POMIARY I ANALIZA SYGNAŁÓW DLA POTRZEB DIAGNOSTYKI

Wielkość: px
Rozpocząć pokaz od strony:

Download "POMIARY I ANALIZA SYGNAŁÓW DLA POTRZEB DIAGNOSTYKI"

Transkrypt

1 Zeszyty Problemowe Maszyny Elektryczne Nr / (94) 93 ławomir zymaniec Politechnika Opolska, Opole POMIARY I ANALIZA YGNAŁÓW DLA PORZEB DIAGNOYKI MEAUREMEN AND ANALYI OF IGNAL FOR DIAGNOIC NEED Abstract: In this article, on the basis of his long-term diagnostic experience, the author presents the most important requirements for diagnostic analysers used in industrial conditions. In self-assessment, the information may be useful for diagnosticians who want to purchase equipment.. Wstęp ematyka artykułu związana jest z analizą sygnałów pomiarowych, wykorzystywanych w diagnostyce maszyn. Diagnostyka układów elektromechanicznych opiera się w głównej mierze na pomiarach sygnałów: drganiowego, prądowego i temperatury maszyn i urządzeń, a następnie na analizowaniu otrzymanych wyników [, 4]. Pomiary wykonywane są najczęściej za pomocą analizatorów [, 3]. Wykorzystywane są jednokanałowe, ale coraz częściej dwukanałowe i czterokanałowe analizatory sygnałów, czołowych firm produkujących aparaturę diagnostyczną. ą to urządzenia o znacznych moŝliwościach pomiarowych, pozwalających na diagnozowanie uszkodzeń zespołów elektromechanicznych. Bardzo waŝnym elementem w diagnostyce [, 3] jest obserwacja trendu danego sygnału, prowadzenie dokumentacyjnego archiwum historii pracy maszyny. Aby to wykonać, naleŝy dane pomiarowe odczytać i przesłać do komputera. Prawie wszystkie analizatory posiadają interfejs umoŝliwiający transmisję danych i zdalne sterowanie, odpowiednie oprogramowanie umoŝliwia komunikację i przesyłanie danych. Wykorzystywanie analizatorów sygnałów dodatkowo do celów badawczych stawia przed oprogramowaniem analizatorów specyficzne wymagania, które naleŝy uwzględnić przy tworzeniu oprogramowania przeznaczonego do diagnostyki maszyn w przemyśle.. Wymagania uŝytkowników, diagnostów wobec analizatorów Wymagania autor poda w oparciu o swoje wieloletnie doświadczenie diagnostyczne dla przykładowego analizatora dwukanałowego [, 4]. Dwukanałowy analizator sygnałów powinien mieć moŝliwość analizy w dziedzinie czasu i częstotliwości. Powinien być szybki (pracujący w czasie rzeczywistym) i wygodny w uŝyciu. Do najwaŝniejszych wymagań naleŝą [ 4]: Rejestracja sygnału khz. Dwukanałowa analiza sygnału w czasie rzeczywistym z częstotliwością co najmniej khz dla jednego kanału lub 5 khz przy wykorzystaniu obydwu kanałów. Ekran o duŝej rozdzielczości 8 linii. Wbudowany cyfrowy moduł powiększenia. MoŜliwość wyświetlenia na ekranie jednocześnie jednego, lub dwóch wykresów. MoŜliwość zapamiętania kilkudziesięciu róŝnych nastaw pomiarowych, z których większość definiowana jest przez uŝytkownika, a kilka jest narzuconych przez urządzenie i dotyczy najbardziej standardowych pomiarów. Pamięć umoŝliwiająca zapamiętanie wykonanych pomiarów wraz z nastawami. Pomiar odpowiedzi częstotliwościowej, koherencji, widm indywidualnych i wzajemnych, indywidualnej i wzajemnej korelacji, funkcji odpowiedzi impulsowej, cepstrum, intensywności sygnału, gęstości i rozkładu prawdopodobieństwa. Posiadanie charakterystycznych kursorów: kursor główny, odniesień, kursor delta, kursor maskujący, kursor harmoniczny oraz kursor wstęg bocznych. Wymaganie, y wszystkie nastawy podczas pomiaru wyświetlane były na ekranie analizatora. Posiadanie typowego interfejsu do komunikacji z innymi urządzeniami []. Analizator powinien umoŝliwić wykonywanie i wyświetlanie pomiarów w czasie rzeczywistym z wykorzystaniem jednego lub dwóch kanałów pomiarowych.

2 94 Zeszyty Problemowe Maszyny Elektryczne Nr / (94) Funkcje czasowe, częstotliwościowe oraz funkcje korelacji mogą być obliczone z przebiegów zapisanych w pamięci analizatora, po wykonaniu pomiaru i zarchiwizowaniu całej zawartości pamięci danych oraz pamięci nastaw. Przesłanie całej zawartości pamięci pomiaru oraz nastaw jest moŝliwe za pomocą jednej komendy wysłanej z komputera do analizatora, lub odwrotnie. 3. ransformaty wykorzystywane do obliczeń poszczególnych funkcji wymagania wobec analizatorów 3.. ransformata Fouriera [ 4] Analiza częstotliwościowa jest obok analizy czasowej jedną z najczęściej stosowanych metod badania układów pomiarowych, obiektów technicznych, maszyn i urządzeń. Metody analizy częstotliwościowej opierają się o trygonometryczny, lub wykładniczy szereg Fouriera oraz przekształcenie całkowe Fouriera. Przekształcenie to odgrywa bardzo waŝną rolę w analizie sygnałów. NaleŜy wymienić dwa zasadnicze powody przydatności i atrakcyjności analizy częstotliwościowej. Po pierwsze: zasada superpozycji pozwala dla układów liniowych na wyznaczenie całkowitej odpowiedzi układu na pobudzenie, będące sumą róŝnych sygnałów, przez sumowanie odpowiedzi na kaŝdy z sygnałów z osobna. Po drugie: przekształcenie Fouriera pozwala ustalić uŝyteczne zaleŝności między sygnałem, a widmem amplitudowym i fazowym, jego sinusoidalnych składników, dla których łatwiej jest znaleźć odpowiedź układu []. Podstawowym przekształceniem wykorzystywanym do obliczeń większości funkcji wyświetlanych przez analizatory jest dyskretna transformata Fouriera. Poszczególne składowe tej funkcji procesor analizatora oblicza w oparciu o wzór [, ]: F( k) N = N n= x( n) exp j N - ilość próbek x(n) - wartość próbki nr n πkn N () k - numer obliczanej składowej W pamięci analizatora dane są zapisywane po obliczeniu transformaty Fouriera. Zapis danych w dziedzinie częstotliwości umoŝliwia zmniejszenie ilości danych jakie naleŝy zapisać w pamięci. W przypadku potrzeby wyświetlenia przebiegu czasowego jest on obliczany za pomocą odwrotnej transformaty Fouriera: F N ( n) = X ( k) exp j n= 3.. ransformata Hilberta [ 4] π N kn () Funkcje obliczane w dziedzinie czasu, będące funkcjami zespolonymi takie, jak odpowiedź impulsowa, cepstrum, autokorelacja oraz korelacja wzajemna obliczane są z wykorzystaniem transformaty Hilberta. Obwiednia tych funkcji liczona jest jako suma kwadratów części rzeczywistej i urojonej, i traktowana jest jak amplituda [, ]. ransformata Hilberta wartości rzeczywistej sygnału czasowego jest definiowana następująco [, ]; + χ [ a( ] = a( = a( u) du (3) π t u oznaczenia podano niŝej Wykorzystując transformatę Hilberta moŝna określić analityczny sygnał czasowy [, ]: z( a( + i a( = z( e iθt (4) Wykorzystanie do obliczeń przez analizator transformaty Hilberta pozwala policzyć dla większości funkcji z dziedziny czasu następujące funkcje [, ]: Część rzeczywistą Część urojoną Amplitudę Fazę a ( (5) t χ [ a ( t )] = a ( ) (6) ( a ( a ( t z = + ) (7) Θ( t ) = tan a( / a( (8) Wykres Nyquista

3 Zeszyty Problemowe Maszyny Elektryczne Nr / (94) 95 t a ( ) względem a ( (9) Wykres Nicholsa log z ( względem Θ ( () 4. Funkcje obliczane przez analizator zerokie moŝliwości analizatorów w zakresie obróbki i wyświetlania sygnałów pomiarowych znacznie ułatwiają diagnozowanie układów pomiarowych, obiektów technicznych, maszyn i urządzeń. Do podstawowych funkcji obliczanych przez analizatory powinny naleŝeć: odpowiedź częstotliwościowa, koherencja, korelacja indywidualna i wzajemna, funkcja odpowiedzi impulsowej, cepstrum, gęstość i rozkład prawdopodobieństwa oraz porównanie wyników dwóch pomiarów [ 4]. Kolejność obliczania poszczególnych funkcji przez przykładowy analizator przedstawiony jest na rys Autokorelacja (Auto Correlation) Autokorelacja określa w jakim stopniu sygnał zachowuje podobieństwo przy róŝnych opóźnieniach czasowych τ. Jest ona definiowana jako [ 4]: R aa ( τ ) lim a( a( t + τ ) dt () = = Funkcja autokorelacji jest wykorzystywana przy identyfikacji przebiegów. Innym zastosowaniem moŝe być detekcja okresowości sygnałów periodycznych zawartych w szumie. tosując funkcję autokorelacji moŝna wykryć okresowość nieznanego sygnału, jednak nie moŝna określić kształtu fali przebiegu [ 4]. 4.. Korelacja wzajemna (Cross Correlation) Korelacja wzajemna określa stopień podobieństwa pomiędzy dwoma róŝnymi sygnałami czasowymi a( oraz b(, dla róŝnych przesunięć czasowych τ pomiędzy tymi sygnałami. Jest ona wyraŝona przy pomocy wzoru [ 4]: R ( τ ) = lim a( b( t + τ ) dt () Rys.. Rysunek przedstawiający zasadę obliczania autokorelacji dla sygnału czasowego [] Funkcja korelacji wzajemnej wykorzystywana jest przy pomiarach opóźnień czasowych, gdy istotne są aspekty propagacji. Jest ona równieŝ wykorzystywana do określenia udziału poszczególnych źródeł sygnałów w mierzonym sygnale wejściowym [] Widmo mocy (Auto pectrum) Widmo mocy jest wariancją składowej procesu stochastycznego o częstotliwości ω zawartej w pewnym wąskim paśmie częstotliwości ω <ω,ω >. Definicja widma mocy jest następująca [ 4]: a ( ω ) = lim at dt (3) at (ω) - składowa sygnału wejściowego o pulsacji ω 4.4. Widmo mocy wzajemnej (Cross-spectrum) Widmo mocy wzajemnej jest transformatą Fouriera kowariancji wzajemnej i wyraŝone jest przez następujące równanie [ 4]: ( ω ) = lim at bt dt (4) a t (ω), bt (ω ) - składowa sygnału wejściowego o pulsacji ω podawanego na wejście a, oraz b analizatora

4 96 Zeszyty Problemowe Maszyny Elektryczne Nr / (94) Rys..Kolejność obliczania funkcji przez przykładowy analizator [] γ = (5) a a (ω) - widmo mocy sygnału a( b (ω) - widmo mocy sygnału b( (ω) - widmo mocy wzajemnej sygnałów a(, oraz b( b Rys. 3. posób obliczania korelacji wzajemnej [] 4.5. Zgodność (Koherence) Funkcja koherencji określa liniową zaleŝność pomiędzy dwoma sygnałami a( oraz b( dla danej częstotliwości. Określa ona więc stopień powiązania dwóch sygnałów za pomocą funkcji liniowej. Funkcja koherencji jest uŝywana do weryfikacji, czy w konkretnym przypadku obowiązuje liniowa zaleŝność pomiędzy dwoma przebiegami. Funkcja koherencji pomiędzy dwoma przebiegami ciągłymi a( oraz b( wyraŝa równanie [ 4]: Wysoka koherencja dla danej częstotliwości wskazuje na to, Ŝe dwa sygnały dla tej częstotliwości posiadają duŝą koncentrację mocy. Koherencja zmienia się w przedziale od do. JeŜeli γ (ω ) dla wszystkich częstotliwości jest równe oznacza to, Ŝe funkcje a( oraz b( są nieskorelowane dla wszystkich częstotliwości. W przypadku gdy γ (ω ) dla wszystkich częstotliwości jest równe oznacza, Ŝe funkcje są całkowicie skorelowane [] Uwydatnienie sygnału (Enhanced pectrum) Uwydatnienie sygnału jest uzyskiwane przez uśrednianie synchroniczne w czasie, lub uśrednianie globalne w czasie, co oznacza, Ŝe proces uśredniania realizowany jest w dziedzinie czasu

5 Zeszyty Problemowe Maszyny Elektryczne Nr / (94) 97 przed obliczeniem transformaty Fouriera. Kolejność operacji przeprowadzanych przez analizator w celu obliczenia widma uwydatnionego oraz przy uśrednianiu widma przedstawia rys. 4. Uwydatnienie sygnału stosowane jest do eliminacji nieskorelowanego szumu z sygnałów czasowych o pewnej cykliczności. Uwydatnienie stosuje się przy analizie sygnałów zaszumionych [] Prawdopodobieństwo W analizatorze amplituda gęstości prawdopodobieństwa oraz amplituda rozkładu prawdopodobieństwa mogą być obliczane niezaleŝnie dla obydwóch kanałów. Funkcja gęstości prawdopodobieństwa p(x) zdefiniowana jest jako prawdopodobieństwo znalezienia się amplitudy sygnału chwilowego x( we wnętrzu pewnego przedziału amplitud x. Rys. 4. Kolejność przekształceń przy obliczaniu widma uwydatnionego a oraz uśredniania widma b [] 4.7. Widmo z widma, widmo podniesione (Cepstrum) Widmo z widma, nazywane równieŝ cepstrum, jest to widmo obliczone z amplitudowego widma logarytmicznego, co oznacza, Ŝe moŝliwe jest dzięki tej funkcji wykrycie okresowości przebiegu oraz detekcja harmonicznych. Poprzez edycję funkcji cepstrum moŝliwe jest usunięcie z sygnału częstotliwości harmonicznych, co umoŝliwia badanie obwiedni widma mocy. Funkcja, w której usunięte zostały częstotliwości harmoniczne nazywa się widmem podniesionym []. Kolejność obliczania cepstrum oraz widma podniesionego przedstawia rys. 5. Funkcję cepstrum określa wzór [ 4]: = _ C( z) F log ( G AA ( k)) (6) _ G AA ( k) - uśrednione widmo mocy Rys. 6. Wyznaczanie funkcji gęstości prawdopodobieństwa [] Funkcja rozkładu prawdopodobieństwa P(x) definiowana jest jako prawdopodobieństwo P(ξ, x i ) posiadania przez sygnał pewnej amplitudy chwilowej nie większej niŝ ξ []. Rys. 7. Wyznaczanie funkcji rozkładu prawdopodobieństwa [] Rys. 8. Rozkład prawdopodobieństwa dla napięcia stałego Rys. 5. Uproszczona kolejność obliczania cepstrum oraz widma podniesionego []

6 98 Zeszyty Problemowe Maszyny Elektryczne Nr / (94) Rys. 9. Gęstość prawdopodobieństwa dla napięcia stałego 4.9. Porównanie Widmo uzyskane w wyniku porównania przedstawia róŝnicę pomiędzy danymi pochodzącymi z wejścia pomiarowego oraz danymi zapisanymi w pamięci analizatora. Analizator dokonuje porównania kompleksowego dwóch widm, to znaczy liczy stosunek pomiędzy amplitudami oraz róŝnice pomiędzy fazami przebiegów. 4.. Część rzeczywista względem czasu lub częstotliwości (Real) Część rzeczywista wyświetlana powinna być w skali liniowej. Oś X moŝe być wyświetlana w skali liniowej, lub logarytmicznej. Literatura []. Bendat J.., Piersol A. G.: Metody analizy i pomiaru sygnałów losowych. PWN, Warszawa, 976. []. Brüel & Kjær: Instruction Manual for Dual Channel ignal Analyzer ype 3. Familiarization. Bruel&Kjaer 987. [3]. Makles P: Analiza sygnału w dziedzinie czasu i częstotliwości na analizatorach dwukanałowych, specyfika pomiaru, transmisja danych oprogramowanie. Pr. dypl. Pol. Opol., 6. [4]. zymaniec.: Diagnostyka eksploatacyjna najczęstszych uszkodzeń napędów elektrycznych w przemyśle doświadczenia własne. Wyd. BOBRME, Katowice, Zeszyty Problemowe Maszyny Elektryczne, nr 89, str.-6. Autor Dr h. inŝ. ławomir zymaniec prof. PO Politechnika Opolska Wydział Elektrotechniki, Automatyki i Informatyki Opole ul. Prószkowska 76, bud. nr s.szymaniec@po.opole.pl Artykuł napisano w ramach realizacji projektu RPOP /- Nowoczesna eksploatacja, diagnostyka, monitoring i serwis łoŝysk tocznych w napędach elektrycznych loratorium Instytutu Układów Elektromechanicznych i Elektroniki Przemysłowej Politechniki Opolskiej w Opolu. Projekt finansowany przez Unię Europejską, w ramach Regionalnego Programu Operacyjnego Województwa Opolskiego na lata 7-3 i Politechnikę Opolską. Rys.. Część rzeczywista przebiegu sinusoidalnego o częstotliwości Hz 4.. Część urojona względem czasu lub częstotliwości (Imaginary) Część urojona wyświetlana powinna być w skali liniowej. Oś X moŝe być wyświetlana w skali liniowej lub logarytmicznej. 5. Zakończenie W artykule autor podał w oparciu o swoje wieloletnie doświadczenie diagnostyczne najwaŝniejsze wymagania wobec analizatorów uŝywanych do diagnostyki w warunkach przemysłowych. Informacje te w ocenie własnej mogą być przydatne dla diagnostów, którzy przygotowują się do zakupu aparatury.

SZCZEGÓLNE ROZWAśANIA NAD UŚREDNIONYMI POMIARAMI Special Considerations for Averaged Measurements

SZCZEGÓLNE ROZWAśANIA NAD UŚREDNIONYMI POMIARAMI Special Considerations for Averaged Measurements UŚREDNIANIE PARAMETRÓW KaŜda funkcja analiz częstotliwości (funkcja Vis w LabVIEW posiada moŝliwość uśredniania. Kontrola uśredniania parametrów w analizie częstotliwościowej VIs określa, jak uśrednione

Bardziej szczegółowo

CYFROWE PRZETWARZANIE SYGNAŁÓW

CYFROWE PRZETWARZANIE SYGNAŁÓW POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Analiza korelacyjna sygnałów dr hab. inż.

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych.

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych. Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie Badanie unkcji korelacji w przebiegach elektrycznych. Cel ćwiczenia: Celem ćwiczenia jest zbadanie unkcji korelacji w okresowych sygnałach

Bardziej szczegółowo

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7 Łukasz Deńca V rok Koło Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE

Bardziej szczegółowo

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.

Bardziej szczegółowo

Własności dynamiczne przetworników pierwszego rzędu

Własności dynamiczne przetworników pierwszego rzędu 1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości

Bardziej szczegółowo

ANALIZA KORELACYJNA I FILTRACJA SYGNAŁÓW

ANALIZA KORELACYJNA I FILTRACJA SYGNAŁÓW POLIECHNIKA BIAŁOSOCKA KAEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Podstawy diagnostyki technicznej Kod przedmiotu: KS05454 Ćwiczenie Nr ANALIZA KORELACYJNA I FILRACJA

Bardziej szczegółowo

Ćwiczenie 3. Właściwości przekształcenia Fouriera

Ćwiczenie 3. Właściwości przekształcenia Fouriera Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia

Bardziej szczegółowo

Teoria sterowania - studia niestacjonarne AiR 2 stopień

Teoria sterowania - studia niestacjonarne AiR 2 stopień Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe

Bardziej szczegółowo

Tabela 3.2 Składowe widmowe drgań związane z występowaniem defektów w elementach maszyn w porównaniu z częstotliwością obrotów [7],

Tabela 3.2 Składowe widmowe drgań związane z występowaniem defektów w elementach maszyn w porównaniu z częstotliwością obrotów [7], 3.5.4. Analiza widmowa i kinematyczna w diagnostyce WA Drugi poziom badań diagnostycznych, podejmowany wtedy, kiedy maszyna wchodzi w okres przyspieszonego zużywania, dotyczy lokalizacji i określenia stopnia

Bardziej szczegółowo

Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej

Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej Politechnika Łódzka Instytut Systemów Inżynierii Elektrycznej Laboratorium komputerowych systemów pomiarowych Ćwiczenie 3 Analiza częstotliwościowa sygnałów dyskretnych 1. Opis stanowiska Ćwiczenie jest

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.02. Woltomierz RMS oraz Analizator Widma 1. Woltomierz RMS oraz Analizator Widma Ćwiczenie to ma na celu poznanie

Bardziej szczegółowo

Charakterystyka amplitudowa i fazowa filtru aktywnego

Charakterystyka amplitudowa i fazowa filtru aktywnego 1 Charakterystyka amplitudowa i fazowa filtru aktywnego Charakterystyka amplitudowa (wzmocnienie amplitudowe) K u (f) jest to stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w funkcji

Bardziej szczegółowo

WYZNACZANIE CECH PUNKTOWYCH SYGNAŁÓW POMIAROWYCH

WYZNACZANIE CECH PUNKTOWYCH SYGNAŁÓW POMIAROWYCH PODSTAWY SYGNAŁÓW POMIAROWYCH I METROLOGII WYZNACZANIE CECH PUNKTOWYCH SYGNAŁÓW POMIAROWYCH WSTĘP TEORETYCZNY Sygnałem nazywamy przebieg dowolnej wielkości fizycznej mogącej być nośnikiem informacji Opis

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA

POLITECHNIKA POZNAŃSKA POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 1 Temat: Pomiar widma częstotliwościowego

Bardziej szczegółowo

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................

Bardziej szczegółowo

Temat ćwiczenia. Analiza częstotliwościowa

Temat ćwiczenia. Analiza częstotliwościowa POLIECHNIKA ŚLĄSKA W YDZIAŁ RANSPORU emat ćwiczenia Analiza częstotliwościowa Analiza częstotliwościowa sygnałów. Wprowadzenie Analizę częstotliwościową stosuje się powszechnie w wielu dziedzinach techniki.

Bardziej szczegółowo

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t 4. 1 3. " P r ze c ie k " w idm ow y 1 0 2 4.13. "PRZECIEK" WIDMOWY Rozważmy szereg czasowy {x r } dla r = 0, 1,..., N 1 uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem

Bardziej szczegółowo

Temat ćwiczenia: Wyznaczanie charakterystyk częstotliwościowych podstawowych członów dynamicznych realizowanych za pomocą wzmacniacza operacyjnego

Temat ćwiczenia: Wyznaczanie charakterystyk częstotliwościowych podstawowych członów dynamicznych realizowanych za pomocą wzmacniacza operacyjnego Automatyka i pomiar wielkości fizykochemicznych ĆWICZENIE NR 3 Temat ćwiczenia: Wyznaczanie charakterystyk częstotliwościowych podstawowych członów dynamicznych realizowanych za pomocą wzmacniacza operacyjnego

Bardziej szczegółowo

(1.1) gdzie: - f = f 2 f 1 - bezwzględna szerokość pasma, f śr = (f 2 + f 1 )/2 częstotliwość środkowa.

(1.1) gdzie: - f = f 2 f 1 - bezwzględna szerokość pasma, f śr = (f 2 + f 1 )/2 częstotliwość środkowa. MODULACJE ANALOGOWE 1. Wstęp Do przesyłania sygnału drogą radiową stosuje się modulację. Modulacja polega na odzwierciedleniu przebiegu sygnału oryginalnego przez zmianę jednego z parametrów fali nośnej.

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

LABORATORIUM PODSTAW TELEKOMUNIKACJI

LABORATORIUM PODSTAW TELEKOMUNIKACJI WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PODSTAW TELEKOMUNIKACJI Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził... Skład podgrupy:

Bardziej szczegółowo

Teoria systemów i sygnałów Kierunek AiR, sem. 5 2wE + 1l

Teoria systemów i sygnałów Kierunek AiR, sem. 5 2wE + 1l Teoria systemów i sygnałów Kierunek AiR, sem. 5 2wE + 1l Prof. dr hab. Wojciech Moczulski Politechnika Ślaska, Wydział Mechaniczny Technologiczny Katedra Podstaw Konstrukcji Maszyn 19 października 2008

Bardziej szczegółowo

Oprogramowanie analizatorów wibracji SignalCalc TURBO oprogramowanie do diagnostyki maszyn obrotowych

Oprogramowanie analizatorów wibracji SignalCalc TURBO oprogramowanie do diagnostyki maszyn obrotowych ACE MOBILYZER Oprogramowanie analizatorów wibracji SignalCalc TURBO oprogramowanie do diagnostyki maszyn obrotowych SignalCalc TURBO oprogramowanie do diagnostyki maszyn obrotowych SignalCalc to nowy,

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra InŜynierii Systemów Sterowania Podstawy Automatyki Stabilność systemów sterowania kryterium Nyquist a Materiały pomocnicze do ćwiczeń termin

Bardziej szczegółowo

Ćwiczenie F1. Filtry Pasywne

Ćwiczenie F1. Filtry Pasywne Laboratorium Podstaw Elektroniki Instytutu Fizyki PŁ Ćwiczenie F Filtry Pasywne Przed zapoznaniem się z instrukcją i przystąpieniem do wykonywania ćwiczenia naleŝy opanować następujący materiał teoretyczny:.

Bardziej szczegółowo

Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki

Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.09 Określenie procentu modulacji sygnału zmodulowanego AM 1. Określenie procentu modulacji sygnału zmodulowanego

Bardziej szczegółowo

Analiza właściwości filtrów dolnoprzepustowych

Analiza właściwości filtrów dolnoprzepustowych Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.

Bardziej szczegółowo

Ćwiczenie F3. Filtry aktywne

Ćwiczenie F3. Filtry aktywne Laboratorium Podstaw Elektroniki Instytutu Fizyki PŁ 1 Ćwiczenie F3 Filtry aktywne Przed zapoznaniem się z instrukcją i przystąpieniem do wykonywania ćwiczenia naleŝy opanować następujący materiał teoretyczny:

Bardziej szczegółowo

Ćwiczenie nr 65. Badanie wzmacniacza mocy

Ćwiczenie nr 65. Badanie wzmacniacza mocy Ćwiczenie nr 65 Badanie wzmacniacza mocy 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów wzmacniaczy oraz wyznaczenie charakterystyk opisujących ich właściwości na przykładzie wzmacniacza

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO

POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Elektroniczne przyrządy i techniki pomiarowe POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO Grupa Nr

Bardziej szczegółowo

Politechnika Warszawska

Politechnika Warszawska Politechnika Warszawska Wydział Elektryczny Laboratorium Teletechniki Skrypt do ćwiczenia T.03 Podstawowe zasady modulacji amlitudy na przykładzie modulacji DSB 1. Podstawowe zasady modulacji amplitudy

Bardziej szczegółowo

SYMULACJA KOMPUTEROWA SYSTEMÓW

SYMULACJA KOMPUTEROWA SYSTEMÓW SYMULACJA KOMPUTEROWA SYSTEMÓW ZASADY ZALICZENIA I TEMATY PROJEKTÓW Rok akademicki 2015 / 2016 Spośród zaproponowanych poniżej tematów projektowych należy wybrać jeden i zrealizować go korzystając albo

Bardziej szczegółowo

Przetwarzanie sygnałów biomedycznych

Przetwarzanie sygnałów biomedycznych Przetwarzanie sygnałów biomedycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Bardziej szczegółowo

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Grupa: wtorek 18:3 Tomasz Niedziela I. CZĘŚĆ ĆWICZENIA 1. Cel i przebieg ćwiczenia. Celem ćwiczenia

Bardziej szczegółowo

Spis treści. 1. Cyfrowy zapis i synteza dźwięku Schemat blokowy i zadania karty dźwiękowej UTK. Karty dźwiękowe. 1

Spis treści. 1. Cyfrowy zapis i synteza dźwięku Schemat blokowy i zadania karty dźwiękowej UTK. Karty dźwiękowe. 1 Spis treści 1. Cyfrowy zapis i synteza dźwięku... 2 2. Schemat blokowy i zadania karty dźwiękowej... 4 UTK. Karty dźwiękowe. 1 1. Cyfrowy zapis i synteza dźwięku Proces kodowania informacji analogowej,

Bardziej szczegółowo

Analiza właściwości filtra selektywnego

Analiza właściwości filtra selektywnego Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..

Bardziej szczegółowo

Przekształcenia sygnałów losowych w układach

Przekształcenia sygnałów losowych w układach INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Sygnały i kodowanie Przekształcenia sygnałów losowych w układach Warszawa 010r. 1. Cel ćwiczenia: Ocena wpływu charakterystyk

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 4 WYZNACZANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego

Bardziej szczegółowo

Temat ćwiczenia. Pomiary przemieszczeń metodami elektrycznymi

Temat ćwiczenia. Pomiary przemieszczeń metodami elektrycznymi POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary przemieszczeń metodami elektrycznymi Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z elektrycznymi metodami pomiarowymi wykorzystywanymi

Bardziej szczegółowo

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)

Bardziej szczegółowo

Ćw. 8 Bramki logiczne

Ćw. 8 Bramki logiczne Ćw. 8 Bramki logiczne 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi bramkami logicznymi, poznanie ich rodzajów oraz najwaŝniejszych parametrów opisujących ich własności elektryczne.

Bardziej szczegółowo

PL B1. Sposób i układ pomiaru całkowitego współczynnika odkształcenia THD sygnałów elektrycznych w systemach zasilających

PL B1. Sposób i układ pomiaru całkowitego współczynnika odkształcenia THD sygnałów elektrycznych w systemach zasilających RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 210969 (13) B1 (21) Numer zgłoszenia: 383047 (51) Int.Cl. G01R 23/16 (2006.01) G01R 23/20 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii

Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii Metody pomiarów właściwości lepkosprężystych materii Pomiarów dokonuje się w dwóch dziedzinach: czasowej lub częstotliwościowej i nie zależy to od rodzaju przyłożonych naprężeń (normalnych lub stycznych).

Bardziej szczegółowo

LABORATORIUM PROCESÓW STOCHASTYCZNYCH

LABORATORIUM PROCESÓW STOCHASTYCZNYCH WOJSKOWA AKADEMIA TECHICZA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PROCESÓW STOCHASTYCZYCH Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził. Skład podgrupy 1....

Bardziej szczegółowo

Katedra Elektrotechniki Teoretycznej i Informatyki

Katedra Elektrotechniki Teoretycznej i Informatyki Katedra Elektrotechniki Teoretycznej i Informatyki Przedmiot: Badania nieniszczące metodami elektromagnetycznymi Numer Temat: Badanie materiałów kompozytowych z ćwiczenia: wykorzystaniem fal elektromagnetycznych

Bardziej szczegółowo

Przetwarzanie i transmisja danych multimedialnych. Wykład 8 Transformaty i kodowanie cz. 2. Przemysław Sękalski.

Przetwarzanie i transmisja danych multimedialnych. Wykład 8 Transformaty i kodowanie cz. 2. Przemysław Sękalski. Przetwarzanie i transmisja danych multimedialnych Wykład 8 Transformaty i kodowanie cz. 2 Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS

Bardziej szczegółowo

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe. Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu

Bardziej szczegółowo

Podstawy Przetwarzania Sygnałów

Podstawy Przetwarzania Sygnałów Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów Biomedycznych

Laboratorium Przetwarzania Sygnałów Biomedycznych Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 1 Wydobywanie sygnałów z szumu z wykorzystaniem uśredniania Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim CYFROWE PRZETWARZANIE SYGNAŁÓW Nazwa w języku angielskim DIGITAL SIGNAL PROCESSING Kierunek studiów

Bardziej szczegółowo

FFT i dyskretny splot. Aplikacje w DSP

FFT i dyskretny splot. Aplikacje w DSP i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata

Bardziej szczegółowo

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZENIE 7. Splot liniowy i kołowy sygnałów

Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZENIE 7. Splot liniowy i kołowy sygnałów Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZEIE 7 Splot liniowy i kołowy sygnałów 1. Cel ćwiczenia Operacja splotu jest jedną z najczęściej wykonywanych operacji na sygnale. Każde przejście

Bardziej szczegółowo

PL B1. Sposób wyznaczania błędów napięciowego i kątowego indukcyjnych przekładników napięciowych dla przebiegów odkształconych

PL B1. Sposób wyznaczania błędów napięciowego i kątowego indukcyjnych przekładników napięciowych dla przebiegów odkształconych PL 216925 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 216925 (13) B1 (21) Numer zgłoszenia: 389198 (51) Int.Cl. G01R 35/02 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Ćwiczenie nr 6 Charakterystyki częstotliwościowe

Ćwiczenie nr 6 Charakterystyki częstotliwościowe Wstęp teoretyczny Ćwiczenie nr 6 Charakterystyki częstotliwościowe 1 Cel ćwiczenia Celem ćwiczenia jest wyznaczenie charakterystyk częstotliwościowych układu regulacji oraz korekta nastaw regulatora na

Bardziej szczegółowo

Transformata Fouriera

Transformata Fouriera Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli

Bardziej szczegółowo

4.2 Analiza fourierowska(f1)

4.2 Analiza fourierowska(f1) Analiza fourierowska(f1) 179 4. Analiza fourierowska(f1) Celem doświadczenia jest wyznaczenie współczynników szeregu Fouriera dla sygnałów okresowych. Zagadnienia do przygotowania: szereg Fouriera; sygnał

Bardziej szczegółowo

Analiza metod prognozowania kursów akcji

Analiza metod prognozowania kursów akcji Analiza metod prognozowania kursów akcji Izabela Łabuś Wydział InŜynierii Mechanicznej i Informatyki Kierunek informatyka, Rok V Specjalność informatyka ekonomiczna Politechnika Częstochowska izulka184@o2.pl

Bardziej szczegółowo

Część I. Pomiar drgań własnych pomieszczenia

Część I. Pomiar drgań własnych pomieszczenia LABORATORIUM INśYNIERII DŹWIĘKU 2 ĆWICZENIE NR 10 Część I. Pomiar drgań własnych pomieszczenia I. Układ pomiarowy II. Zadania do wykonania 1. Obliczyć promień krytyczny pomieszczenia, przy załoŝeniu, Ŝe

Bardziej szczegółowo

TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych

TERAZ O SYGNAŁACH. Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych TERAZ O SYGNAŁACH Przebieg i widmo Zniekształcenia sygnałów okresowych Miary sygnałów Zasady cyfryzacji sygnałów analogowych Sygnał sinusoidalny Sygnał sinusoidalny (także cosinusoidalny) należy do podstawowych

Bardziej szczegółowo

7. Szybka transformata Fouriera fft

7. Szybka transformata Fouriera fft 7. Szybka transformata Fouriera fft Dane pomiarowe sygnałów napięciowych i prądowych często obarczone są dużym błędem, wynikającym z istnienia tak zwanego szumu. Jedną z metod wspomagających analizę sygnałów

Bardziej szczegółowo

Ćwiczenie nr 25: Interferencja fal akustycznych

Ćwiczenie nr 25: Interferencja fal akustycznych Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 25: Interferencja

Bardziej szczegółowo

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.

Bardziej szczegółowo

PRZETWARZANIE SYGNAŁÓW

PRZETWARZANIE SYGNAŁÓW PRZEWARZANIE SYGNAŁÓW SEMESR V Człowiek- nalepsza inwestyca Proekt współfinansowany przez Unię Europeską w ramach Europeskiego Funduszu Społecznego Wykład II Wprowadzenie Podstawy teoretyczne przetwarzania

Bardziej szczegółowo

Algorytmy detekcji częstotliwości podstawowej

Algorytmy detekcji częstotliwości podstawowej Algorytmy detekcji częstotliwości podstawowej Plan Definicja częstotliwości podstawowej Wybór ramki sygnału do analizy Błędy oktawowe i dokładnej estymacji Metody detekcji częstotliwości podstawowej czasowe

Bardziej szczegółowo

1. Modulacja analogowa, 2. Modulacja cyfrowa

1. Modulacja analogowa, 2. Modulacja cyfrowa MODULACJA W16 SMK 2005-05-30 Jest operacja mnożenia. Jest procesem nakładania informacji w postaci sygnału informacyjnego m.(t) na inny przebieg o wyższej częstotliwości, nazywany falą nośną. Przyczyna

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

) (2) 1. A i. t+β i. sin(ω i

) (2) 1. A i. t+β i. sin(ω i Ćwiczenie 8 AALIZA HARMOICZA PRZEBIEGÓW DRGAŃ 1. Cel ćwiczenia Analiza przebiegów drgań maszyny i wyznaczenie składowych harmonicznych tych przebiegów,. Wprowadzenie.1. Sygnały pomiarowe W celu przeprowadzenia

Bardziej szczegółowo

Wprowadzenie konieczno wyznaczania na bie co warto ci statycznych konieczno rozdziału i osobnego przetwarzania dwóch składowych.

Wprowadzenie konieczno wyznaczania na bie co warto ci statycznych konieczno rozdziału i osobnego przetwarzania dwóch składowych. 83 Wprowadzenie Informacja rejestrowana przez aparaturę kontrolno-pomiarową dzielimy na: sygnały statyczne (typu DC), nazywane sygnałami wolnozmiennymi; sygnały te opisywane są pojedynczymi wartościami

Bardziej szczegółowo

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0, Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.

Bardziej szczegółowo

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Ćwiczenie: Obwody prądu sinusoidalnego jednofazowego Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres

Bardziej szczegółowo

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Specjalność Transport morski Semestr II Ćw. 2 Filtry analogowe układy całkujące i różniczkujące Wersja opracowania

Bardziej szczegółowo

Przebieg sygnału w czasie Y(fL

Przebieg sygnału w czasie Y(fL 12.3. y y to układy elektroniczne, które przetwarzają energię źródła przebiegu stałego na energię przebiegu zmiennego wyjściowego (impulsowego lub okresowego). W zależności od kształtu wytwarzanego przebiegu

Bardziej szczegółowo

A-2. Filtry bierne. wersja

A-2. Filtry bierne. wersja wersja 04 2014 1. Zakres ćwiczenia Celem ćwiczenia jest zrozumienie propagacji sygnałów zmiennych w czasie przez układy filtracji oparte na elementach rezystancyjno-pojemnościowych. Wyznaczenie doświadczalne

Bardziej szczegółowo

Program DSA Monitor - funkcje

Program DSA Monitor - funkcje Program DSA Monitor - funkcje Program DSA Monitor przeznaczony jest do wczytania i obróbki danych pomiarowych pochodzących z mierników poziomu dźwięku produkcji SONOPAN (DSA-50, DLM-101/102, DD-40/41),

Bardziej szczegółowo

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) . KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych

Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych XXXVIII MIĘDZYUCZELNIANIA KONFERENCJA METROLOGÓW MKM 06 Warszawa Białobrzegi, 4-6 września 2006 r. Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych Eligiusz PAWŁOWSKI Politechnika

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

PREZENTACJA MODULACJI AM W PROGRAMIE MATHCAD

PREZENTACJA MODULACJI AM W PROGRAMIE MATHCAD POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 80 Electrical Engineering 2014 Jakub PĘKSIŃSKI* Grzegorz MIKOŁAJCZAK* PREZENTACJA MODULACJI W PROGRIE MATHCAD W artykule przedstawiono dydaktyczną

Bardziej szczegółowo

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT)

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) 8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) Ćwiczenie polega na wykonaniu analizy widmowej zadanych sygnałów metodą FFT, a następnie określeniu amplitud i częstotliwości głównych składowych

Bardziej szczegółowo

Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści

Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, Spis treści Teoria obwodów / Stanisław Osowski, Krzysztof Siwek, Michał Śmiałek. wyd. 2. Warszawa, 2013 Spis treści Słowo wstępne 8 Wymagania egzaminacyjne 9 Wykaz symboli graficznych 10 Lekcja 1. Podstawowe prawa

Bardziej szczegółowo

Bierne układy różniczkujące i całkujące typu RC

Bierne układy różniczkujące i całkujące typu RC Instytut Fizyki ul. Wielkopolska 15 70-451 Szczecin 6 Pracownia Elektroniki. Bierne układy różniczkujące i całkujące typu RC........ (Oprac. dr Radosław Gąsowski) Zakres materiału obowiązujący do ćwiczenia:

Bardziej szczegółowo

ĘŚCIOWO KOHERENTNYM. τ), gdzie Γ(r 1. oznacza centralną częstotliwość promieniowania quasi-monochromatycznego.

ĘŚCIOWO KOHERENTNYM. τ), gdzie Γ(r 1. oznacza centralną częstotliwość promieniowania quasi-monochromatycznego. OBRAZOWANIE W OŚWIETLENIU CZĘŚ ĘŚCIOWO KOHERENTNYM 1. Propagacja światła a częś ęściowo koherentnego prof. dr hab. inŝ. Krzysztof Patorski Krzysztof PoniŜej zajmiemy się propagacją promieniowania quasi-monochromatycznego,

Bardziej szczegółowo

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 4. Badanie optycznej transformaty Fouriera

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 4. Badanie optycznej transformaty Fouriera Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie 4. Badanie optycznej transformaty Fouriera Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk

Bardziej szczegółowo

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC

Ćwiczenie 3 BADANIE OBWODÓW PRĄDU SINUSOIDALNEGO Z ELEMENTAMI RLC Ćwiczenie 3 3.1. Cel ćwiczenia BADANE OBWODÓW PRĄD SNSODANEGO Z EEMENTAM RC Zapoznanie się z własnościami prostych obwodów prądu sinusoidalnego utworzonych z elementów RC. Poznanie zasad rysowania wykresów

Bardziej szczegółowo

Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne

Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne Interpolacja, aproksymacja całkowanie Interpolacja Krzywa przechodzi przez punkty kontrolne Aproksymacja Punkty kontrolne jedynie sterują kształtem krzywej INTERPOLACJA Zagadnienie interpolacji można sformułować

Bardziej szczegółowo

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Podstawy Automatyki laboratorium

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Podstawy Automatyki laboratorium Cel ćwiczenia: Celem ćwiczenia jest uzyskanie wykresów charakterystyk skokowych członów róŝniczkujących mechanicznych i hydraulicznych oraz wyznaczenie w sposób teoretyczny i graficzny ich stałych czasowych.

Bardziej szczegółowo

METODY ANALIZY SYGNAŁÓW WIBROAKUSTYCZNYCH

METODY ANALIZY SYGNAŁÓW WIBROAKUSTYCZNYCH INSTYTUT KONSTRUKCJI MASZYN LABORATORIUM METODY ANALIZY SYGNAŁÓW WIBROAKUSTYCZNYCH Methods of analyzing vibro-acoustics signal Zakres ćwiczenia: 1. Rodzaje sygnałów. 2. Metody analizy sygnałów w dziedzinie

Bardziej szczegółowo

Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego.

Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego. Strona 1 z 38 Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego. Alicja Rzeszótko alicja@cbk.waw.pl 2 czerwca 2006 1 Omówienie danych 3 Strona główna Strona 2 z 38 2

Bardziej szczegółowo

3GHz (opcja 6GHz) Cyfrowy Analizator Widma GA4063

3GHz (opcja 6GHz) Cyfrowy Analizator Widma GA4063 Cyfrowy Analizator Widma GA4063 3GHz (opcja 6GHz) Wysoka kla sa pomiarowa Duże możliwości pomiarowo -funkcjonalne Wysoka s tabi lność Łatwy w użyc iu GUI Małe wymiary, lekki, przenośny Opis produktu GA4063

Bardziej szczegółowo

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników 1. Podstawowe pojęcia związane z niewyważeniem Stan niewyważenia stan wirnika określony takim rozkładem masy, który w czasie wirowania wywołuje

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej

LABORATORIUM POMIARY W AKUSTYCE. ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej LABORATORIUM POMIARY W AKUSTYCE ĆWICZENIE NR 4 Pomiar współczynników pochłaniania i odbicia dźwięku oraz impedancji akustycznej metodą fali stojącej 1. Cel ćwiczenia Celem ćwiczenia jest poznanie metody

Bardziej szczegółowo

Laboratorium POMIAR DRGAŃ MASZYN W ZASTOSOWANIU DO OCENY OGÓLNEGO STANU DYNAMICZNEGO

Laboratorium POMIAR DRGAŃ MASZYN W ZASTOSOWANIU DO OCENY OGÓLNEGO STANU DYNAMICZNEGO INSTYTUT KONSTRUKCJI MASZYN Laboratorium POMIAR DRGAŃ MASZYN W ZASTOSOWANIU DO OCENY OGÓLNEGO STANU DYNAMICZNEGO Measurement of vibrations in assessment of dynamic state of the machine Zakres ćwiczenia:

Bardziej szczegółowo

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).

2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20). SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy

Bardziej szczegółowo

MONITORING STANU TECHNICZNEGO NAPĘDÓW ELEKTRYCZNYCH W PRZEMYŚLE DOŚWIADCZENIA WŁASNE

MONITORING STANU TECHNICZNEGO NAPĘDÓW ELEKTRYCZNYCH W PRZEMYŚLE DOŚWIADCZENIA WŁASNE Zeszyty Problemowe Maszyny Elektryczne Nr 89/2011 27 Sławomir Szymaniec Politechnika Opolska, Opole MONITORING STANU TECHNICZNEGO NAPĘDÓW ELEKTRYCZNYCH W PRZEMYŚLE DOŚWIADCZENIA WŁASNE MONITORING OF TECHNICAL

Bardziej szczegółowo