkość [m/s] Tabela 3 - Parametry modelu oraz obliczenia wzdłuż profili P1-P5 P1 P2 P3 P4 P5 H [m] V [ms] H [m] V [ms] H [m] V [ms] H [m] V [ms] H [m] V [ms] Σhi 2500 Σhi 2300 Σhi 2100 Σhi 2000 Σhi 1920 Vśr 3050 Vśr 2967 Vśr 2869 Vśr 2812 Vśr 2763 TWT 1640 TWT 1550 TWT 1464 TWT 1422 TWT TWT [ms] Figura 11 - Wykres przedstawiający zależność prędkości średniej w nadkładzie od TWT dla danych modelowych Aby przedstawić zachowanie zależności prędkości średniej w nadkładzie od TWT w szerszym kontekście, wykonano obliczenia analogiczne jak dla profili P1-P5 przy założeniu, że miąższość ostatniej warstwy będzie wynosić odpowiednio 0 i 1500 m. Wykres wzbogacony o nowe punkty przedstawia figura 12. Wykres pokazuje, że jeżeli amplituda pułapki i tym samym miąższość ostatniej warstwy osiągnęła by bardzo dużą i raczej mało wiarygodną wartość 1500 m, wówczas zależność prędkości od TWT przestaje być liniowa. Wraz z dalszym wzrostem miąższości warstwy ostatniej do wartości rzędu kilkunastu kilometrów, a więc całkowicie nieprawdopodobnych obserwujemy, że średnia prędkość asymptotycznie dąży do prędkości ostatniej warstwy co przedstawiono na figurze 13. Można zatem stwierdzić, że chociaż zależność prędkości średniej od TWT dla przedstawionego modelu nie jest liniowa, to przy wiarygodnych miąższościach ostatniej warstwy, liniowa zależność stanowi bardzo dobrą aproksymację (figura 12). W tabeli 4 zestawiono miąższości ostatniej warstwy wraz z obliczonymi dla nich prędkościami średnimi w nadkładzie i czasami podwójnymi. Zestawienie wykonano dla profili P1-P5 oraz pozostałych wartości. 10

11 Prędkość [m/s] Prędkość [m/s] TWT [ms] Figura 12 - Wykres przedstawiający zależność prędkości średniej w nadkładzie od TWT dla danych modelowych wzbogacony o punkty dla miąższości ostatniej warstwy 0 i 1500 m TWT [ms] Figura 13 - Wykres przedstawiający zależność prędkości średniej w nadkładzie od TWT dla danych modelowych wzbogacony o punkty dla bardzo dużego zakresu miąższości ostatniej warstwy 11

12 Tabela 4- Zestawienie wartości poszczególnych parametrów dla zmiennej miąższości ostatniej warstwy modelu Profil H ostatniej w-wy V TWT [m] [m/s] [ms] P P P P P

Zadanie B. 1. Interpretacja strukturalna danych profili sejsmicznych

Zadanie B. 1. Interpretacja strukturalna danych profili sejsmicznych Zadanie B 1. Interpretacja strukturalna danych profili sejsmicznych Pierwszym krokiem było zestawienie danych profili sejsmicznych w programie graficznym w taki sposób aby możliwa była ich jednoczesna

Bardziej szczegółowo

Zadanie 3. Dla poziomego reflektora rozmiary binu determinowane są przez promień strefy Fresnela. Promień strefy Fresnela dany jest wzorem:

Zadanie 3. Dla poziomego reflektora rozmiary binu determinowane są przez promień strefy Fresnela. Promień strefy Fresnela dany jest wzorem: Zadanie 3 Celem zadania jest obliczenie wielkości binu na poziomie celu. Bin jest to elementarna jednostka powierzchni zdjęcia sejsmicznego, która stanowi kryterium podziału powierzchni odbijającej. Jest

Bardziej szczegółowo

ANALIZA WYKORZYSTANIA ELEKTROWNI WIATROWEJ W DANEJ LOKALIZACJI

ANALIZA WYKORZYSTANIA ELEKTROWNI WIATROWEJ W DANEJ LOKALIZACJI ANALIZA WYKORZYSTANIA ELEKTROWNI WIATROWEJ W DANEJ LOKALIZACJI Autorzy: Alina Bukowska (III rok Matematyki) Aleksandra Leśniak (III rok Fizyki Technicznej) Celem niniejszego opracowania jest wyliczenie

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia

Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia Doświadczenie: Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia Cele doświadczenia Celem doświadczenia jest zbadanie zależności drogi przebytej w ruchu przyspieszonym od czasu dla kuli bilardowej

Bardziej szczegółowo

Sieci obliczeniowe poprawny dobór i modelowanie

Sieci obliczeniowe poprawny dobór i modelowanie Sieci obliczeniowe poprawny dobór i modelowanie 1. Wstęp. Jednym z pierwszych, a zarazem najważniejszym krokiem podczas tworzenia symulacji CFD jest poprawne określenie rozdzielczości, wymiarów oraz ilości

Bardziej szczegółowo

Statystyka. Wykład 7. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Statystyka 16 kwietnia / 35

Statystyka. Wykład 7. Magdalena Alama-Bućko. 16 kwietnia Magdalena Alama-Bućko Statystyka 16 kwietnia / 35 Statystyka Wykład 7 Magdalena Alama-Bućko 16 kwietnia 2017 Magdalena Alama-Bućko Statystyka 16 kwietnia 2017 1 / 35 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia

Bardziej szczegółowo

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik geolog 311[12]

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik geolog 311[12] Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik geolog 311[12] 2 3 4 1. W pracach egzaminacyjnych oceniane były elementy: I. Tytuł pracy egzaminacyjnej. II. Założenia do wykonania

Bardziej szczegółowo

Komentarz technik geolog 311[12]-01 Czerwiec 2009

Komentarz technik geolog 311[12]-01 Czerwiec 2009 Zadanie egzaminacyjne Wykonaj przekrój geologiczny na podstawie załączonej mapy geologicznej i profili otworów wiertniczych wzdłuż linii A B. Przy sporządzaniu przekroju geologicznego zastosuj dwudziestopięciokrotne

Bardziej szczegółowo

Temat 1: Bluetooth. stoper lub 3 telefon z możliwością zliczania czasu z dokładnością do 0.1 sek

Temat 1: Bluetooth. stoper lub 3 telefon z możliwością zliczania czasu z dokładnością do 0.1 sek Temat 1: Bluetooth Potrzebne: dwa telefony z funkcją bluetooth stoper lub 3 telefon z możliwością zliczania czasu z dokładnością do 0.1 sek Przebieg ćwiczenia: Ćwiczenie polega na pomiarze czasu przesyłania

Bardziej szczegółowo

przybliżeniema Definicja

przybliżeniema Definicja Podstawowe definicje Definicje i podstawowe pojęcia Opracowanie danych doświadczalnych Często zaokraglamy pewne wartości np. kupujac telewizor za999,99 zł. dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl

Bardziej szczegółowo

WYKRESY SPORZĄDZANE W UKŁADZIE WSPÓŁRZĘDNYCH:

WYKRESY SPORZĄDZANE W UKŁADZIE WSPÓŁRZĘDNYCH: WYKRESY SPORZĄDZANE W UKŁADZIE WSPÓŁRZĘDNYCH: Zasada podstawowa: Wykorzystujemy możliwie najmniej skomplikowaną formę wykresu, jeżeli to możliwe unikamy wykresów 3D (zaciemnianie treści), uwaga na kolory

Bardziej szczegółowo

MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY

MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY Poszukiwanie znaczeń funkcji i skryptów funkcja help >> help % wypisuje linki do wszystkich plików pomocy >> help plot % wypisuje pomoc dotyczą funkcji plot Znaczenie

Bardziej szczegółowo

CPT-CAD - Program do tworzenia dokumentacji geologicznej i geotechnicznej

CPT-CAD - Program do tworzenia dokumentacji geologicznej i geotechnicznej CPT-CAD - Program do tworzenia dokumentacji geologicznej i geotechnicznej Trzy w jednym?? Moduł CPT-CAD jest przeznaczony do tworzenia: map przekrojów geologicznych i geotechnicznych własnych rysunków

Bardziej szczegółowo

Funkcja liniowa - podsumowanie

Funkcja liniowa - podsumowanie Funkcja liniowa - podsumowanie 1. Funkcja - wprowadzenie Założenie wyjściowe: Rozpatrywana będzie funkcja opisana w dwuwymiarowym układzie współrzędnych X. Oś X nazywana jest osią odciętych (oś zmiennych

Bardziej szczegółowo

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości

Bardziej szczegółowo

Analiza korespondencji

Analiza korespondencji Analiza korespondencji Kiedy stosujemy? 2 W wielu badaniach mamy do czynienia ze zmiennymi jakościowymi (nominalne i porządkowe) typu np.: płeć, wykształcenie, status palenia. Punktem wyjścia do analizy

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

Ruch jednostajnie zmienny prostoliniowy

Ruch jednostajnie zmienny prostoliniowy Ruch jednostajnie zmienny prostoliniowy Przyspieszenie w ruchu jednostajnie zmiennym prostoliniowym Jest to taki ruch, w którym wektor przyspieszenia jest stały, co do wartości (niezerowej), kierunku i

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Tworzenie i modyfikacja modelu geologicznego

Tworzenie i modyfikacja modelu geologicznego Tworzenie i modyfikacja modelu geologicznego Program: Stratygrafia 3D Plik powiązany: Demo_manual_39.gsg Poradnik Inżyniera Nr 39 Aktualizacja: 12/2018 Wprowadzenie Celem niniejszego Przewodnika Inżyniera

Bardziej szczegółowo

Badanie zależności skala nominalna

Badanie zależności skala nominalna Badanie zależności skala nominalna I. Jak kształtuje się zależność miedzy płcią a wykształceniem? II. Jak kształtuje się zależność między płcią a otyłością (opis BMI)? III. Jak kształtuje się zależność

Bardziej szczegółowo

Rozdział 8. Regresja. Definiowanie modelu

Rozdział 8. Regresja. Definiowanie modelu Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność

Bardziej szczegółowo

Wektory, układ współrzędnych

Wektory, układ współrzędnych Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.

Bardziej szczegółowo

Niepewności pomiarów

Niepewności pomiarów Niepewności pomiarów Międzynarodowa Organizacja Normalizacyjna (ISO) w roku 1995 opublikowała normy dotyczące terminologii i sposobu określania niepewności pomiarów [1]. W roku 1999 normy zostały opublikowane

Bardziej szczegółowo

Skumulowane wykresy słupkowe: pokazują zależności zachodzące między indywidualnymi elementami i całością.

Skumulowane wykresy słupkowe: pokazują zależności zachodzące między indywidualnymi elementami i całością. Tworzenie wykresu Wykresy są bardzo atrakcyjne pod względem wizualnym, ponieważ pozwalają użytkownikom w łatwy sposób porównywać dane, wzorce i trendy. Na przykład, zamiast analizować dane umieszczone

Bardziej szczegółowo

INSTRUKCJA OBSŁUGI ❽ Wyniki analizy

INSTRUKCJA OBSŁUGI ❽ Wyniki analizy INSTRUKCJA OBSŁUGI ❽ Wyniki analizy 2 SPIS TREŚCI I. ZAKTUALIZOWANY INTERFEJS PROGRAMU SCADA Pro II. OPIS NOWEGO INTERFEJSU 1. Wyniki analizy 1.1 Wykresy/Deformacje 1.2 Różne 3 I. ZAKTUALIZOWANY INTERFEJS

Bardziej szczegółowo

LABORATORIUM PODSTAW TELEKOMUNIKACJI

LABORATORIUM PODSTAW TELEKOMUNIKACJI WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PODSTAW TELEKOMUNIKACJI Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził... Skład podgrupy:

Bardziej szczegółowo

PROJEKT Z HYDROLOGII CHARAKTERYSTYKA ZLEWNI RZEKI

PROJEKT Z HYDROLOGII CHARAKTERYSTYKA ZLEWNI RZEKI PROJEKT Z HYDROLOGII CHRKTERYSTYK ZLEWNI RZEKI Wykonał: imię nazwisko, grupa Data I. Wyznaczenie granic dorzecza Na dowolnie wybranym fragmencie mapy topograficznej (w skali od 1:10 000 do 1: 50 000) wyznaczyć

Bardziej szczegółowo

Opis obsługi programu KALKULACJA

Opis obsługi programu KALKULACJA Opis obsługi programu KALKULACJA Program KALKULACJA służy do obliczania opłat za przejazd pociągów po liniach kolejowych zarządzanych przez PKP Polskie Linie Kolejowe S.A. Pozwala on na dokonanie szacunkowej

Bardziej szczegółowo

W tym celu korzystam z programu do grafiki wektorowej Inkscape 0.46.

W tym celu korzystam z programu do grafiki wektorowej Inkscape 0.46. 1. Wprowadzenie Priorytetem projektu jest zbadanie zależności pomiędzy wartościami średnich szybkości przemieszczeń terenu, a głębokością eksploatacji węgla kamiennego. Podstawowe dane potrzebne do wykonania

Bardziej szczegółowo

Zastosowanie stereowizji do śledzenia trajektorii obiektów w przestrzeni 3D

Zastosowanie stereowizji do śledzenia trajektorii obiektów w przestrzeni 3D Zastosowanie stereowizji do śledzenia trajektorii obiektów w przestrzeni 3D autorzy: Michał Dajda, Łojek Grzegorz opiekun naukowy: dr inż. Paweł Rotter I. O projekcie. 1. Celem projektu było stworzenie

Bardziej szczegółowo

Usługi Informatyczne "SZANSA" - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, Bielsko-Biała

Usługi Informatyczne SZANSA - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, Bielsko-Biała Usługi Informatyczne "SZANSA" - Gabriela Ciszyńska-Matuszek ul. Świerkowa 25, 43-305 Bielsko-Biała NIP 937-22-97-52 tel. +48 33 488 89 39 zwcad@zwcad.pl www.zwcad.pl Aplikacja do rysowania wykresów i oznaczania

Bardziej szczegółowo

Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd.

Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd. Modelowanie wybranych pojęć matematycznych semestr letni, 206/207 Wykład 0 Własności funkcji cd. Ciągłość funkcji zastosowania Przybliżone rozwiązywanie równań Znajdziemy przybliżone rozwiązanie równania

Bardziej szczegółowo

RAPORT. Kraków, MONITORING OSIADANIA TERENU NA OBSZARZE GMINY PSZCZYNA. Zleceniodawca: Gmina Pszczyna

RAPORT. Kraków, MONITORING OSIADANIA TERENU NA OBSZARZE GMINY PSZCZYNA. Zleceniodawca: Gmina Pszczyna MONITORING OSIADANIA TERENU NA OBSZARZE GMINY PSZCZYNA RAPORT Kraków, 3.09.2018 Zleceniodawca: Gmina Pszczyna 1 1 DANE FORMALNE 1.1. Zamawiający: gmina Pszczyna 1.2. Wykonawca: SATIM Monitoring Satelitarny

Bardziej szczegółowo

Charakterystyka amplitudowa i fazowa filtru aktywnego

Charakterystyka amplitudowa i fazowa filtru aktywnego 1 Charakterystyka amplitudowa i fazowa filtru aktywnego Charakterystyka amplitudowa (wzmocnienie amplitudowe) K u (f) jest to stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w funkcji

Bardziej szczegółowo

I. Liczby i działania

I. Liczby i działania I. Liczby i działania porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na dziesiętne i odwrotnie, zaokrąglać liczby do danego rzędu, szacować wyniki działań,

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych.

Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych. Jedną z metod symulacji dynamiki cieczy jest zastosowanie metody siatkowej Boltzmanna.

Bardziej szczegółowo

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego)

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) 2019-09-01 FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego) Treści z podstawy programowej przedmiotu POZIOM ROZSZERZONY (PR) SZKOŁY BENEDYKTA Podstawa programowa FIZYKA KLASA 1 LO (4-letnie po szkole

Bardziej szczegółowo

Graficzne opracowanie wyników pomiarów 1

Graficzne opracowanie wyników pomiarów 1 GRAFICZNE OPRACOWANIE WYNIKÓW POMIARÓW Celem pomiarów jest bardzo często potwierdzenie związku lub znalezienie zależności między wielkościami fizycznymi. Pomiar polega na wyznaczaniu wartości y wielkości

Bardziej szczegółowo

Wprowadzanie geometrii z wykorzystaniem importu pliku DXF

Wprowadzanie geometrii z wykorzystaniem importu pliku DXF Przewodnik Inżyniera Nr 30 Aktualizacja: 06/2017 Wprowadzanie geometrii z wykorzystaniem importu pliku DXF Program: GEO5 MES Plik GEO5: Demo_manual_30.gmk Pliki DXF: - model201.dxf plik bazowy, który nie

Bardziej szczegółowo

Numeryczne rozwiązywanie równań różniczkowych ( )

Numeryczne rozwiązywanie równań różniczkowych ( ) Numeryczne rozwiązywanie równań różniczkowych Równanie różniczkowe jest to równanie, w którym występuje pochodna (czyli różniczka). Przykładem najprostszego równania różniczkowego może być: y ' = 2x które

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO

ZAGADNIENIA PROGRAMOWANIA LINIOWEGO ZAGADNIENIA PROGRAMOWANIA LINIOWEGO Maciej Patan Uniwersytet Zielonogórski WSTĘP często spotykane w życiu codziennym wybór asortymentu produkcji jakie wyroby i w jakich ilościach powinno produkować przedsiębiorstwo

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

Konkurs Potyczki informatyczno matematyczne VI edycja 2009r. Zespół Szkół w Dobrzeniu Wielkim

Konkurs Potyczki informatyczno matematyczne VI edycja 2009r. Zespół Szkół w Dobrzeniu Wielkim Zad 1. (5pkt/12min) W prognozie pogody podano, że obecnie nad morzem jest piękna, bezwietrzna pogoda, ale za ponad pięć godzin, wiatr może osiągnąć tam prędkość 90km/h, a w górach może wiać nawet z prędkością

Bardziej szczegółowo

ANALIZA WIELOPOZIOMOWA JAKO NARZĘDZIE WSPARCIA POLITYK PUBLICZNYCH

ANALIZA WIELOPOZIOMOWA JAKO NARZĘDZIE WSPARCIA POLITYK PUBLICZNYCH ANALIZA WIELOPOZIOMOWA JAKO NARZĘDZIE WSPARCIA POLITYK PUBLICZNYCH - Adrian Gorgosz - Paulina Tupalska ANALIZA WIELOPOZIOMOWA (AW) Multilevel Analysis Obecna od lat 80. Popularna i coraz częściej stosowana

Bardziej szczegółowo

Opis obsługi programu KALKULACJA

Opis obsługi programu KALKULACJA Opis obsługi programu KALKULACJA Program KALKULACJA służy do obliczania opłat za przejazd pociągów po liniach kolejowych zarządzanych przez PKP Polskie Linie Kolejowe S.A. Pozwala on na dokonanie szacunkowej

Bardziej szczegółowo

Analiza regresji - weryfikacja założeń

Analiza regresji - weryfikacja założeń Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.

Bardziej szczegółowo

CMAES. Zapis algorytmu. Generacja populacji oraz selekcja Populacja q i (t) w kroku t generowana jest w następujący sposób:

CMAES. Zapis algorytmu. Generacja populacji oraz selekcja Populacja q i (t) w kroku t generowana jest w następujący sposób: CMAES Covariance Matrix Adaptation Evolution Strategy Opracowanie: Lidia Wojciechowska W algorytmie CMAES, podobnie jak w algorytmie EDA, adaptowany jest rozkład prawdopodobieństwa generacji punktów, opisany

Bardziej szczegółowo

SKRÓCONA INSTRUKCJA UŻYTKOWANIA programu do obliczeń cieplno- wilgotnościowych Leca BLOK

SKRÓCONA INSTRUKCJA UŻYTKOWANIA programu do obliczeń cieplno- wilgotnościowych Leca BLOK SKRÓCONA INSTRUKCJA UŻYTKOWANIA programu do obliczeń cieplno- wilgotnościowych Leca BLOK Program pomaga w projektowaniu przegród budowlanych pod względem cieplno-wilgotnościowym. Twórcy programu firmy

Bardziej szczegółowo

SCENARIUSZ LEKCJI MATEMATYKI, FIZYKI LUB BIOLOGII Z WYKORZYSTANIEM FILMU ROZKŁAD NORMALNY.

SCENARIUSZ LEKCJI MATEMATYKI, FIZYKI LUB BIOLOGII Z WYKORZYSTANIEM FILMU ROZKŁAD NORMALNY. SCENARIUSZ LEKCJI MATEMATYKI, FIZYKI LUB BIOLOGII Z WYKORZYSTANIEM FILMU ROZKŁAD NORMALNY. SPIS TREŚCI: I. Wprowadzenie. II. Części lekcji. 1. Część wstępna. 2. Część realizacji. 3. Część podsumowująca.

Bardziej szczegółowo

Walec na równi pochyłej

Walec na równi pochyłej Walec na równi pochyłej Program: Coach 6 Projekt: komputer H : C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6\Wideopomiary\Walec na rowni.cma Cel ćwiczenia Obserwacja ruchu postępowego

Bardziej szczegółowo

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa)

- Strumień mocy, który wpływa do obszaru ograniczonego powierzchnią A ( z minusem wpływa z plusem wypływa) 37. Straty na histerezę. Sens fizyczny. Energia dostarczona do cewki ferromagnetykiem jest znacznie większa od energii otrzymanej. Energia ta jest tworzona w ferromagnetyku opisanym pętlą histerezy, stąd

Bardziej szczegółowo

Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb

Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb Współzależność Załóżmy, że obserwujemy nie jedną lecz dwie cechy, które oznaczymy symbolami X i Y. Wyniki obserwacji obu cech w i-tym obiekcie oznaczymy parą liczb (x i, y i ). Geometrycznie taką parę

Bardziej szczegółowo

Opracował: mgr inż. Marcin Olech 2010-10-04

Opracował: mgr inż. Marcin Olech 2010-10-04 Laboratorium 4 Strona 1 z 17 Spis treści: 1. Wielowymiarowa analiza danych w arkusza kalkulacyjnych z wykorzystaniem MS Excel: a. tworzenie tabel przestawnych, b. tworzenie wykresów przestawnych. 2. Praca

Bardziej szczegółowo

Uczenie się pojedynczego neuronu. Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z<0 y=1 gdy z>=0. Wówczas: W 1 x 1 + w 2 x 2 + = 0

Uczenie się pojedynczego neuronu. Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z<0 y=1 gdy z>=0. Wówczas: W 1 x 1 + w 2 x 2 + = 0 Uczenie się pojedynczego neuronu W0 X0=1 W1 x1 W2 s f y x2 Wp xp p x i w i=x w+wo i=0 Jeśli zastosowana zostanie funkcja bipolarna s y: y=-1 gdy z=0 Wówczas: W 1 x 1 + w 2 x 2 + = 0 Algorytm

Bardziej szczegółowo

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów FORMOWANIE SIĘ PROFILU PRĘDKOŚCI W NIEŚCIŚLIWYM, LEPKIM PRZEPŁYWIE PRZEZ PRZEWÓD ZAMKNIĘTY Cel ćwiczenia Celem ćwiczenia będzie analiza formowanie się profilu prędkości w trakcie przepływu płynu przez

Bardziej szczegółowo

Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski

Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera

Bardziej szczegółowo

Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D

Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D Równanie konstytutywne opisujące sposób w jaki ciepło przepływa w materiale o danych właściwościach, prawo Fouriera Macierz konstytutywna (właściwości) materiału Wektor gradientu temperatury Wektor strumienia

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" LICZBY I DZIAŁANIA POZIOM KONIECZNY - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

Analiza składowych głównych. Wprowadzenie

Analiza składowych głównych. Wprowadzenie Wprowadzenie jest techniką redukcji wymiaru. Składowe główne zostały po raz pierwszy zaproponowane przez Pearsona(1901), a następnie rozwinięte przez Hotellinga (1933). jest zaliczana do systemów uczących

Bardziej szczegółowo

Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki?

Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki? 1 Jak poprawnie napisać sprawozdanie z ćwiczeń laboratoryjnych z fizyki? Sprawozdania należny oddać na kolejnych zajęciach laboratoryjnych. Każde opóźnienie powoduje obniżenie oceny za sprawozdanie o 0,

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Ćwiczenia nr 7. TEMATYKA: Krzywe Bézier a

Ćwiczenia nr 7. TEMATYKA: Krzywe Bézier a TEMATYKA: Krzywe Bézier a Ćwiczenia nr 7 DEFINICJE: Interpolacja: przybliżanie funkcji za pomocą innej funkcji, zwykle wielomianu, tak aby były sobie równe w zadanych punktach. Poniżej przykład interpolacji

Bardziej szczegółowo

Przepływ rzeczny jako miara odpływu ze zlewni

Przepływ rzeczny jako miara odpływu ze zlewni Przepływ rzeczny jako miara odpływu ze zlewni Metody bezpośrednie metoda wolumetryczna Metody bezpośrednie przelewy (przegrody) Metody bezpośrednie cd. Iniekcja ciągła znacznika Wprowadzanym do wód

Bardziej szczegółowo

Ocena błędów systematycznych związanych ze strukturą CCD danych astrometrycznych prototypu Pi of the Sky

Ocena błędów systematycznych związanych ze strukturą CCD danych astrometrycznych prototypu Pi of the Sky Ocena błędów systematycznych związanych ze strukturą CCD danych astrometrycznych prototypu Pi of the Sky Maciej Zielenkiewicz 5 marca 2010 1 Wstęp 1.1 Projekt Pi of the Sky Celem projektu jest poszukiwanie

Bardziej szczegółowo

Badanie zależności położenia cząstki od czasu w ruchu wzdłuż osi Ox

Badanie zależności położenia cząstki od czasu w ruchu wzdłuż osi Ox A: 1 OK Muszę to powtórzyć... Potrzebuję pomocy Badanie zależności położenia cząstki od czasu w ruchu wzdłuż osi Ox 1. Uruchom program Modellus. 2. Wpisz x do okna modelu. 3. Naciśnij przycisk Interpretuj

Bardziej szczegółowo

Opis obsługi programu KALKULACJA

Opis obsługi programu KALKULACJA Opis obsługi programu KALKULACJA Program KALKULACJA słuŝy do obliczania opłat za przejazd pociągów po liniach kolejowych zarządzanych przez PKP Polskie Linie Kolejowe S.A. Pozwala on na dokonanie szacunkowej

Bardziej szczegółowo

EDUKACYJNA WARTOŚC DODANA

EDUKACYJNA WARTOŚC DODANA EDUKACYJNA WARTOŚC DODANA Termin ten oznacza metodę ale i wskaźnik liczbowy wyliczony tą metodą. Metody EWD to metody statystyczne pozwalające na podstawie wyników egzaminu gimnazjalnego (czyli wyników

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych 9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :

Bardziej szczegółowo

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:

Bardziej szczegółowo

Roczny raport jakości powietrza z uwzględnieniem pyłów PM1, PM2,5 oraz PM10 dla czujników zlokalizowanych w gminie Proszowice

Roczny raport jakości powietrza z uwzględnieniem pyłów PM1, PM2,5 oraz PM10 dla czujników zlokalizowanych w gminie Proszowice Roczny raport jakości powietrza z uwzględnieniem pyłów PM1, PM2,5 oraz PM dla czujników zlokalizowanych w gminie Proszowice Spis treści 1. Charakterystyka gminy oraz lokalizacja czujników... 3 2. Dopuszczalne

Bardziej szczegółowo

3. FUNKCJA LINIOWA. gdzie ; ół,.

3. FUNKCJA LINIOWA. gdzie ; ół,. 1 WYKŁAD 3 3. FUNKCJA LINIOWA FUNKCJĄ LINIOWĄ nazywamy funkcję typu : dla, gdzie ; ół,. Załóżmy na początek, że wyraz wolny. Wtedy mamy do czynienia z funkcją typu :.. Wykresem tej funkcji jest prosta

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i

Bardziej szczegółowo

Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Klasa 1 technikum. Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Klasa 1 technikum Przedmiotowy system oceniania wraz z wymaganiami edukacyjnymi Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

Załącznik 1.1. Lokalizacja punktów pomiaru miąższości wybranych pokładów węgla w KWK Murcki (opróbowanie wiertnicze i górnicze)

Załącznik 1.1. Lokalizacja punktów pomiaru miąższości wybranych pokładów węgla w KWK Murcki (opróbowanie wiertnicze i górnicze) ZAŁĄCZNIKI SPIS ZAŁĄCZNIKÓW Załącznik 1.1. Lokalizacja punktów pomiaru miąższości wybranych pokładów węgla w KWK Murcki (opróbowanie wiertnicze i górnicze) Załącznik 1.2. Lokalizacja punktów pomiaru miąższości

Bardziej szczegółowo

Excel wykresy niestandardowe

Excel wykresy niestandardowe Excel wykresy niestandardowe Uwaga Przy robieniu zadań zadbaj by każde zadanie było na kolejnym arkuszu, zadanie na jednym, wykres na drugim, kolejne zadanie na trzecim itd.: Tworzenie wykresów Gantta

Bardziej szczegółowo

(L, S) I. Zagadnienia. 1. Potencjały czynnościowe komórek serca. 2. Pomiar EKG i jego interpretacja. 3. Fonokardiografia.

(L, S) I. Zagadnienia. 1. Potencjały czynnościowe komórek serca. 2. Pomiar EKG i jego interpretacja. 3. Fonokardiografia. (L, S) I. Zagadnienia 1. Potencjały czynnościowe komórek serca. 2. Pomiar EKG i jego interpretacja. 3. Fonokardiografia. II. Zadania 1. Badanie spoczynkowego EKG. 2. Komputerowa rejestracja krzywej EKG

Bardziej szczegółowo

3. Wojewódzkie zróżnicowanie zatrudnienia w ochronie zdrowia w latach Opis danych statystycznych

3. Wojewódzkie zróżnicowanie zatrudnienia w ochronie zdrowia w latach Opis danych statystycznych 3. Wojewódzkie zróżnicowanie zatrudnienia w ochronie zdrowia w latach 1995-2005 3.1. Opis danych statystycznych Badanie zmian w potencjale opieki zdrowotnej można przeprowadzić w oparciu o dane dotyczące

Bardziej szczegółowo

Raport pochodzi z portalu

Raport pochodzi z portalu B3.1 Wartość dodana Analiza szczegółowa obszaru B3 rozpoczyna się od oceny sektorów/sekcji/działów gospodarki regionu pod względem spełnienia podstawowego kryterium wzrostu i innowacyjności. Pierwszym

Bardziej szczegółowo

6. FUNKCJE. f: X Y, y = f(x).

6. FUNKCJE. f: X Y, y = f(x). 6. FUNKCJE Niech dane będą dwa niepuste zbiory X i Y. Funkcją f odwzorowującą zbiór X w zbiór Y nazywamy przyporządkowanie każdemu elementowi X dokładnie jednego elementu y Y. Zapisujemy to następująco

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

Dopasowanie prostej do wyników pomiarów.

Dopasowanie prostej do wyników pomiarów. Dopasowanie prostej do wyników pomiarów. Graficzna analiza zależności liniowej Założenie: każdy z pomiarów obarczony jest taką samą niepewnością pomiarową (takiej samej wielkości prostokąty niepewności).

Bardziej szczegółowo

Współpraca FDS z arkuszem kalkulacyjnym

Współpraca FDS z arkuszem kalkulacyjnym Współpraca FDS z arkuszem kalkulacyjnym 1. Wstęp: Program Pyrosim posiada możliwość bezpośredniego podglądu wykresów uzyskiwanych z urządzeń pomiarowych. Wszystkie wykresy wyświetlane są jako plik graficzny

Bardziej szczegółowo

Analizy rastrowe. statystyki przestrzenne, reklasyfikacja, strefy buforowe, nachylenie i ekspozycja stoków

Analizy rastrowe. statystyki przestrzenne, reklasyfikacja, strefy buforowe, nachylenie i ekspozycja stoków Analizy rastrowe statystyki przestrzenne, reklasyfikacja, strefy buforowe, nachylenie i ekspozycja stoków Statystyki przestrzenne polecenie r.report w oparciu o jedną warstwę rastrową jaką powierzchnię

Bardziej szczegółowo

Rok akademicki: 2012/2013 Kod: JFM s Punkty ECTS: 3. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2012/2013 Kod: JFM s Punkty ECTS: 3. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Statystyka inżynierska Rok akademicki: 2012/2013 Kod: JFM-1-210-s Punkty ECTS: 3 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Medyczna Specjalność: Poziom studiów: Studia I stopnia

Bardziej szczegółowo

Obciążenia, warunki środowiskowe. Modele, pomiary. Tomasz Marcinkowski

Obciążenia, warunki środowiskowe. Modele, pomiary. Tomasz Marcinkowski Obciążenia, warunki środowiskowe. Modele, pomiary. Tomasz Marcinkowski 1. Obciążenia środowiskowe (wiatr, falowanie morskie, prądy morskie, poziomy zwierciadła wody, oddziaływanie lodu) 2. Poziomy obciążeń

Bardziej szczegółowo

SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU I. Informacje dla oceniających

SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU I. Informacje dla oceniających SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU I Inormacje dla oceniających. Rozwiązania poszczególnych zadań i poleceń oceniane są na podstawie punktowych kryteriów oceny poszczególnych

Bardziej szczegółowo

SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU I. Informacje dla oceniających

SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU I. Informacje dla oceniających SZKIC ODPOWIEDZI I SCHEMAT OCENIANIA ROZWIĄZAŃ ZADAŃ W ARKUSZU I Inormacje dla oceniających. Rozwiązania poszczególnych zadań i poleceń oceniane są na podstawie punktowych kryteriów oceny poszczególnych

Bardziej szczegółowo

Analiza stateczności zbocza

Analiza stateczności zbocza Przewodnik Inżyniera Nr 25 Aktualizacja: 06/2017 Analiza stateczności zbocza Program: MES Plik powiązany: Demo_manual_25.gmk Celem niniejszego przewodnika jest analiza stateczności zbocza (wyznaczenie

Bardziej szczegółowo

Regresja logistyczna (LOGISTIC)

Regresja logistyczna (LOGISTIC) Zmienna zależna: Wybór opcji zachodniej w polityce zagranicznej (kodowana jako tak, 0 nie) Zmienne niezależne: wiedza o Unii Europejskiej (WIEDZA), zamieszkiwanie w regionie zachodnim (ZACH) lub wschodnim

Bardziej szczegółowo

Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych

Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych Ćwiczenie nr 5 : Badanie licznika proporcjonalnego neutronów termicznych Oskar Gawlik, Jacek Grela 16 lutego 29 1 Teoria 1.1 Licznik proporcjonalny Jest to jeden z liczników gazowych jonizacyjnych, występujący

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Wykład 7. Opis współzaleŝności zjawisk. 1. Wprowadzenie.

Wykład 7. Opis współzaleŝności zjawisk. 1. Wprowadzenie. Wykład 7. Opis współzaleŝności zjawisk 1. Wprowadzenie. 2. Prezentacja materiału statystycznego. Rodzaje współzaleŝności zjawisk 1. WspółzaleŜność funkcyjna określonym wartościom jednej zmiennej jest ściśle

Bardziej szczegółowo

Podstawowe zasady modelowania śrub i spoin oraz zestawienie najważniejszych poleceń AutoCAD 3D,

Podstawowe zasady modelowania śrub i spoin oraz zestawienie najważniejszych poleceń AutoCAD 3D, Podstawowe zasady modelowania śrub i spoin oraz zestawienie najważniejszych poleceń AutoCAD 3D, które są niezbędne przy tworzeniu nieregularnych geometrycznie obiektów Modelowanie 3D śrub i spoin oraz

Bardziej szczegółowo

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................

Bardziej szczegółowo

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji

REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji Statystyka i opracowanie danych Ćwiczenia 5 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ MODEL REGRESJI LINIOWEJ Analiza regresji

Bardziej szczegółowo