Wyświetlanie obrazu Techniki wyświetlania obrazu i ich zastosowanie w grach.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wyświetlanie obrazu Techniki wyświetlania obrazu i ich zastosowanie w grach."

Transkrypt

1 Wyświetlanie obrazu Techniki wyświetlania obrazu i ich zastosowanie w grach. Gry komputerowe, Informatyka N1, III Rok, 2018 r.

2 WYŚWIETLANIE OBRAZU Współczesne wyświetlacze komputerowe traktują obraz jako raster Wyświetlacze działają ze stałą częstotliwością odświeżania (dawniej odchylania pionowego) Najczęściej spotykaną częstotliwością odświeżania jest obecnie 60Hz Dla obrazu stereoskopowego, będzie to dwa razy więcej Progresywne wyświetlanie klatki: 1/60s Źródło obrazu: 2

3 WYŚWIETLANIE OBRAZU Karta graficzna odpowiada za stworzenie zawartości obrazu monitora, przechowywanie jej i wysłanie do monitora gdy ten będzie gotowy narysować kolejną klatkę Obraz do wyświetlenia przechowywany jest w buforze klatki (ang. framebuffer) w pamięci graficznej (współcześnie np. GDDR) Bufor klatki posiada takie same cechy, jak zwyczajny obraz: wymiary, liczbę kanałów i rozmiar piksela Obraz Program Obraz (bufor klatki) 3

4 WYŚWIETLANIE OBRAZU Komponowanie zawartości bufora klatki nie jest natychmiastowe. W grafice czasu rzeczywistego elementy sceny renderowane są jeden po drugim. Zatem dopóki nie zakończy się renderowanie wszystkich elementów sceny, bufor klatki może zawierać nieukończony obraz. Aby uniknąć migotania obrazu podczas jego przerysowywania gdy występuje konieczność jego akutalizacji, stosuje się technikę podwójnego buforowania (ang. double buffering) Mamy wówczas dwa bufory klatki: Bufor "przedni" (ang. front buffer) Bufor "tylny" (ang. back buffer) Jest wyświetlany Jest aktualizowany Gdy zakończy się aktualizacja back buffera, zamieniane są one miejscami (ang. buffer swap) Użycie podwójnego buforowania rozwiązuje ten problem. Dopóki nowa klatka nie zostanie ukończona, wyświetlana będzie poprzednia klatka. Front Front Back 4

5 WYŚWIETLANIE OBRAZU Komponowanie zawartości bufora klatki nie jest natychmiastowe. W grafice czasu rzeczywistego elementy sceny renderowane są jeden po drugim. Zatem dopóki nie zakończy się renderowanie wszystkich elementów sceny, bufor klatki może zawierać nieukończony obraz. Aby uniknąć migotania obrazu podczas jego przerysowywania gdy występuje konieczność jego akutalizacji, stosuje się technikę podwójnego buforowania (ang. double buffering) Mamy wówczas dwa bufory klatki: Bufor "przedni" (ang. front buffer) Bufor "tylny" (ang. back buffer) Jest wyświetlany Jest aktualizowany Gdy zakończy się aktualizacja back buffera, zamieniane są one miejscami (ang. buffer swap) Użycie podwójnego buforowania rozwiązuje ten problem. Dopóki nowa klatka nie zostanie ukończona, wyświetlana będzie poprzednia klatka. Back Front Front 5

6 WYŚWIETLANIE OBRAZU Dla zachowania wrażenia płynności wyświetlanego ruchomego obrazu, należy upewnić się że kolejne klatki animacji będą docierać do monitora, gdy ten będzie gotowy je wyświetlić W tym celu stosuje się tzw. synchronizację pionową (ang. vertical synchronisation / VSync) Sterownik karty graficznej lub program czeka z zamianą buforów, aż monitor będzie gotowy wyświetlić kolejną klatkę W innym wypadku pomimo sprzętowej możliwości wygenerowania nawet większej liczby klatek na sekundę niż wyświetla monitor, obraz nie będzie płynny Artefakt nazywany tearing, wyświetlany obraz składający się z więcej niż jednej klatki 6

7 WYŚWIETLANIE OBRAZU Dla wyświetlaczy oferujących wyższą częstotliwość odświeżania ekranu niż 60Hz, czas cyklu będzie krótszy niż 1/60s. czas renderowania jednej klatki cykl odświeżenia obrazu na wyświetlaczu VSync Off max FPS swap interval = 0 Procesor graficzny czekając na gotowość wyświetlacza nie musi wykonywać operacji, podczas gdy bez użycia synchronizacji od razu zaczynałby renderować kolejną klatkę. VSync On swap interval = 1 VSync On swap interval = 2 (sleep) (sleep) (sleep) 1/60s Użycie synchronizacji pionowej może więc też prowadzić do zmniejszenia zużycia energii. (sleep) 60 FPS (sleep) 30 FPS 1/60s czas 7

8 WYŚWIETLANIE OBRAZU Synchronizacja pionowa wyłączona Synchronizacja pionowa włączona Artefakt tego rodzaju nazywa się często ang. słowem tearing. 8

9 WYŚWIETLANIE OBRAZU Technologia NVIDIA G-Sync Synchronizacja wyświetlacza z kartą graficzną czyli podejście odwrotne Wyświetlacz ma adaptacyjną częstotliwość odświeżania, dostosowującą się do aktualnej liczby klatek na sekundę Zakres Hz, zależnie od sprzętu Podejście wbrew pozorom nie jest nowe, podobne rozwiązanie Adaptive Sync jest częścią standardu DisplayPort 1.2a zaimplementowane choćby przez AMD w ich FreeSync; różnice: G-Sync duplikuje klatki gdy ich częstotliwość poniżej minimum G-Sync zapobiega nadpisywaniu klatek Źródło obrazu: NVIDIA 9

10 Kamera w scenie 3D Pojęcie kamery. Implementacja interaktywnej kamery FPP. Gry komputerowe, Informatyka N1, III Rok, 2018 r.

11 Kamera Jest to wirtualny koncept opisujący sposób oglądania sceny przez obserwatora, dla którego renderujemy obraz Wyróżnia się dwa podstawowe rodzaje rzutowań: Rzut perspektywiczny Rzut prostokątny (ang. orthographic) 11

12 Kamera perspektywiczna Kamera musi być opisana w sposób matematyczny, aby możliwe było uwzględnienie jej cech w procesie renderowania Przede wszystkim musi posiadać zdefiniowane: Pozycję (punkt zaczepienia): p Kierunek widzenia: d d p 12

13 Kamera perspektywiczna Położenie w przestrzeni 3D jest po prostu 3-elementowym wektorem Zmiana położenia powoduje przemieszczenie naszego wirtualnego "aparatu fotograficznego" 13

14 Kamera perspektywiczna Kierunek w przestrzeni 3D również jest 3-elementowym wektorem Kierunek można rozumieć jako wektor leżący na półprostej łączącej punkt zaczepienia z miejscem, na które kamera ma być skierowana Kierunek zwyczajowo przechowuje się jako wektor jednostkowy ( d = 1 ) 14

15 Kamera perspektywiczna To jednak nie wystarczy, aby jednoznacznie określić sposób obserwacji sceny Oba poniższe przykłady zostały wyrenderowane z tego samego miejsca, w tym samym kierunku: 15

16 Kamera perspektywiczna Konieczne jest wprowadzenie dodatkowo wektora pionu (ang. up vector): u Najczęściej jest to (0, 1, 0) jeśli za drugą współrzędną przyjmiemy tę skierowaną ku górze świata u d p 16

17 Kamera perspektywiczna Dodatkowo kamerę określają: Kąt widzenia (najczęściej w stopniach) fov Jego zmiana odpowiada zmianie ogniskowej obiektywu (popularnie zwanej "zoomem" w aparacie fotograficznym) Nie jest tożsamy z przybliżeniem/oddaleniem kamery! Szeroki kąt Wąski kąt (krótka ogniskowa) (długa ogniskowa) 17

18 Kamera perspektywiczna Dodatkowo kamerę określają: Odległość płaszczyzn przycinania: bliskiej n i dalekiej f (ang. near/far clipping plane) Określają, od jakiej do jakiej odległości będzie renderowana scena Ma to związek z precyzją bufora głębokości Im większy zakres odległości jest renderowany, tym większa szansa powstania problemów typu z-fighting wartości powinny zostać dobrane odpowiednio do charakterystyki danej sceny f n 18

19 Test głębokości (ang. depth test) Algorytm malarza (ang. painter's algorithm) Nie jest dokonywany test głębokości Obiekty przykrywają się zgodnie z kolejnością rysowania To, co zostanie narysowane później, zawsze przykryje to, co było narysowane wcześniej Najpierw narysowano fioletowy sześcian Najpierw narysowano niebieski sześcian Źródło obrazu: 19

20 Test głębokości (ang. depth test) Algorytm bufora Z Oprócz bufora koloru, tworzony jest też bufor głębokości (bufor Z) o odpowiadającym mu rozmiarze W buforze Z przechowywane są informacje o odległości od kamery tego fragmentu powierzchni obiektu, któremu odpowiada kolor znajdujący się w tym pikselu w buforze koloru Jeśli w wyniku renderowania kolejnego obiektu sceny okaże się, że w danym pikselu bufora już coś się wcześniej znalazło, wykonywany jest test głębokości: Jeśli odległość od kamery nowego fragmentu powierzchni obiektu jest mniejsza niż wartość w buforze głębokości, to nadpisujemy ją nową wartością i nadpisujemy kolor Bo nowy obiekt jest bliżej kamery, więc przysłania to, co wcześniej było w buforze koloru Jeśli odległość od kamery nowego fragmentu jest większa niż wartość w buforze głębokości, to pomijamy nową wartość Bo wcześniej już narysowaliśmy coś, co przysłania nasz nowy obiekt Źródło obrazu: Wikipedia 20

21 Test głębokości Bufor Z (ang. depth test) Jest jednokanałową mapą bitową, w której każdy na każdy piksel przeznaczono określoną liczbę bitów W związku z tym możliwe jest zapisanie jedynie skończonej liczby różnych wartości odległości od kamery Najczęściej 24 bity lub 32 bity np. wartości całkowite od 0 do Prowadzi to do potencjalnych konfliktów d [m] 0 Źródło obrazu: Wikipedia 21

22 Test głębokości Precyzja bufora Z (ang. depth test) Zbyt mała precyzja prowadzi do konfliktów, które objawiają się artefaktem z-fighting Należy ograniczyć zakres odległości Poprzez użycie płaszczyzn odcinania Stosuje się nieliniowe mapowanie odległości na wartości bufora Z Najczęściej logarytmiczne Większa precyzja dla małych odległości, mniejsza dla dużych Mapowanie liniowe: 0 Źródło obrazu: GeeXLab, JEGX Mapowanie nieliniowe: d [m] 0 d [m] 22

23 Test widoczności (ang. visibility test) Istotny problem w środowiskach 3D: Renderowanie tylko tych powierzchni, które są widoczne Idea bufora Z przez wiele lat była niemożliwa do użycia w czasie rzeczywistym Podejście oparte na wysyłaniu promieni (ang. ray casting) Jeśli poruszamy się tylko po płaszczyźnie, wystarczy tylko tyle promieni, ile mamy pikseli w poziomie w buforze klatki Perspektywa: na podstawie odległości rysujemy pionową linię o proporcjonalnej wysokości Źródła obrazów: Fabien Sanglard, WIkipedia 23

24 Test widoczności (ang. visibility test) Podejście oparte na wysyłaniu promieni (ang. ray casting) Za głównego popularyzatora ray castingu jako narzędzia służącego do renderowania ścian pseudo-trójwymiarowej sceny uważa się Johna Carmacka, założyciela id Software. Pierwsze użycie tego podejścia miało miejsce w grze Hovertank 3D. Podejście to, wzbogacone o mapowanie tekstur i proste oświetlenie, zostało użyte w bardzo popularnej w swoich czasach grze Wolfenstein 3D. Źródła obrazów: id Software, Wikipedia 24

25 Test głębokości (ang. depth test) Można stosować komponowanie klatki za pomocą zarówno testu głębokości, jak i algorytmu malarza. Interfejs użytkownika zwykle nanosimy na wyrenderowaną wizualizację świata bez użycia testu głębokości Kiedyś stosowano uproszczenia w celu przyspieszenia renderowania, np. samochód gracza mógł być rysowany na tle otoczenia, bo rzadko kiedy dochodzi do sytuacji w której miałby być czymś przysłonięty Źródło obrazu: Virgin Interactive 25

26 Kamera perspektywiczna Dodatkowo kamerę określają: Proporcje boków podstawy ściętego ostrosłupa (ang. frustum) Stosunek szerokości do wysokości 4:3, 16:9, 16:10,... 26

27 Kamera perspektywiczna Podsumowując, do jednoznacznego opisania kamery potrzebne są wartości następujących atrybutów: Cechy widoku: Położenie Kierunek Wektor pionu Cechy projekcji: Kąt widzenia Odległości płaszczyzn przycinania Proporcje 27

28 Kamera w OpenGL Aby opisać jednoznacznie położenie kamery, należy określić: Pozycję p Kierunek widzenia d Wektor pionu u Każdy z tych elementów w przestrzeni 3D jest 3-elementowym wektorem u d p 28

29 Kamera w OpenGL Aby łatwo uzyskać w OpenGL macierz transformacji odpowiadającą kamerze umieszczonej w zadanym punkcie, patrzącą w zadanym kierunku i o zadanym wektorze pionu, najlepiej posłużyć się funkcją: glulookat( eyex, eyey, eyez, lookatx, lookaty, lookatz, upx, upy, upz ) eye* - współrzędne XYZ punktu zaczepienia kamery lookat* - współrzędne XYZ punktu, na który ma spoglądać kamera up* - współrzędne XYZ wektora pionu W dalszych rozważaniach dla uproszczenia przyjmiemy, że wektor pionu zawsze będzie równy (0;1;0) 29

30 Kamera w OpenGL Należy zwrócić uwagę, że glulookat() nie przyjmuje kierunku widzenia kamery, a punkt na który kamera ma spoglądać Jest to szczególnie istotne, gdy naszym zadaniem jest zaprogramowanie interaktywnej kamery pierwszoosobowej W takim przypadku dużo wygodniej jest przechowywać kierunek widzenia jako wektor jednostkowy Na podstawie pozycji kamery o raz kierunku można łatwo uzyskać współrzędne punktu, który można przekazać do glulookat(). d p 30

31 Kamera w OpenGL Należy zwrócić uwagę, że glulookat() nie przyjmuje kierunku widzenia kamery, a punkt na który kamera ma spoglądać Jest to szczególnie istotne, gdy naszym zadaniem jest zaprogramowanie interaktywnej kamery pierwszoosobowej W takim przypadku dużo wygodniej jest przechowywać kierunek widzenia jako wektor jednostkowy Na podstawie pozycji kamery o raz kierunku można łatwo uzyskać współrzędne punktu, który można przekazać do glulookat(). d p 31

32 Kamera w OpenGL Należy zwrócić uwagę, że glulookat() nie przyjmuje kierunku widzenia kamery, a punkt na który kamera ma spoglądać Jest to szczególnie istotne, gdy naszym zadaniem jest zaprogramowanie interaktywnej kamery pierwszoosobowej Punkt o współrzędnych p+d bez wątpienia znajduje się na osi widzenia kamery znajdującej się w punkcie p, skoro wektor d wskazuje jej kierunek widzenia. W takim przypadku dużo wygodniej jest przechowywać kierunek widzenia jako wektor jednostkowy Na podstawie pozycji kamery o raz kierunku można łatwo uzyskać współrzędne punktu, który można przekazać do glulookat(). d p+d p 32

33 Stan kamery Reprezentacja stanu kamery w pamięci Strukturę/klasę przechowującą dane wektora wygodnie jest rozbudować o przydatne metody (np. długość, normalizacja, iloczyn wektorowy) i przeciążone operatory dla częstych operacji arytmetycznych. Podejść do implementacji kamery jest wiele. Przytoczone tutaj jest wygodne dla prostych scen i stosunkowo łatwe w zrozumieniu. Poszukując rozwiązania bardziej uniwersalnego, warto przyjrzeć się podejściu opartemu na kwaternionach. Wygodne jest zapamiętanie trzech wektorów 3-elementowych: Położenia Kierunku patrzenia Pionu Sugerowane jest utworzenie struktury przechowującej trzy składowe XYZ: struct vec3 { float x, y, z; }; Wówczas stan kamery można przedstawić następująco: struct SCameraState { vec3 pos; vec3 dir; vec3 up; }; 33

34 Stan kamery Jako że dla uproszczenia przyjęliśmy, że wektor pionu jest stały, możemy go pominąć Przydatne może okazać się przechowanie aktualnej prędkości przesuwania kamery Np. w celu płynnego wygaszania ruchu Zatem struktura stanu kamery może przyjąć następującą postać: struct SCameraState { vec3 pos; vec3 dir; float speed; }; Na potrzeby zadania utworzymy globalną instancję tej struktury i nazwiemy ją player SCameraState player; 34

35 Stan kamery W takiej sytuacji, możemy każdorazowo zasilać wywołanie glulookat() następującymi danymi: glulookat( player.pos.x, player.pos.y, player.pos.z, player.pos.x + player.dir.x, player.pos.y + player.dir.y, player.pos.z + player.dir.z, 0, 1, 0 ); 35

36 Ruch kamery w przód/tył Aby zrealizować taki ruch, trzeba zmodyfikować położenie kamery kierunek i pion pozostaną bez zmian "Przód" w danym momencie odpowiada wektorowi kierunku kamery Pozycję po przesunięciu obliczamy w prosty sposób: p ' = p+ speed d d p d p' p p' Mała prędkość (mnożnik) Duża prędkość (mnożnik) 36

37 Ruch kamery w bok Aby uwzględnić kierunek widzenia kamery, ruszając się na boki należy poruszać się po kierunku prostopadłym W założeniu mamy poruszać się tylko po płaszczyźnie XZ e p' d p p ' = p+ speed e, e d Jak wyznaczyć wektor prostopadły do danego? () ( ) dx d= d y dz d z e= 0 dx 37

38 Obrót kamery Obrót kamery jest zmianą kierunku jej widzenia, bez wpływu na punkt zaczepienia W założeniu mamy poruszać się tylko po płaszczyźnie XZ Rezultatem jest wektor kierunku obrócony o zadany kąt Jak wyliczyć jego współrzędne? d p d' 38

39 Obrót wektora kierunku w 2D y Dla uproszczenia sprowadźmy problem do dwóch wymiarów. d Będziemy dokonywać obrotu tylko w obrębie jednej płaszczyzny, którą roboczo nazwiemy x/y. x Chcąc poruszać się po płaszczyźnie x/z układu współrzędnych OpenGL należy odpowiednio zmienić oznaczenie osi! 39

40 Obrót wektora kierunku w 2D y Chcemy dokonać obrotu kamery o zadany kąt α. α Miara tego kąta może być rozumiana jako krok wykonany podczas tej jednej operacji obracania. d x 40

41 Obrót wektora kierunku w 2D y d' Naszym wynikiem powinien być nowy wektor kierunku d', uzyskany po obróceniu pierwotnego wektora d wokół początku układu współrzędnych. α d x 41

42 Obrót wektora kierunku w 2D y d' = (xd'; yd') d = (xd; yd) Można przyjąć, że wektory zaczepione w początku układu współrzędnych to położenia punktów znajdujących się na ich końcach. α x 42

43 Obrót wektora kierunku w 2D y d' = (xd'; yd') d = (xd; yd) Rozpatrzmy najpierw samą współrzędną x. α Znamy xd xd' xd x Znamy miarę kąta α Nie znamy natomiast xd 43

44 Obrót wektora kierunku w 2D y d' = (xd'; yd') d = (xd; yd) yd' Analogiczna sytuacja zachodzi dla współrzędnej y. yd Znamy yd α xd' xd x Znamy miarę kąta α Nie znamy natomiast yd 44

45 Obrót wektora kierunku w 2D y d' = (xd'; yd') yd' Dodatkowo wiemy, że długości wektorów d i d są równe 1 ponieważ przyjęliśmy takie założenie odnośnie wektora d, a także chcemy aby nasz d zachował tę własność. yd 1 α xd' 1 xd d = (xd; yd) x 45

46 Obrót wektora kierunku w 2D y yd' 1 Warto zwrócić uwagę, że mamy tu do czynienia z dwoma trójkątami prostokątnymi. α xd' 1.. xd yd x { xd, xd, yd, yd } są długościami kolejnych przyprostokątnych, zaś przeciwprostokątne mają długość 1. 46

47 Obrót wektora kierunku w 2D y yd' 1 Gdyby znać miarę kąta α+β, znając długość przeciwprostokątnej (jest równa 1), możliwe byłoby wyznaczenie długości przyprostokątnej czerwonego trójkąta (czyli xd lub yd ) z pomocą odpowiednich funkcji trygonometrycznych. α xd' 1 yd β xd x 47

48 Obrót wektora kierunku w 2D y yd' 1 Miarę kąta β możemy znaleźć posługując się znanymi długościami boków zielonego trójkąta. α xd' tan (β)= 1 yd β xd x yd xd 48

49 Obrót wektora kierunku w 2D y Najwygodniej, z uwagi na możliwość wystąpienia kąta w dowolnej ćwiartce układu współrzędnych, posłużyć się funkcją atan2. Funkcja cyklometryczna atan2 jest dwuargumentową odmianą funkcji arcus tangens, biorącą pod uwagę ćwiartkę układu w której znajduje się zadany kąt. yd' 1 α xd' tan (β)= yd xd 1 yd β xd x β=atan 2( y d, x d ) [ 49

50 Obrót wektora kierunku w 2D Kiedy już znamy miarę kąta β, możemy przystąpić do obliczania długości przyprostokątnych czerwonego trójkąta korzystając z funkcji trygonometrycznych sinus i cosinus. y yd' 1 α xd' tan (β)= yd xd 1 yd β xd x β=atan 2( y d, x d ) xd ' =cos(β+α) d ' yd ' =sin (β+α) d ' 50

51 Obrót wektora kierunku w 2D y d' = (xd'; yd') Pamiętamy, że długość przeciwprostokątnych jest równa 1, co dodatkowo upraszcza obliczenia. W ten sposób otrzymujemy ostateczne współrzędne punktu d po obrocie punktu d o kąt α wokół początku układu współrzędnych. yd' 1 α xd' tan (β)= yd xd 1 d = (xd; yd) yd β xd x β=atan 2( y d, x d ) x d ' =cos(β+α) y d ' =sin (β+α) 51

52 Kamera w scenie 3D Pojęcie kamery. Implementacja interaktywnej kamery FPP. Gry komputerowe, Informatyka N1, II Rok, 2018 r.

Grafika Komputerowa, Informatyka, I Rok

Grafika Komputerowa, Informatyka, I Rok KAMERA W SCENIE 3D Pojęcie kamery. Implementacja interaktywnej kamery FPP. Test i bufor głębokości. Grafika Komputerowa, Informatyka, I Rok Kamera Jest to wirtualny koncept opisujący sposób oglądania sceny

Bardziej szczegółowo

Wyświetlanie obrazu Bufor klatki, synchronizacja pionowa, pętla główna gry.

Wyświetlanie obrazu Bufor klatki, synchronizacja pionowa, pętla główna gry. Wyświetlanie obrazu Bufor klatki, synchronizacja pionowa, pętla główna gry. http://bazyluk.net/dydaktyka Gry komputerowe, Informatyka S1, II Rok, 2018 r. WYŚWIETLACZE WEKTOROWE Korzystając z możliwości

Bardziej szczegółowo

Bartosz Bazyluk SYNTEZA GRAFIKI 3D Grafika realistyczna i czasu rzeczywistego. Pojęcie sceny i kamery. Grafika Komputerowa, Informatyka, I Rok

Bartosz Bazyluk SYNTEZA GRAFIKI 3D Grafika realistyczna i czasu rzeczywistego. Pojęcie sceny i kamery. Grafika Komputerowa, Informatyka, I Rok SYNTEZA GRAFIKI 3D Grafika realistyczna i czasu rzeczywistego. Pojęcie sceny i kamery. Grafika Komputerowa, Informatyka, I Rok Synteza grafiki 3D Pod pojęciem syntezy grafiki rozumiemy stworzenie grafiki

Bardziej szczegółowo

Wyświetlanie obrazu Techniki wyświetlania obrazu i ich zastosowanie w grach.

Wyświetlanie obrazu Techniki wyświetlania obrazu i ich zastosowanie w grach. Wyświetlanie obrazu Techniki wyświetlania obrazu i ich zastosowanie w grach. http://bazyluk.net/dydaktyka Gry komputerowe, Informatyka S1, II Rok, 2017 r. WYŚWIETLANIE OBRAZU Techniki wyświetlania obrazu

Bardziej szczegółowo

Wyświetlanie obrazu Techniki wyświetlania obrazu komputerowego.

Wyświetlanie obrazu Techniki wyświetlania obrazu komputerowego. Wyświetlanie obrazu Techniki wyświetlania obrazu komputerowego. http://bazyluk.net/dydaktyka Grafika Komputerowa i Wizualizacja, Informatyka S1, II Rok WYŚWIETLANIE OBRAZU Techniki wyświetlania obrazu

Bardziej szczegółowo

Grafika Komputerowa Wykład 4. Synteza grafiki 3D. mgr inż. Michał Chwesiuk 1/30

Grafika Komputerowa Wykład 4. Synteza grafiki 3D. mgr inż. Michał Chwesiuk 1/30 Wykład 4 mgr inż. 1/30 Synteza grafiki polega na stworzeniu obrazu w oparciu o jego opis. Synteza obrazu w grafice komputerowej polega na wykorzystaniu algorytmów komputerowych do uzyskania obrazu cyfrowego

Bardziej szczegółowo

GRAFIKA CZASU RZECZYWISTEGO Podstawy syntezy grafiki 3D i transformacji geometrycznych

GRAFIKA CZASU RZECZYWISTEGO Podstawy syntezy grafiki 3D i transformacji geometrycznych GRAFIKA CZASU RZECZYWISTEGO Podstawy syntezy grafiki 3D i transformacji geometrycznych Grafika komputerowa i wizualizacja, Bioinformatyka S1, II Rok Synteza grafiki 3D Pod pojęciem syntezy grafiki rozumiemy

Bardziej szczegółowo

Grafika Komputerowa Wykład 5. Potok Renderowania Oświetlenie. mgr inż. Michał Chwesiuk 1/38

Grafika Komputerowa Wykład 5. Potok Renderowania Oświetlenie. mgr inż. Michał Chwesiuk 1/38 Wykład 5 Potok Renderowania Oświetlenie mgr inż. 1/38 Podejście śledzenia promieni (ang. ray tracing) stosuje się w grafice realistycznej. Śledzone są promienie przechodzące przez piksele obrazu wynikowego

Bardziej szczegółowo

Animowana grafika 3D. Opracowanie: J. Kęsik.

Animowana grafika 3D. Opracowanie: J. Kęsik. Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Rzutowanie Równoległe Perspektywiczne Rzutowanie równoległe Rzutowanie równoległe jest powszechnie używane w rysunku technicznym - umożliwienie

Bardziej szczegółowo

GRAFIKA CZASU RZECZYWISTEGO Interakcja, ruch kamery, oświetlenie.

GRAFIKA CZASU RZECZYWISTEGO Interakcja, ruch kamery, oświetlenie. Bartosz Bazyluk GRAFIKA CZASU RZECZYWISTEGO Interakcja, ruch kamery, oświetlenie. Grafika komputerowa i wizualizacja, Bioinformatyka S1, II Rok Kamera w OpenGL Aby opisać jednoznacznie położenie kamery,

Bardziej szczegółowo

Bartosz Bazyluk WYŚWIETLANIE OBRAZU Techniki wyświetlania obrazu komputerowego. Grafika Komputerowa, Informatyka, I Rok

Bartosz Bazyluk WYŚWIETLANIE OBRAZU Techniki wyświetlania obrazu komputerowego.  Grafika Komputerowa, Informatyka, I Rok Techniki wyświetlania obrazu komputerowego. http://bazyluk.net/zpsb Grafika Komputerowa, Informatyka, I Rok Techniki wyświetlania obrazu Wyświetlacze CRT Wyświetlacze LCD Wyświetlacze PDP Wyświetlacze

Bardziej szczegółowo

0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do

0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do 0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do obserwatora f) w kierunku od obserwatora 1. Obrót dookoła osi

Bardziej szczegółowo

Bartosz Bazyluk WPROWADZENIE Wstęp do dwuwymiarowej grafiki komputerowej.

Bartosz Bazyluk WPROWADZENIE Wstęp do dwuwymiarowej grafiki komputerowej. WPROWADZENIE Wstęp do dwuwymiarowej grafiki komputerowej http://bazyluk.net/dydaktyka Grafika komputerowa i wizualizacja, Bioinformatyka S1, II Rok O MNIE mgr inż. Pokój 322/WI2 bbazyluk@wi.zut.edu.pl

Bardziej szczegółowo

2 Przygotował: mgr inż. Maciej Lasota

2 Przygotował: mgr inż. Maciej Lasota Laboratorium nr 2 1/6 Grafika Komputerowa 3D Instrukcja laboratoryjna Temat: Manipulowanie przestrzenią 2 Przygotował: mgr inż. Maciej Lasota 1) Manipulowanie przestrzenią Istnieją dwa typy układów współrzędnych:

Bardziej szczegółowo

Podstawy grafiki komputerowej

Podstawy grafiki komputerowej Podstawy grafiki komputerowej Krzysztof Gracki K.Gracki@ii.pw.edu.pl tel. (22) 6605031 Instytut Informatyki Politechniki Warszawskiej 2 Sprawy organizacyjne Krzysztof Gracki k.gracki@ii.pw.edu.pl tel.

Bardziej szczegółowo

Grafika Komputerowa. Wykład 8. Przygotowanie do egzaminu. mgr inż. Michał Chwesiuk 1/32

Grafika Komputerowa. Wykład 8. Przygotowanie do egzaminu. mgr inż. Michał Chwesiuk 1/32 Grafika Komputerowa Wykład 8 Przygotowanie do egzaminu mgr inż. 1/32 Obraz Grafika Rastrowa Grafika Wektorowa Obraz przechowywany w pamięci w postaci próbki opisane za pomocą macierzy pikseli Każdy piksel

Bardziej szczegółowo

Transformacje obiektów 3D

Transformacje obiektów 3D Synteza i obróbka obrazu Transformacje obiektów 3D Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Lokalny układ współrzędnych Tworząc model obiektu, zapisujemy

Bardziej szczegółowo

Gry Komputerowe Interaktywna kamera FPP

Gry Komputerowe Interaktywna kamera FPP Gry Komputerowe Interaktywna kamera FPP Michał Chwesiuk Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Informatyki 28 Marzec 2018 Michał Chwesiuk Laboratorium 2 28 Marzec 2018 1/ 11

Bardziej szczegółowo

Funkcje trygonometryczne w trójkącie prostokątnym

Funkcje trygonometryczne w trójkącie prostokątnym Funkcje trygonometryczne w trójkącie prostokątnym Oznaczenia boków i kątów trójkąta prostokątnego użyte w definicjach Sinus Sinusem kąta ostrego w trójkącie prostokątnym nazywamy stosunek przyprostokątnej

Bardziej szczegółowo

Trójwymiarowa grafika komputerowa rzutowanie

Trójwymiarowa grafika komputerowa rzutowanie Trójwymiarowa grafika komputerowa rzutowanie Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej Rzutowanie w przestrzeni 3D etapy procesu rzutowania określenie rodzaju rzutu określenie

Bardziej szczegółowo

Zaawansowana Grafika Komputerowa

Zaawansowana Grafika Komputerowa Zaawansowana Komputerowa Michał Chwesiuk Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Informatyki 28 Luty 2017 Michał Chwesiuk Zaawansowana Komputerowa 28 Luty 2017 1/11 O mnie inż.

Bardziej szczegółowo

Bartosz Bazyluk OpenGL Deferred shading. Pętla główna i jej implementacje. Debugowanie i analiza wydajności.

Bartosz Bazyluk OpenGL Deferred shading. Pętla główna i jej implementacje. Debugowanie i analiza wydajności. OpenGL Deferred shading. Pętla główna i jej implementacje. Debugowanie i analiza wydajności. Algorytmy grafiki komputerowej czasu rzeczywistego, Informatyka S2 FORWARD W klasycznym podejściu (ang. forward

Bardziej szczegółowo

Rysunek 1: Okno timeline wykorzystywane do tworzenia animacji.

Rysunek 1: Okno timeline wykorzystywane do tworzenia animacji. Ćwiczenie 5 - Tworzenie animacji Podczas tworzenia prostej animacji wykorzystywać będziemy okno Timeline domyślnie ustawione na dole okna Blendera (Rys. 1). Proces tworzenia animacji polega na stworzeniu

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Plan wykładu. Akcelerator 3D Potok graficzny

Plan wykładu. Akcelerator 3D Potok graficzny Plan wykładu Akcelerator 3D Potok graficzny Akcelerator 3D W 1996 r. opracowana została specjalna karta rozszerzeń o nazwie marketingowej Voodoo, którą z racji wspomagania procesu generowania grafiki 3D

Bardziej szczegółowo

8. TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO.

8. TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO. WYKŁAD 6 1 8. TRYGONOMETRIA. 8.1. FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO. SINUSEM kąta nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta do przeciwprostokątnej w trójkącie prostokątnym : =. COSINUSEM

Bardziej szczegółowo

Grafika komputerowa i wizualizacja

Grafika komputerowa i wizualizacja Grafika komputerowa i wizualizacja Radosław Mantiuk ( rmantiuk@wi.zut.edu.pl, p. 315 WI2) http://rmantiuk.zut.edu.pl Katedra Systemów Multimedialnych Wydział Informatyki, Zachodniopomorski Uniwersytet

Bardziej szczegółowo

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas 3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to

Bardziej szczegółowo

GRAFIKA RASTROWA. WYKŁAD 1 Wprowadzenie do grafiki rastrowej. Jacek Wiślicki Katedra Informatyki Stosowanej

GRAFIKA RASTROWA. WYKŁAD 1 Wprowadzenie do grafiki rastrowej. Jacek Wiślicki Katedra Informatyki Stosowanej GRAFIKA RASTROWA WYKŁAD 1 Wprowadzenie do grafiki rastrowej Jacek Wiślicki Katedra Informatyki Stosowanej Grafika rastrowa i wektorowa W grafice dwuwymiarowej wyróżnia się dwa rodzaje obrazów: rastrowe,

Bardziej szczegółowo

Grafika Komputerowa Wykład 3. Wyświetlanie. mgr inż. Michał Chwesiuk 1/24

Grafika Komputerowa Wykład 3. Wyświetlanie. mgr inż. Michał Chwesiuk 1/24 Wykład 3 Wyświetlanie mgr inż. 1/24 Techniki wyświetlania obrazu Obraz w grafice komputerowej jest to zbiór informacji o zawartości obrazu w pamięci komputera. Należy dokonać rekonstrukcji obrazu w taki

Bardziej szczegółowo

TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA SKIEROWANEGO

TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA SKIEROWANEGO TRYGONOMETRIA Trygonometria to dział matematyki, którego przedmiotem badań są związki między bokami i kątami trójkątów oraz tzw. funkcje trygonometryczne. Trygonometria powstała i rozwinęła się głównie

Bardziej szczegółowo

Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne

Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne 46 III. Przekształcenia w przestrzeni trójwymiarowej Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne Złożone obiekty trójwymiarowe można uważać,

Bardziej szczegółowo

Julia 4D - raytracing

Julia 4D - raytracing i przykładowa implementacja w asemblerze Politechnika Śląska Instytut Informatyki 27 sierpnia 2009 A teraz... 1 Fraktale Julia Przykłady Wstęp teoretyczny Rendering za pomocą śledzenia promieni 2 Implementacja

Bardziej szczegółowo

Wykład 4. Rendering (1) Informacje podstawowe

Wykład 4. Rendering (1) Informacje podstawowe Wykład 4. Rendering (1) Informacje podstawowe Z punktu widzenia dzisiejszego programowania gier: Direct3D jest najczęściej wykorzystywanym przez profesjonalnych deweloperów gier API graficznym na platformie

Bardziej szczegółowo

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu Oznaczenia A, B, 1, 2, I, II, punkty a, b, proste α, β, płaszczyzny π 1, π 2, rzutnie k kierunek rzutowania d(a,m) odległość punktu od prostej m(a,b) prosta przechodząca przez punkty A i B α(1,2,3) płaszczyzna

Bardziej szczegółowo

Programowanie Procesorów Graficznych

Programowanie Procesorów Graficznych Programowanie Procesorów Graficznych Wykład 1 9.10.2012 Prehistoria Zadaniem karty graficznej było sterowanie sygnałem do monitora tak aby wyświetlić obraz zgodnie z zawartościa pamięci. Programiści pracowali

Bardziej szczegółowo

Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych

Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych autor: Robert Drab opiekun naukowy: dr inż. Paweł Rotter 1. Wstęp Zagadnienie generowania trójwymiarowego

Bardziej szczegółowo

Monitory Opracował: Andrzej Nowak

Monitory Opracował: Andrzej Nowak Monitory Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz PC Format, nr 3 2008r. Kineskop ogólna budowa Monitory CRT Zasada działania monitora Monitory służą do

Bardziej szczegółowo

Wprowadzenie do rysowania w 3D. Praca w środowisku 3D

Wprowadzenie do rysowania w 3D. Praca w środowisku 3D Wprowadzenie do rysowania w 3D 13 Praca w środowisku 3D Pierwszym krokiem niezbędnym do rozpoczęcia pracy w środowisku 3D programu AutoCad 2010 jest wybór odpowiedniego obszaru roboczego. Można tego dokonać

Bardziej szczegółowo

Grafika komputerowa Wykład 4 Geometria przestrzenna

Grafika komputerowa Wykład 4 Geometria przestrzenna Grafika komputerowa Wykład 4 Geometria przestrzenna Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1 Geometria 3D - podstawowe

Bardziej szczegółowo

trygonometria Trygonometria to dział matematyki, który bada związki między bokami i kątami trójkątów.

trygonometria Trygonometria to dział matematyki, który bada związki między bokami i kątami trójkątów. Trygonometria to dział matematyki, który bada związki między bokami i kątami trójkątów. Funkcje trygonometryczne dla kątów ostrych to stosunki długości odpowiednich dwóch boków trójkąta prostokątnego.

Bardziej szczegółowo

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem.

Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1 Wektory Co to jest wektor? Jest to obiekt posiadający: moduł (długość), kierunek wraz ze zwrotem. 1.1 Dodawanie wektorów graficzne i algebraiczne. Graficzne - metoda równoległoboku. Sprowadzamy wektory

Bardziej szczegółowo

Grafika rastrowa (bitmapa)-

Grafika rastrowa (bitmapa)- Grafika komputerowa Grafika rastrowa Grafika rastrowa (bitmapa)- sposób zapisu obrazów w postaci prostokątnej tablicy wartości, opisujących kolory poszczególnych punktów obrazu (prostokątów składowych).

Bardziej szczegółowo

Gry Komputerowe - laboratorium 2. Kamera FPP / TPP. mgr inż. Michał Chwesiuk 1/11. Szczecin, r

Gry Komputerowe - laboratorium 2. Kamera FPP / TPP. mgr inż. Michał Chwesiuk 1/11. Szczecin, r Gry Komputerowe - laboratorium 2 FPP / TPP mgr inż. Michał Chwesiuk 1/11 a model 2/11 Stwórz nową klasę Player a model Do stworzonej klasy Player w pliku player.h dodaj trzy pola (trzeba dodać #include

Bardziej szczegółowo

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza

Plan wykładu. Wykład 3. Rzutowanie prostokątne, widoki, przekroje, kłady. Rzutowanie prostokątne - geneza. Rzutowanie prostokątne - geneza Plan wykładu Wykład 3 Rzutowanie prostokątne, widoki, przekroje, kłady 1. Rzutowanie prostokątne - geneza 2. Dwa sposoby wzajemnego położenia rzutni, obiektu i obserwatora, metoda europejska i amerykańska

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i

Bardziej szczegółowo

MATEMATYKA 8. Funkcje trygonometryczne kąta ostrego (α < 90 ). Stosunki długości boków trójkąta prostokątnego nazywamy funkcjami trygonometrycznymi.

MATEMATYKA 8. Funkcje trygonometryczne kąta ostrego (α < 90 ). Stosunki długości boków trójkąta prostokątnego nazywamy funkcjami trygonometrycznymi. INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 017/018 www.medicus.edu.pl tel. 501 38 39 55 MATEMATYKA 8 FUNKCJE TRYGONOMETRYCZNE. Funkcje trygonometryczne kąta ostrego

Bardziej szczegółowo

IRONCAD. TriBall IRONCAD Narzędzie pozycjonujące

IRONCAD. TriBall IRONCAD Narzędzie pozycjonujące IRONCAD IRONCAD 2016 TriBall o Narzędzie pozycjonujące Spis treści 1. Narzędzie TriBall... 2 2. Aktywacja narzędzia TriBall... 2 3. Specyfika narzędzia TriBall... 4 3.1 Kula centralna... 4 3.2 Kule wewnętrzne...

Bardziej szczegółowo

Układy współrzędnych GUW, LUW Polecenie LUW

Układy współrzędnych GUW, LUW Polecenie LUW Układy współrzędnych GUW, LUW Polecenie LUW 1 Układy współrzędnych w AutoCAD Rysowanie i opis (2D) współrzędnych kartezjańskich: x, y współrzędnych biegunowych: r

Bardziej szczegółowo

TRYGONOMETRIA. 1. Definicje i własności funkcji trygonometrycznych

TRYGONOMETRIA. 1. Definicje i własności funkcji trygonometrycznych TRYGONOMETRIA. Definicje i własności funkcji trygonometrycznych Funkcje trygonometryczne kąta ostrego można zdefiniować przy użyciu trójkąta prostokątnego: c a α b DEFINICJA. Sinusem kąta ostrego α w trójkącie

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA

OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA Wprowadzenie W robotyce przez pojęcie manipulacji rozumiemy przemieszczanie w przestrzeni przedmiotów i narzędzi za pomocą specjalnego mechanizmu. W związku z tym pojawia

Bardziej szczegółowo

Manipulatory i roboty mobilne AR S1 semestr 5

Manipulatory i roboty mobilne AR S1 semestr 5 Manipulatory i roboty mobilne AR S semestr 5 Konrad Słodowicz MN: Zadanie proste kinematyki manipulatora szeregowego - DOF Położenie manipulatora opisać można dwojako w przestrzeni kartezjańskiej lub zmiennych

Bardziej szczegółowo

Transformacje. dr Radosław Matusik. radmat

Transformacje. dr Radosław Matusik.   radmat www.math.uni.lodz.pl/ radmat Cel wykładu Celem wykładu jest prezentacja m.in. przestrzeni modelu, świata, kamery oraz projekcji, a także omówienie sposobów oświetlania i cieniowania obiektów. Pierwsze

Bardziej szczegółowo

Rzutowanie z 4D na 3D

Rzutowanie z 4D na 3D Politechnika Wrocławska Instytut Informatyki Automatyki i Robotyki Wizualizacja danych sensorycznych Rzutowanie z 4D na 3D Autor: Daniel Piłat Opiekun projektu: dr inż. Bogdan Kreczmer 15 czerwca 2010

Bardziej szczegółowo

gdzie (4.20) (4.21) 4.3. Rzut równoległy

gdzie (4.20) (4.21) 4.3. Rzut równoległy 4.3. Rzut równoległy 75 gdzie (4.20) Punkt zbiegu, określony wzorami (4.19) (4.20), leży na prostej przechodzącej przez środek rzutowania i równoległej do wektora u. Zauważmy, że gdy wektor u jest równoległy

Bardziej szczegółowo

PRZEDSTAWIAMY TECHNOLOGIĘ AMD FREESYNC

PRZEDSTAWIAMY TECHNOLOGIĘ AMD FREESYNC PRZEDSTAWIAMY TECHNOLOGIĘ AMD FREESYNC 1H2015 CELE SZKOLENIA Po ukończeniu tego szkolenia: Będziesz wiedzieć, czym jest technologia AMD FreeSync oraz jakie problemy rozwiązuje z punktu widzenia graczy

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Misja#3. Robimy film animowany.

Misja#3. Robimy film animowany. Po dzisiejszej lekcji będziesz: tworzyć programy animujące obiekty na ekranie komputera określać położenie i orientację obiektu w kartezjańskim układzie współrzędnych Zauważ że... Ludzkie oko charakteryzuje

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES

FUNKCJA LINIOWA - WYKRES FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości

Bardziej szczegółowo

Grafika Komputerowa Wykład 6. Teksturowanie. mgr inż. Michał Chwesiuk 1/23

Grafika Komputerowa Wykład 6. Teksturowanie. mgr inż. Michał Chwesiuk 1/23 Wykład 6 mgr inż. 1/23 jest to technika w grafice komputerowej, której celem jest zwiększenie szczegółowości renderowanych powierzchni za pomocą tekstur. jest to pewna funkcja (najczęściej w formie bitmapy)

Bardziej szczegółowo

PODSTAWY RACHUNKU WEKTOROWEGO

PODSTAWY RACHUNKU WEKTOROWEGO Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Skalar Definicja Skalar wielkość fizyczna (lub geometryczna)

Bardziej szczegółowo

Wektory, układ współrzędnych

Wektory, układ współrzędnych Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.

Bardziej szczegółowo

OpenGL : Oświetlenie. mgr inż. Michał Chwesiuk mgr inż. Tomasz Sergej inż. Patryk Piotrowski. Szczecin, r 1/23

OpenGL : Oświetlenie. mgr inż. Michał Chwesiuk mgr inż. Tomasz Sergej inż. Patryk Piotrowski. Szczecin, r 1/23 OpenGL : mgr inż. Michał Chwesiuk mgr inż. Tomasz Sergej inż. Patryk Piotrowski 1/23 Folder z plikami zewnętrznymi (resources) Po odpaleniu przykładowego projektu, nie uruchomi się on poprawnie. Powodem

Bardziej szczegółowo

GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel.

GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. GRAFIKA KOMPUTEROWA podstawy matematyczne dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. (12) 617 46 37 Plan wykładu 1/4 ZACZNIEMY OD PRZYKŁADOWYCH PROCEDUR i PRZYKŁADÓW

Bardziej szczegółowo

Zad. 3: Rotacje 2D. Demonstracja przykładu problemu skończonej reprezentacji binarnej liczb

Zad. 3: Rotacje 2D. Demonstracja przykładu problemu skończonej reprezentacji binarnej liczb Zad. 3: Rotacje 2D 1 Cel ćwiczenia Wykształcenie umiejętności modelowania kluczowych dla danego problemu pojęć. Definiowanie właściwego interfejsu klasy. Zwrócenie uwagi na dobór odpowiednich struktur

Bardziej szczegółowo

Ćwiczenie dodatkowe - Wybrane narzędzia modelowania Zadanie Przygotować model stołu z krzesłami jak na rysunku poniżej(rys. 1).

Ćwiczenie dodatkowe - Wybrane narzędzia modelowania Zadanie Przygotować model stołu z krzesłami jak na rysunku poniżej(rys. 1). Ćwiczenie dodatkowe - Wybrane narzędzia modelowania Zadanie Przygotować model stołu z krzesłami jak na rysunku poniżej(rys. 1). Wymiary krzesła: wymiary przednich nóg: 1 x 1 x 6 wymiary tylnich nóg połączonych

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 3 KINEMATYKA Temat RUCH PŁASKI BRYŁY MATERIALNEJ Prowadzący: dr Krzysztof Polko Pojęcie Ruchu Płaskiego Rys.1 Ruchem płaskim ciała sztywnego nazywamy taki ruch, w którym wszystkie

Bardziej szczegółowo

WideoSondy - Pomiary. Trzy Metody Pomiarowe w jednym urządzeniu XL G3 lub XL Go. Metoda Porównawcza. Metoda projekcji Cienia (ShadowProbe)

WideoSondy - Pomiary. Trzy Metody Pomiarowe w jednym urządzeniu XL G3 lub XL Go. Metoda Porównawcza. Metoda projekcji Cienia (ShadowProbe) Trzy Metody Pomiarowe w jednym urządzeniu XL G3 lub XL Go Metoda Porównawcza Metoda projekcji Cienia (ShadowProbe) Metoda Stereo Metoda Porównawcza Metoda Cienia - ShadowProbe Metoda Stereo Metoda Porównawcza

Bardziej szczegółowo

Rachunek wektorowy - wprowadzenie. dr inż. Romuald Kędzierski

Rachunek wektorowy - wprowadzenie. dr inż. Romuald Kędzierski Rachunek wektorowy - wprowadzenie dr inż. Romuald Kędzierski Graficzne przedstawianie wielkości wektorowych Długość wektora jest miarą jego wartości Linia prosta wyznaczająca kierunek działania wektora

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ NA ROK SZKOLNY 2011/2012 DO PROGRAMU MATEMATYKA Z PLUSEM LICZBY, WYRAŻENIA ALGEBRAICZNE umie obliczyć potęgę o wykładniku naturalnym; umie obliczyć

Bardziej szczegółowo

Definicje funkcji trygonometrycznych kąta ostrego

Definicje funkcji trygonometrycznych kąta ostrego 1 Definicje funkcji trygonometrycznych kąta ostrego Sinusem kąta ostrego w trójkącie prostokątnym nazywamy stosunek długości przyprostokątnej leżącej naprzeciw tego kąta do długości przeciwprostokątnej.

Bardziej szczegółowo

Zad. 4: Rotacje 2D. 1 Cel ćwiczenia. 2 Program zajęć. 3 Opis zadania programowego

Zad. 4: Rotacje 2D. 1 Cel ćwiczenia. 2 Program zajęć. 3 Opis zadania programowego Zad. 4: Rotacje 2D 1 Cel ćwiczenia Wykształcenie umiejętności modelowania kluczowych dla danego problemu pojęć. Definiowanie właściwego interfejsu klasy. Zwrócenie uwagi na dobór odpowiednich struktur

Bardziej szczegółowo

Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski

Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera

Bardziej szczegółowo

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,

Bardziej szczegółowo

Przekształcenia geometryczne w grafice komputerowej. Marek Badura

Przekształcenia geometryczne w grafice komputerowej. Marek Badura Przekształcenia geometryczne w grafice komputerowej Marek Badura PRZEKSZTAŁCENIA GEOMETRYCZNE W GRAFICE KOMPUTEROWEJ Przedstawimy podstawowe przekształcenia geometryczne na płaszczyźnie R 2 (przestrzeń

Bardziej szczegółowo

Podwójne buforowanie i animacje

Podwójne buforowanie i animacje www.math.uni.lodz.pl/ radmat Cel wykładu Celem wykładu jest prezentacja koncepcji podwójnego buforowania w grach 2D oraz animacja oparta na sprite ach. Gry 2D Może wydawać się to dziwne, ale gry 2D są

Bardziej szczegółowo

Wstęp Pierwsze kroki Pierwszy rysunek Podstawowe obiekty Współrzędne punktów Oglądanie rysunku...

Wstęp Pierwsze kroki Pierwszy rysunek Podstawowe obiekty Współrzędne punktów Oglądanie rysunku... Wstęp... 5 Pierwsze kroki... 7 Pierwszy rysunek... 15 Podstawowe obiekty... 23 Współrzędne punktów... 49 Oglądanie rysunku... 69 Punkty charakterystyczne... 83 System pomocy... 95 Modyfikacje obiektów...

Bardziej szczegółowo

Przekształcenia geometryczne. Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej

Przekształcenia geometryczne. Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej Przekształcenia geometryczne Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej Akademia Górniczo Hutnicza w Krakowie Przekształcenia elementarne w przestrzeni D Punkty p w E na płaszczyźnie

Bardziej szczegółowo

Funkcją sinus kąta α nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta α do przeciwprostokątnej w trójkącie prostokątnym, i opisujemy jako:

Funkcją sinus kąta α nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta α do przeciwprostokątnej w trójkącie prostokątnym, i opisujemy jako: 1. Trygonometria 1.1Wprowadzenie Jednym z podstawowych działów matematyki który wykorzystywany jest w rozwiązywaniu problemów technicznych jest trygonometria. W szkole średniej wprowadzone zostały podstawowe

Bardziej szczegółowo

Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania.

Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Chcąc osiągnąć realizm renderowanego obrazu, należy rozwiązać problem świetlenia. Barwy, faktury i inne właściwości przedmiotów postrzegamy

Bardziej szczegółowo

Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki

Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki Politechnika Warszawska Wydział Mechatroniki Instytut Automatyki i Robotyki Ćwiczenie laboratoryjne 2 Temat: Modelowanie powierzchni swobodnych 3D przy użyciu programu Autodesk Inventor Spis treści 1.

Bardziej szczegółowo

KGGiBM GRAFIKA INŻYNIERSKA Rok III, sem. VI, sem IV SN WILiŚ Rok akademicki 2011/2012

KGGiBM GRAFIKA INŻYNIERSKA Rok III, sem. VI, sem IV SN WILiŚ Rok akademicki 2011/2012 Rysowanie precyzyjne 7 W ćwiczeniu tym pokazane zostaną wybrane techniki bardzo dokładnego rysowania obiektów w programie AutoCAD 2012, między innymi wykorzystanie punktów charakterystycznych. Narysować

Bardziej szczegółowo

GRAFIKA KOMPUTEROWA. Plan wykładu. 1. Początki grafiki komputerowej. 2. Grafika komputerowa a dziedziny pokrewne. 3. Omówienie programu przedmiotu

GRAFIKA KOMPUTEROWA. Plan wykładu. 1. Początki grafiki komputerowej. 2. Grafika komputerowa a dziedziny pokrewne. 3. Omówienie programu przedmiotu GRAFIKA KOMPUTEROWA 1. Układ przedmiotu semestr VI - 20000 semestr VII - 00200 Dr inż. Jacek Jarnicki Instytut Cybernetyki Technicznej p. 226 C-C 3, tel. 320-28-2323 jacek@ict.pwr.wroc.pl www.zsk.ict.pwr.wroc.pl

Bardziej szczegółowo

KMO2D. Kolizje między-obiektowe w 2D

KMO2D. Kolizje między-obiektowe w 2D KMO2D Kolizje między-obiektowe w 2D I. Wstęp 3 lata temu na temat kolizji nie miałem żadnego pojęcia. Przyszedł jednak czas, gdy postanowiłem napisać pierwszą porządną grę i pojawił się, wtedy problem.

Bardziej szczegółowo

Zajęcia z grafiki komputerowej Pov Ray część 2

Zajęcia z grafiki komputerowej Pov Ray część 2 Zajęcia z grafiki komputerowej Pov Ray część 2 Stwórzmy na początek pustą scenę. #include "colors.inc" camera { location look_at 0 angle 36 White plane { , -1.5 pigment

Bardziej szczegółowo

1 Wstęp teoretyczny. Temat: Manipulowanie przestrzenią. Grafika komputerowa 3D. Instrukcja laboratoryjna Układ współrzędnych

1 Wstęp teoretyczny. Temat: Manipulowanie przestrzenią. Grafika komputerowa 3D. Instrukcja laboratoryjna Układ współrzędnych Instrukcja laboratoryjna 9 Grafika komputerowa 3D Temat: Manipulowanie przestrzenią Przygotował: dr inż. Grzegorz Łukawski, mgr inż. Maciej Lasota, mgr inż. Tomasz Michno 1 Wstęp teoretyczny 1.1 Układ

Bardziej szczegółowo

Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu. Mirosław Głowacki

Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu. Mirosław Głowacki Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu Mirosław Głowacki Zagadnienia Jak rozumiemy fotorealizm w grafice komputerowej Historyczny rozwój kart graficznych Przekształcenia

Bardziej szczegółowo

1. Prymitywy graficzne

1. Prymitywy graficzne 1. Prymitywy graficzne Prymitywy graficzne są elementarnymi obiektami jakie potrafi bezpośrednio rysować, określony system graficzny (DirectX, OpenGL itp.) są to: punkty, listy linii, serie linii, listy

Bardziej szczegółowo

Zastosowanie stereowizji do śledzenia trajektorii obiektów w przestrzeni 3D

Zastosowanie stereowizji do śledzenia trajektorii obiektów w przestrzeni 3D Zastosowanie stereowizji do śledzenia trajektorii obiektów w przestrzeni 3D autorzy: Michał Dajda, Łojek Grzegorz opiekun naukowy: dr inż. Paweł Rotter I. O projekcie. 1. Celem projektu było stworzenie

Bardziej szczegółowo

Gry komputerowe: efekty specjalne cz. 2

Gry komputerowe: efekty specjalne cz. 2 1/43 Gry komputerowe: efekty specjalne cz. 2 Przygotowała: Anna Tomaszewska 2/43 Mapowanie środowiska - definicja aproksymacje odbić na powierzchnie prosto- i krzywoliniowej," oświetlanie sceny." obserwator

Bardziej szczegółowo

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie

Bardziej szczegółowo

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu. ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)

Bardziej szczegółowo

Architektura Procesorów Graficznych

Architektura Procesorów Graficznych Architektura Procesorów Graficznych Referat: Rendering 3D: potok 3D, możliwości wsparcia sprzętowego, możliwości przyspieszenia obliczeń. Grupa wyrównawcza Cezary Sosnowski 1. Renderowanie Renderowanie

Bardziej szczegółowo

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie

Bardziej szczegółowo

Systemy wirtualnej rzeczywistości. Podstawy grafiki 3D

Systemy wirtualnej rzeczywistości. Podstawy grafiki 3D Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Systemy wirtualnej rzeczywistości Laboratorium Podstawy grafiki 3D Wstęp: W drugiej części przedstawione zostaną podstawowe mechanizmy

Bardziej szczegółowo

Konrad Słodowicz sk30792 AR22 Zadanie domowe satelita

Konrad Słodowicz sk30792 AR22 Zadanie domowe satelita Konrad Słodowicz sk3079 AR Zadanie domowe satelita Współrzędne kartezjańskie Do opisu ruchu satelity potrzebujemy 4 zmiennych stanu współrzędnych położenia i prędkości x =r x =r x 3 = r 3, x 4 = r 4 gdzie

Bardziej szczegółowo

Grafika Komputerowa Materiały Laboratoryjne

Grafika Komputerowa Materiały Laboratoryjne Grafika Komputerowa Materiały Laboratoryjne Laboratorium 14 Blender, podstawy animacji Wstęp Zagadnienie tworzenia animacji 3D w Blenderze jest bardzo szerokie i wiąże się z wieloma grupami rozwiązao.

Bardziej szczegółowo