Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa trzecia. Poziom podstawowy.
|
|
- Kamil Jasiński
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa trzecia. Poziom podstawowy. Wymagania ogólne interpretuje tekst matematyczny, po rozwiązaniu zadania interpretuje otrzymany wynik, używa prostych, dobrze znanych obiektów matematycznych, dobiera modele matematyczne do prostej sytuacji i krytycznie ocenia trafność modelu, stosuje strategię, która jasno wynika z treści zadania, prowadzi proste rozumowanie, składające się z niewielkiej liczby kroków. Szkoła sprzyja: w zakresie rozwoju intelektualnego ucznia: rozwijaniu umiejętności zdobywania, porządkowania, analizowania i przetwarzania informacji; opanowaniu umiejętności potrzebnych do oceny ilościowej i opisu zjawisk z różnych dziedzin życia; wykształceniu umiejętności budowania modeli matematycznych w odniesieniu do różnych sytuacji życiowych i stosowaniu metod matematycznych w rozwiązywaniu problemów praktycznych; rozwijaniu umiejętności czytania tekstu ze zrozumieniem; rozwinięciu wyobraźni przestrzennej; nabyciu umiejętności samodzielnego zdobywania wiedzy matematycznej; rozwijaniu zdolności i zainteresowań matematycznych; rozwijaniu pamięci; rozwijaniu logicznego myślenia; nabyciu umiejętności poprawnego analizowania, wnioskowania i uzasadniania; wykształceniu umiejętności operowania obiektami abstrakcyjnymi; precyzyjnemu formułowaniu wypowiedzi; pobudzeniu aktywności umysłowej uczniów; w zakresie kształtowania postaw: kształtowaniu wytrwałości w zdobywaniu wiedzy i umiejętności matematycznych; wyrabianiu systematyczności w pracy; motywowaniu uczniów do kreatywności i samodzielności; kształtowaniu postaw dociekliwych, poszukujących i krytycznych; nabyciu umiejętności dobrej organizacji pracy, właściwego planowania nauki; kształtowaniu odpowiedzialności za powierzone zadania; kształtowaniu pozytywnych postaw etycznych (pomoc koleżeńska uczniom mniej zdolnym, piętnowanie nieuczciwości wyrażającej się w ściąganiu, podpowiadaniu itp.); rozwijaniu umiejętności pracy w zespole; kształtowaniu postawy dialogu i kultury dyskusji (komunikacja); dbaniu o estetykę (czytelny rysunek, jasne i przejrzyste rozwiązanie zadań itp.). 1
2 Sposoby sprawdzania osiągnięć edukacyjnych uczniów W ciągu każdego okresu uczeń otrzymuje oceny z co najmniej trzech wymienionych poniżej trzynastu form sprawdzania osiągnięć edukacyjnych. 1. Odpowiedzi ustne: a) odpowiedzi z trzech ostatnich tematów, b) prezentacja rozwiązania zadania, c) referat, d) dyskusja nad rozwiązaniem problemu w czasie lekcji. 2. Prace pisemne: a) krótkie kartkówki obejmujące materiał trzech ostatnich tematów (niekoniecznie zapowiedziane), b) zapowiedziane sprawdziany pisane przez całą lekcję, c) zadania klasowe obejmujące większą część materiału (np. zrealizowany dział), d) badanie wyników okresowej lub całorocznej pracy, e) próbna matura, f) powtórki przygotowujące do egzaminu maturalnego. 3. Zadania domowe. 4. Prezentacja pracy w grupie. 5. Udział w konkursie (olimpiadzie, zawodach). Prace pisemne oceniane są wg następującej skali: poniżej 40% stopień niedostateczny od 40% poniżej 50% stopień dopuszczający od 50% poniżej 65% stopień dostateczny od 65% poniżej 70% stopień plus dostateczny od 70% poniżej 85% stopień dobry od 85% poniżej 90% stopień plus dobry od 90% poniżej 98% stopień bardzo dobry od 98% stopień celujący stopień celujący uzyskuje również uczeń, który spełnił wymagania na stopień bardzo dobry i ponadto rozwiązał zadanie dodatkowe o podwyższonym stopniu trudności lub przedstawił niekonwencjonalny, wartościowy sposób rozwiązania obowiązujących zadań. W przypadku nieobecności ucznia na sprawdzianie lub kartkówce w dzienniku lekcyjnym pojawia się zapis 0. Zapis ten nie ma wpływu na śródroczną i roczną ocenę klasyfikacyjną. Ocenę niedostateczną uczeń może poprawić w terminie ustalonym przez nauczyciela. Ogólne treści nauczania w klasie trzeciej (poziom podstawowy) 1. Potęgi. Logarytmy. Funkcja wykładnicza. 2. Elementy geometrii analitycznej. 3. Elementy kombinatoryki i rachunku prawdopodobieństwa. 4. Elementy statystyki opisowej. 5. Geometria przestrzenna. 6. Powtórzenie wiadomości do egzaminu maturalnego. 2
3 WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI klasa 3 (poziom podstawowy) 1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności Proste równania wykładnicze Proste nierówności wykładnicze Zastosowanie funkcji wykładniczej do rozwiązywania zadań umieszczonych w kontekście praktycznym Logarytm powtórzenie wiadomości Proste równania logarytmiczne ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Uczeń spełnia wymagania Uczeń spełnia wymagania Uczeń spełnia wymagania Uczeń spełnia wymagania dobrej, bardzo dopuszczającej, a ponadto: dostatecznej, a ponadto: a ponadto: dobrej, a ponadto: -oblicza potęgi o wykładnikach wymiernych; -stosuje prawa działań na potęgach w obliczeniach; - podaje definicję funkcji wykładniczej; - szkicuje wykresy funkcji wykładniczych dla różnych podstaw; -rozwiązuje proste równania wykładnicze sprowadzające się do równań liniowych i kwadratowych; - oblicza logarytm liczby dodatniej. odróżnia funkcję wykładniczą od innych funkcji; opisuje własności funkcji wykładniczej na podstawie jej wykresu; przekształca wykresy funkcji wykładniczych (S OX, S OY, S (0,0), przesunięcie równoległe o dany wektor); rozwiązuje graficznie proste równania oraz nierówności z wykorzystaniem wykresu funkcji wykładniczej; - stosuje proste równania i nierówności wykładnicze w rozwiązywaniu zadań dotyczących własności funkcji wykładniczych oraz innych zagadnień (np. ciągów). 3 sprawnie przekształca wyrażenia zawierające logarytmy, stosując poznane twierdzenia o logarytmach. rozwiązuje zadania o podwyższonym stopniu trudności.
4 2. Elementy geometrii analitycznej Tematyka zajęć: rozwiązuje proste nierówności wykładnicze sprowadzające się do nierówności liniowych i kwadratowych; posługuje się funkcjami wykładniczymi do opisu zjawisk fizycznych, chemicznych, a także w zagadnieniach osadzonych w kontekście praktycznym; podaje i stosuje w zadaniach wzory na: logarytm iloczynu, logarytm ilorazu, logarytm potęgi o wykładniku naturalnym. Wektor w układzie współrzędnych. Współrzędne środka odcinka Równanie kierunkowe prostej. Równanie ogólne prostej Równoległość i prostopadłość prostych w układzie współrzędnych Odległość punktu od prostej Zastosowanie wiadomości o równaniu prostej do rozwiązywania zadań ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Uczeń spełnia wymagania Uczeń spełnia wymagania Uczeń spełnia wymagania dopuszczającej, a ponadto: dostatecznej, a ponadto: dostatecznej, a ponadto: oblicza współrzędne wektora, gdy dane są współrzędne początku i końca tego wektora; wyznacza na podstawie współrzędnych wektora i współrzędnych końca (początku) wektora, określa wektory równe i wektory przeciwne; oblicza współrzędne środka ciężkości trójkąta; podaje równanie ogólne prostej; wyznacza obraz figury geometrycznej (punktu, odcinka, trójkąta, prostej itp.) w symetrii osiowej względem dowolnej prostej oraz w symetrii środkowej 4 rozwiązuje zadania, w których występują parametry.
5 współrzędne początku (końca) tego wektora; oblicza długość wektora (długość odcinka); oblicza współrzędne wektora będącego sumą (różnicą) dwóch danych wektorów; mnoży wektor przez liczbę; oblicza współrzędne środka odcinka o danych końcach (wyznacza współrzędne jednego z końców odcinka, mając dane współrzędne środka odcinka i współrzędne drugiego końca); podaje postać kierunkową równania prostej; pisze równanie kierunkowe prostej przechodzącej przez dwa dane punkty; podaje warunek na równoległość i prostopadłość prostych danych równaniami ogólnymi (kierunkowymi); pisze równanie prostej równoległej (prostopadłej) do danej prostej przechodzącej przez dany punkt; oblicza współrzędne punktu przecięcia dwóch prostych; rozwiązuje proste zadania z zastosowaniem poznanych wzorów. pisze równanie kierunkowe prostej, znając kąt nachylenia tej prostej do osi OX oraz współrzędne punktu należącego do tej prostej; na podstawie równania kierunkowego prostej podaje miarę kąta nachylenia tej prostej do osi OX; przekształca równanie prostej danej w postaci kierunkowej do postaci ogólnej (i odwrotnie o ile takie równanie istnieje); podaje wzór na odległość punktu od prostej; oblicza odległość danego punktu od danej prostej; znajduje obrazy niektórych figur geometrycznych (punktu, odcinka, trójkąta, prostej itp.) w symetrii osiowej względem osi układu współrzędnych i symetrii środkowej względem początku układu współrzędnych. względem dowolnego punktu; rozwiązuje zadania z geometrii analitycznej, o średnim stopniu trudności, w których wykorzystuje wiedzę o wektorach i prostych. 5
6 3. Elementy kombinatoryki i rachunku prawdopodobieństwa Tematyka zajęć: Reguła mnożenia Reguła dodawania Doświadczenie losowe Zdarzenia. Działania na zdarzeniach Obliczanie prawdopodobieństw ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Uczeń spełnia wymagania Uczeń spełnia wymagania Uczeń spełnia wymagania Uczeń spełnia wymagania dobrej, bardzo dopuszczającej, a ponadto: dostatecznej, a ponadto: a ponadto: dobrej, a ponadto: zlicza obiekty w prostych sytuacjach kombinatorycznych, niewymagających użycia wzorów kombinatorycznych; stosuje regułę mnożenia i regułę dodawania; operuje pojęciami: doświadczenie losowe, zdarzenie elementarne, przestrzeń zdarzeń elementarnych, zdarzenie, zdarzenie pewne, zdarzenie niemożliwe, zdarzenia wykluczające się; podaje twierdzenie o prawdopodobieństwie klasycznym; określa (skończoną) przestrzeń zdarzeń elementarnych danego doświadczenia losowego i oblicza jej moc; określa zdarzenia elementarne sprzyjające danemu zdarzeniu. podaje własności prawdopodobieństwa i stosuje je w rozwiązaniach prostych zadań; podaje i stosuje w prostych sytuacjach klasyczną definicję prawdopodobieństwa. rozwiązuje zadania z kombinatoryki i rachunku prawdopodobieństwa o średnim stopniu trudności; oblicza prawdopodobieństwo zdarzenia doświadczenia wieloetapowego. 6 rozwiązuje zadania z kombinatoryki i rachunku prawdopodobieństwa o wyższym stopniu trudności; oblicza prawdopodobieństwo zdarzenia doświadczenia wieloetapowego o różnych przestrzeniach elementarnych. rozwiązuje zadania o podwyższonym stopniu trudności.
7 4. Elementy statystyki opisowej Tematyka zajęć: Podstawowe pojęcia statystyki. Sposoby prezentowania danych zebranych w wyniku obserwacji statystycznej Średnia z próby Mediana z próby i moda z próby Wariancja i odchylenie standardowe ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Uczeń spełnia wymagania Uczeń spełnia wymagania Uczeń spełnia wymagania dobrej, dopuszczającej, a ponadto: dostatecznej, a ponadto: a ponadto: odczytuje dane statystyczne z tabel, diagramów i wykresów; oblicza średnią arytmetyczną i średnią ważoną z próby; oblicza medianę z próby; wskazuje modę z próby. 5. Geometria przestrzenna przedstawia dane empiryczne w postaci tabel, diagramów i wykresów; oblicza wariancję i odchylenie standardowe zestawu danych; na podstawie obliczonych wielkości przeprowadza analizę przedstawionych danych; określa zależności między odczytanymi danymi. rozwiązuje proste zadania teoretyczne dotyczące pojęć statystycznych. Tematyka zajęć: Płaszczyzny i proste w przestrzeni Rzut równoległy na płaszczyznę. Rysowanie figur płaskich w rzucie równoległym na płaszczyznę Prostopadłość prostych i płaszczyzn w przestrzeni Rzut prostokątny na płaszczyznę Twierdzenie o trzech prostych prostopadłych Kąt między prostą a płaszczyzną. Kąt dwuścienny Graniastosłupy Ostrosłupy 7 rozwiązuje złożone zadania teoretyczne dotyczące pojęć statystycznych.
8 Siatka wielościanu. Pole powierzchni wielościanu Objętość figury przestrzennej. Objętość wielościanów Przekroje wybranych wielościanów Bryły obrotowe. Pole powierzchni brył obrotowych Objętość brył obrotowych ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Uczeń spełnia wymagania Uczeń spełnia wymagania Uczeń spełnia wymagania Uczeń spełnia wymagania dobrej, bardzo dopuszczającej, a ponadto: dostatecznej, a ponadto: a ponadto: dobrej, a ponadto: - określa położenie dwóch płaszczyzn w przestrzeni; - określa położenie prostej i płaszczyzny w przestrzeni; - określa położenie dwóch prostych w przestrzeni; - charakteryzuje prostopadłość prostej i płaszczyzny; - charakteryzuje prostopadłość dwóch płaszczyzn; - określa kąt miedzy prostą i płaszczyzną; - określa kąt dwuścienny, - poprawnie posługuje się terminem kąt liniowy kąta dwuściennego ; - podaje określenie graniastosłupa, wskazuje podstawy, ściany boczne, krawędzie podstaw, krawędzie boczne, wysokość graniastosłupa; - przedstawia podział graniastosłupów; - podaje określenie ostrosłupa, wskazuje podstawę, ściany boczne, krawędzie podstaw, - rysuje figury płaskie w rzucie równoległym na płaszczyznę; - podaje i stosuje twierdzenie o trzech prostych prostopadłych; - rysuje siatki graniastosłupów prostych; - rysuje siatki ostrosłupów prostych; - rozpoznaje w graniastosłupach i ostrosłupach kąt między odcinkami i płaszczyznami (między krawędziami i ścianami, przekątnymi i ścianami), oblicza miary tych kątów; - rozpoznaje w graniastosłupach i ostrosłupach kąty między ścianami; - rozwiązuje proste zadania geometryczne dotyczące brył, w tym z wykorzystaniem trygonometrii i poznanych wcześniej twierdzeń. określa, jaką figurą jest dany przekrój prostopadłościanu płaszczyzną; podaje i stosuje twierdzenia charakteryzujące ostrosłup prosty; rozwiązuje zadania geometryczne dotyczące brył o średnim stopniu trudności, z wykorzystaniem wcześniej poznanych twierdzeń. 8 - rozwiązuje zadania geometryczne dotyczące brył o wyższym stopniu trudności, z wykorzystaniem wcześniej poznanych twierdzeń. konstruuje przekrój wielościanu płaszczyzną i udowadnia poprawność konstrukcji; rozwiązuje nietypowe zadania geometryczne dotyczące brył, z wykorzystaniem wcześniej poznanych twierdzeń.
9 krawędzie boczne, wysokość ostrosłupa; - przedstawia podział ostrosłupów; - rozpoznaje w graniastosłupach i ostrosłupach kąty między odcinkami (np. krawędziami, krawędziami i przekątnymi, itp.), oblicza miary tych kątów; - podaje określenie walca, wskazuje podstawy, powierzchnię boczną, tworzącą, oś obrotu walca; - określa przekrój osiowy walca; - podaje określenie stożka, wskazuje podstawę, powierzchnię boczną, tworzącą, wysokość, oś obrotu, wierzchołek stożka; - określa przekrój osiowy stożka - podaje określenie kuli; - rozpoznaje w walcach i stożkach kąt między odcinkami oraz kąt między odcinkami i płaszczyznami (np. kąt rozwarcia stożka, kąt między tworzącą a podstawą), oblicza miary tych kątów; - oblicza objętość i pole powierzchni poznanych graniastosłupów; - oblicza objętość i pole powierzchni poznanych ostrosłupów prawidłowych; - oblicza objętość i pole powierzchni brył obrotowych 9
10 (stożka, kuli, walca); - rozwiązuje proste zadania geometryczne dotyczące brył, w tym z wykorzystaniem trygonometrii i poznanych wcześniej twierdzeń. Opracował zespół nauczycieli XI LO w Krakowie 10
1. Potęgi. Logarytmy. Funkcja wykładnicza
1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji
I. Potęgi. Logarytmy. Funkcja wykładnicza.
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Potęgi. Logarytmy. Funkcja wykładnicza. dobrą, bardzo - oblicza potęgi o wykładnikach wymiernych; - zna
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;
Kryteria oceniania z matematyki Klasa III poziom podstawowy
Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa trzecia. Poziom podstawowy.
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa trzecia. Poziom podstawowy. Wymagania ogólne interpretuje tekst matematyczny, po rozwiązaniu
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO OTRZYMANIA PRZEZ UCZNIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI (zakres podstawowy) Rok szkolny 2018/2019 - klasa 3a, 3b, 3c 1, Ciągi
Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08
Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 1. Oprocentowanie lokat i kredytów - zna pojęcie procentu prostego i składanego; - oblicza
Wymagania edukacyjne z matematyki Klasa III zakres podstawowy
Wymagania edukacyjne z matematyki Klasa III zakres podstawowy Program nauczania zgodny z: Kurczab M., Kurczab E., Świda E., Program nauczania w liceach i technikach. Zakres podstawowy., Oficyna Edukacyjna
1.Funkcja logarytmiczna
Kryteria oceniania z matematyki dla klasy IV TI poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 1.Funkcja logarytmiczna -potrafi obliczyć logarytm liczby dodatniej; -zna i potrafi stosować
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia)
MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia) ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Potęgi. Logarytmy. Funkcja wykładnicza sprawnie wykonywać działania na
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka Klasa trzecia. Poziom rozszerzony.
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka Klasa trzecia. Poziom rozszerzony. Wymagania ogólne używa języka matematycznego do opisu rozumowania i uzyskanych
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 Przedmiot Klasa Nauczyciele uczący Poziom matematyka 4e Łukasz Jurczak rozszerzony 2. Elementy analizy matematycznej ocena dopuszczająca ocena dostateczna ocena
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM ROZSZERZONY
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM ROZSZERZONY 1. Funkcja wykładnicza i logarytmiczna Tematyka zajęć: Potęga o wykładniku rzeczywistym - powtórzenie Funkcja wykładnicza i jej własności
Wymagania edukacyjne zakres podstawowy klasa 3A
Ciągi Pojęcie ciągu. Sposoby opisywania ciągów Monotoniczność ciągów Ciąg arytmetyczny Suma początkowych wyrazów ciągu arytmetycznego Ciąg geometryczny Suma początkowych wyrazów ciągu geometrycznego Procent
Kryteria oceniania z matematyki Klasa III poziom rozszerzony
Kryteria oceniania z matematyki Klasa III poziom rozszerzony Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja potęgowa - zna i stosuje tw. o potęgach - zna wykresy funkcji potęgowej o dowolnym
Plan wynikowy klasa 3
Plan wynikowy klasa 3 Przedmiot: matematyka Klasa 3 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 28 tyg. 3 h = 84 h (78 h + 6 h do dyspozycji
1. Funkcja wykładnicza i logarytmiczna
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM ROZSZERZONY 1. Funkcja wykładnicza i logarytmiczna Tematyka zajęć: Potęga o wykładniku rzeczywistym - powtórzenie Funkcja wykładnicza i jej własności
1. Funkcja wykładnicza i logarytmiczna
WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM ROZSZERZONY 1. Funkcja wykładnicza i logarytmiczna Tematyka zajęć: Potęga o wykładniku rzeczywistym - powtórzenie Funkcja wykładnicza i jej własności
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa trzecia. Poziom rozszerzony.
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa trzecia. Poziom rozszerzony. Wymagania ogólne Uczeń: używa języka matematycznego do opisu
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI ROK SZKOLNY 2018/2019 POZIOM PODSTAWOWY I ROZSZERZONY KLASA 3 UWAGI: 1. Zakłada się,
Uczeń otrzymuje ocenę dostateczną, jeśli opanował wiadomości i umiejętności konieczne na ocenę dopuszczającą oraz dodatkowo:
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI Rok szkolny 2018 / 2019 POZIOM PODSTAWOWY KLASA 3 1. RACHUNEK PRAWDOPODOBIEŃSTWA wypisuje
Wymagania kl. 3. Zakres podstawowy i rozszerzony
Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: IV 67 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony 563/3/2014
Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony 56//0 5 tygodni godzin = 75 godzin Lp. Tematyka zajęć I. Kombinatoryka i rachunek prawdopodobieństwa. Reguła
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)
Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony
Matematyka do liceów i techników Szczegółowy rozkład materiału Klasa III zakres rozszerzony 9 tygodni 6 godzin = 7 godziny Lp. Tematyka zajęć Liczba godzin I. Funkcja wykładnicza i funkcja logarytmiczna.
PLAN WYNIKOWY (zakres rozszerzony) klasa 3.
PLAN WYNIKOWY (zakres rozszerzony) klasa 3. Spis treści 1. Funkcja wykładnicza i funkcja logarytmiczna 4 2. Elementy analizy matematycznej.... 8 3. Geometria analityczna.... 13 4. Kombinatoryka i rachunek
Wymagania edukacyjne z matematyki Klasa III zakres rozszerzony
Wymagania edukacyjne z matematyki Klasa III zakres rozszerzony Program nauczania zgodnie z: Kurczab M., Kurczab E., Świda E., Program nauczania w liceach i technikach. Zakres Rozszerzony., Oficyna Edukacyjna
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Przedmiot Matematyka Klasa I. Wymagania ogólne IV at (poziom podstawowy) 1. Wykorzystanie i tworzenie informacji. - interpretuje
MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony
Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania
Program do nauczania matematyki w klasie trzeciej - zakres rozszerzony
Program do nauczania matematyki w klasie trzeciej - zakres rozszerzony I. Procedury oceniania osiągnięć uczniów Ocenę celującą otrzymuje uczeń, którego wiedza znacznie wykracza poza obowiązujący program
Szczegółowy rozkład materiału dla klasy 3b poziom rozszerzny cz. 1 - liceum
Szczegółowy rozkład materiału dla klasy b poziom rozszerzny cz. - liceum WYDAWNICTWO PAZDRO GODZINY Lp. Tematyka zajęć Liczba godzin I. Funkcja wykładnicza i funkcja logarytmiczna. Potęga o wykładniku
Poziom wymagań K P K R K R. 2. Permutacje definicja permutacji definicja n! liczba permutacji zbioru n-elementowego K K K P D
Plan wynikowy klasa 3g - Jolanta Pająk Matematyka 3. dla liceum ogólnokształcącego, liceum profilowanego i technikum. ształcenie ogólne w zakresie rozszerzonym rok szkolny 2015/2016 Wymagania edukacyjne
Kształcenie w zakresie rozszerzonym. Klasa IV
Kształcenie w zakresie rozszerzonym. Klasa IV Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa III
Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa III Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja potęgowa - zna i stosuje tw. o potęgach - zna wykresy funkcji potęgowej
Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy i rozszerzony
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające;
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa druga. Poziom podstawowy.
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa druga. Poziom podstawowy. Wymagania ogólne interpretuje tekst matematyczny, po rozwiązaniu
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony. Wiadomości i umiejętności
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY CZWARTEJ H. zakres rozszerzony Funkcja wykładnicza i funkcja logarytmiczna. Stopień Wiadomości i umiejętności -definiować potęgę
SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI
SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................
LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy
Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie
Plan wynikowy klasa 3. Zakres podstawowy
Plan wynikowy klasa 3 Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające. RACHUNE PRAWDOPODOBIEŃSTWA
Wymagania edukacyjne z matematyki
Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie
Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP. Kryteria oceny
Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP Przygotowane w oparciu o propozycję Wydawnictwa Nowa Era 2017/2018 Kryteria oceny Znajomość pojęć, definicji, własności
2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego
Wymagania dla kl. 3 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa
Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019
Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019 Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające,
Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania
MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych
MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy Klasa 3 Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa pierwsza. Poziom podstawowy.
Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa pierwsza. Poziom podstawowy. Wymagania ogólne interpretuje tekst matematyczny, po rozwiązaniu
Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej.
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające;
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Katalog wymagań na poszczególne stopnie szkolne klasa 3
Katalog wymagań na poszczególne stopnie szkolne klasa 3 I. GRANIASTOSŁUPY I OSTROSŁUPY 6 5 4 3 2 Wskazuje wśród wielościanów graniastosłupy proste i pochyłe. Wskazuje na modelu lub rysunku krawędzie, wierzchołki,
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
Okręgi i proste na płaszczyźnie
Okręgi i proste na płaszczyźnie 1 Kąt środkowy i pole wycinka koła rozpoznawać kąty środkowe, obliczać kąt środkowy oparty na zadanym łuku, obliczać długość okręgu i łuku okręgu, obliczać pole koła, pierścienia,
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1
RAMOWY ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLAS I-III LICEUM OGÓLNOKSZTAŁCĄCEGO PRZY CKU NR 1 Zakres podstawowy Kl. 1-60 h ( 30 h w semestrze) Kl. 2-60 h (30 h w semestrze) Kl. 3-90 h (45 h w semestrze)
Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017
Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony)
Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres rozszerzony) Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem powinny być
WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH. Sposoby sprawdzania wiedzy i umiejętności uczniów
WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH Sposoby sprawdzania wiedzy i umiejętności uczniów 1. Odpowiedzi ustne. 2. Sprawdziany pisemne. 3. Kartkówki. 4. Testy.
LUBELSKA PRÓBA PRZED MATURĄ 2018 poziom podstawowy
LUELSK PRÓ PRZED MTURĄ 08 poziom podstawowy Schemat oceniania Zadania zamknięte (Podajemy kartotekę zadań, która ułatwi Państwu przeprowadzenie jakościowej analizy wyników). Zadanie. (0 ). Liczby rzeczywiste.
Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy
Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY TRZECIEJ M. zakres rozszerzony
WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY TRZECIEJ M. zakres rozszerzony Trygonometria. wie, co to jest miara łukowa kąta; potrafi stosować miarę łukową i stopniową kąta
Wymagania edukacyjne (zakres podstawowy) klasa 3.
Wymagania edukacyjne (zakres podstawowy) klasa 3. Jest to wykaz wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji w liceum. Wymagania
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY
ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór
MATeMAtyka zakres podstawowy
MATeMAtyka zakres podstawowy Proponowany rozkład materiału kl. I (100 h) 1. Liczby rzeczywiste 15 1. Liczby naturalne 1 2. Liczby całkowite. Liczby wymierne 1 1.1, 1.2 3. Liczby niewymierne 1 1.3 4. Rozwinięcie
Wymagania edukacyjne matematyka klasa 3b, 3c, 3d zakres rozszerzony rok szkolny 2015/ Trygonometria
Wymagania edukacyjne matematyka klasa 3b, 3c, 3d zakres rozszerzony rok szkolny 2015/2016 1. Trygonometria 1. wie, co to jest miara łukowa kąta; 2. zamienia stopnie na radiany i radiany na stopnie; 3.
Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)
Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja
Cele kształcenia wymagania ogólne (przedruk z podstawy programowej) Ramowy plan nauczania zakres podstawowy. Podręcznik 3 (3 godziny 25 tygodni)
PLAN WYNIKOWY dla techników i liceów ogólnokształcących zakres podstawowy do Podręcznika 3 z serii Matematyka w otaczającym nas świecie Wydawnictwa Podkowa Plan wynikowy polega na zaplanowaniu umiejętności
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 4 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
ZAKRES PODSTAWOWY. Proponowany rozkład materiału kl. I (100 h)
ZAKRES PODSTAWOWY Proponowany rozkład materiału kl. I (00 h). Liczby rzeczywiste. Liczby naturalne. Liczby całkowite. Liczby wymierne. Liczby niewymierne 4. Rozwinięcie dziesiętne liczby rzeczywistej 5.
MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych
MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy. Klasa I (60 h)
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy (według podręczników z serii MATeMAtyka) Temat Klasa I (60 h) Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne
KLASA III LO Poziom podstawowy (wrzesień/październik)
KLASA III LO (wrzesień/październik) ZAKRES PODSTAWOWY. Funkcje. Uczeń: ) określa funkcje za pomocą wzoru, tabeli, wykresu, opisu słownego; ) oblicza ze wzoru wartość funkcji dla danego argumentu. Posługuje
V. WYMAGANIA EGZAMINACYJNE
V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny
Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017
Przedmiotowe Ocenianie Z Matematyki - Technikum obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku szkolnego informuję
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.
ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach
PLAN WYNIKOWY (zakres podstawowy) klasa 3.
PLAN WYNIKOWY (zakres podstawowy) klasa 3. Wstęp Plan wynikowy kształcenia matematycznego jest dostosowany do programu nauczania matematyki w liceach i technikach zakres podstawowy, autorstwa Marcina Kurczaba,
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 Przedmiot Klasa Nauczyciele uczący Poziom matematyka 3e Łukasz Jurczak rozszerzony 6. Ułamki algebraiczne. Równania i nierówności wymierne. Funkcje wymierne.
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY DLA KLASY DRUGIEJ
MATEMATYKA WYKAZ UMIEJĘTNOŚCI WYMAGANYCH NA POSZCZEGÓLNE OCENY 1. SUMY ALGEBRAICZNE DLA KLASY DRUGIEJ 1. Rozpoznawanie jednomianów i sum algebraicznych Obliczanie wartości liczbowych wyrażeń algebraicznych
LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy
LUELSK PRÓ PRZE MTURĄ 07 poziom podstawowy Schemat oceniania Uwaga: kceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania (podajemy kartotekę zadań, gdyż łatwiej będzie
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum
LICZBY (20 godz.) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum Wg podręczników serii Prosto do matury KLASA I (60 godz.) 1. Zapis dziesiętny liczby rzeczywistej 1 2. Wzory skróconego
Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Gimnazjum, klasa 3 Rozkład materiału i plan wynikowy
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa Rozkład materiału i plan wynikowy I. FUNKCJE 1 1. Pojęcie funkcji zbiór i jego elementy pojęcie przyporządkowania pojęcie funkcji
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV budownictwo ZAKRES ROZSZERZONY (135 godz.)
WYMAGANIA EDUACYJNE Z MATEMATYI LASA IV budownictwo ZARES ROZSZERZONY (135 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry);
KLASA CZWARTA TECHNIKUM WYMAGANIA NA POSZCZEGÓLNE OCENY
KLASA CZWARTA TECHNIKUM WYMAGANIA NA POSZCZEGÓLNE OCENY Wymagania stawiane przed uczniem podzielone są na trzy grupy: Wymagania podstawowe ( zawierają wymagania koniczne ) Wymagania dopełniające ( zawierają
III. STRUKTURA I FORMA EGZAMINU
III. STRUKTURA I FORMA EGZAMINU Egzamin maturalny z matematyki jest egzaminem pisemnym sprawdzającym wiadomości i umiejętności określone w Standardach wymagań egzaminacyjnych i polega na rozwiązaniu zadań
WYMAGANIA EDUKACYJNE Z MATEMATYKI (zakres podstawowy) klasa 3b.
WYMAGANIA EDUKACYJNE Z MATEMATYKI (zakres podstawowy) klasa 3b. Wstęp Plan wynikowy kształcenia matematycznego jest dostosowany do programu nauczania matematyki w liceach i technikach zakres podstawowy,
PLAN WYNIKOWY (zakres podstawowy) klasa 3.
PLAN WYNIKOWY (zakres podstawowy) klasa 3. Wstęp Plan wynikowy kształcenia matematycznego jest dostosowany do programu nauczania matematyki w liceach i technikach zakres podstawowy, autorstwa Marcina Kurczaba,
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV ZAKRES ROZSZERZONY (135 godz.)
Rok szkolny 2018/19 klasa 4bB oraz 4iA WYMAGANIA EDUACYJNE Z MATEMATYI LASA IV ZARES ROZSZERZONY (135 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania
MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KLASA III GIMNAZJUM Wymagania konieczne (K) dotyczą zagadnień elementarnych, podstawowych; powinien je opanować każdy uczeń. Wymagania podstawowe
PDM 3. Zakres podstawowy i rozszerzony. Plan wynikowy. STEREOMETRIA (22 godz.) W zakresie TREŚCI PODSTAWOWYCH uczeń potrafi:
PDM 3 Zakres podstawowy i rozszerzony Plan wynikowy STEREOMETRIA ( godz.) Proste i płaszczyzny w przestrzeni Kąt nachylenia prostej do płaszczyzny wskazać płaszczyzny równoległe i płaszczyzny prostopadłe
PLAN WYNIKOWY (zakres podstawowy) klasa 3.
PLAN WYNIKOWY (zakres podstawowy) klasa 3. Wstęp Plan wynikowy kształcenia matematycznego jest dostosowany do programu nauczania matematyki w liceach i technikach zakres podstawowy, autorstwa Marcina Kurczaba,
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W GIMNAZJUM SPOŁECZNYM SPLOT IMIENIA JANA KARSKIEGO W NOWYM SĄCZU I. Cele edukacyjne: W zakresie rozwoju intelektualnego ucznia: wykształcenie umiejętności operowania
Wymagania edukacyjne z matematyki dla klasy III gimnazjum
Wymagania edukacyjne z matematyki dla klasy III gimnazjum Poziomy wymagań edukacyjnych: K konieczny dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować każdy
Zakres materiału obowiązujący do próbnej matury z matematyki
ZAKRES PODSTAWOWY Zakres materiału obowiązujący do próbnej matury z matematyki 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli
III. Wyrażenia algebraiczne, równania i nierówności. Uczeń: 1) używa wzorów skróconego mnożenia na. b ;
Wymagania edukacyjne, kryteria oceniania oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów XV LO w Krakowie Matematyka Klasa pierwsza. Poziom podstawowy. Rok szkolny 2014/2015 Wymagania ogólne zdobywa
IV etap edukacyjny Cele kształcenia wymagania ogólne
IV etap edukacyjny Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystywanie i tworzenie informacji. Uczeń interpretuje tekst matematyczny. Po rozwiązaniu zadania interpretuje
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)
Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15