WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV budownictwo ZAKRES ROZSZERZONY (135 godz.)
|
|
- Michał Żurek
- 8 lat temu
- Przeglądów:
Transkrypt
1 WYMAGANIA EDUACYJNE Z MATEMATYI LASA IV budownictwo ZARES ROZSZERZONY (135 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania dopełniające (bardzo dobry); W wymagania wykraczające (celujący) Temat lekcji Zakres treści Osiągnięcia ucznia 1. STEREOMETRIA 1. Proste i płaszczyzny w przestrzeni wzajemne położenie dwóch płaszczyzn wzajemne położenie dwóch prostych prostopadłość prostych w przestrzeni wzajemne położenie prostej i płaszczyzny rzut prostokątny 2. Graniastosłupy pojęcia graniastosłupa prostego i graniastosłupa pochyłego powierzchnia boczna, wysokość graniastosłupa pojęcie prostopadłościanu pojęcie graniastosłupa prawidłowego pole powierzchni całkowitej graniastosłupa siatki sześcianu wskazuje w wielościanie proste prostopadłe, równoległe i skośne wskazuje w wielościanie rzut prostokątny danego odcinka na daną płaszczyznę przeprowadza wnioskowania dotyczące położenia prostych w przestrzeni określa liczby ścian, wierzchołków i krawędzi graniastosłupa sprawdza, czy istnieje graniastosłup o danej liczbie ścian, krawędzi, wierzchołków wskazuje elementy charakterystyczne graniastosłupa oblicza pole powierzchni bocznej i całkowitej graniastosłupa prostego rysuje siatkę graniastosłupa prostego, mając dany jej fragment R D P R
2 Temat lekcji Zakres treści Osiągnięcia ucznia 3. Odcinki w graniastosłupach pojęcie przekątnej graniastosłupa oblicza długości przekątnych graniastosłupa prostego stosuje funkcje trygonometryczne do obliczania pola powierzchni graniastosłupa uzasadnia prawdziwość wzorów dotyczących przekątnych i pól powierzchni graniastosłupa 4. Objętość graniastosłupa wzór na objętość graniastosłupa oblicza objętość graniastosłupa prostego oblicza objętość graniastosłupa pochyłego stosuje funkcje trygonometryczne do obliczania objętości graniastosłupa rozwiązuje zadania o podwyższonym stopniu trudności dotyczące graniastosłupów 5. Ostrosłupy pojęcie ostrosłupa prostego pojęcie ostrosłupa prawidłowego określa liczby ścian, wierzchołków i krawędzi ostrosłupa pojęcia wysokości ostrosłupa wskazuje elementy charakterystyczne ostrosłupa i kąta płaskiego przy wierzchołku oblicza pole powierzchni ostrosłupa, mając daną jego pojęcie czworościanu foremnego siatkę pole powierzchni ostrosłupa rysuje siatkę ostrosłupa prostego, mając dany jej fragment wzór Eulera oblicza pole powierzchni bocznej i całkowitej ostrosłupa stosuje funkcje trygonometryczne do obliczania pola powierzchni ostrosłupa sprawdza wzór Eulera dla wybranych graniastosłupów i ostrosłupów R R
3 Temat lekcji Zakres treści Osiągnięcia ucznia 6. Objętość ostrosłupa wzór na objętość ostrosłupa oblicza objętość ostrosłupa prawidłowego stosuje funkcje trygonometryczne do obliczania objętości ostrosłupa rozwiązuje zadania o podwyższonym stopniu trudności dotyczące ostrosłupów 7. ąt między prostą pojęcie kąta między prostą a płaszczyzną a płaszczyzną wskazuje i wyznacza kąty między odcinkami graniastosłupa a płaszczyzną jego podstawy lub ścianą boczną wskazuje i wyznacza kąty między odcinkami ostrosłupa a płaszczyzną jego podstawy rozwiązuje zadania dotyczące miary kąta między prostą a płaszczyzną 8. ąt dwuścienny pojęcie kąta dwuściennego miara kąta dwuściennego wskazuje kąt między sąsiednimi ścianami wielościanów wyznacza kąt między sąsiednimi ścianami wielościanów rozwiązuje zadania dotyczące miary kąta dwuściennego 9. Przekroje graniastosłupów pojęcie przekroju graniastosłupa wskazuje przekroje graniastosłupa oblicza pole danego przekroju rozwiązuje zadania dotyczące przekrojów graniastosłupa 10. Przekroje ostrosłupów pojęcie przekroju ostrosłupa wskazuje przekroje ostrosłupa oblicza pole danego przekroju rozwiązuje zadania dotyczące przekrojów ostrosłupa R R R W R W
4 Temat lekcji Zakres treści Osiągnięcia ucznia 11. Walec pojęcie walca pojęcia podstawy walca, wysokości oraz tworzącej wzór na pole powierzchni całkowitej walca pojęcie przekroju osiowego walca wzór na objętość walca 12. Stożek pojęcie stożka pojęcia podstawy stożka, wierzchołka, wysokości oraz tworzącej wzór na pole powierzchni całkowitej stożka pojęcia przekroju osiowego stożka oraz kąta rozwarcia wzór na objętość stożka 13. ula pojęcia kuli i sfery przekroje kuli, koło wielkie pojęcie stycznej do kuli wzór na pole powierzchni kuli wzór na objętość kuli wskazuje elementy charakterystyczne walca zaznacza przekrój osiowy walca oblicza pole powierzchni całkowitej walca oblicza objętość walca stosuje funkcje trygonometryczne do obliczania pola powierzchni i objętości walca rozwiązuje zadania o podwyższonym stopniu trudności dotyczące walca wskazuje elementy charakterystyczne stożka zaznacza przekrój osiowy i kąt rozwarcia stożka oblicza pole powierzchni całkowitej stożka oblicza objętość stożka rozwiązuje zadania dotyczące rozwinięcia powierzchni bocznej stożka stosuje funkcje trygonometryczne do obliczania pola powierzchni i objętości stożka rozwiązuje zadania o podwyższonym stopniu trudności dotyczące stożka wskazuje elementy charakterystyczne kuli oblicza pole powierzchni kuli i jej objętość stosuje funkcje trygonometryczne do obliczania pola powierzchni i objętości rozwiązuje zadania o podwyższonym stopniu trudności dotyczące kuli R R R R R
5 Temat lekcji Zakres treści Osiągnięcia ucznia 14. Bryły podobne pojęcie brył podobnych pojęcie skali podobieństwa brył wyznacza skalę podobieństwa brył podobnych podobnych wykorzystuje podobieństwo brył do rozwiązywania zadań 15. Bryły opisane na kuli bryły opisane na kuli rysuje przekroje brył opisanych na kuli rozwiązuje zadania dotyczące brył opisanych na kuli 16. Bryły wpisane w kulę bryły wpisane w kulę rysuje przekroje brył wpisanych w kulę rozwiązuje zadania dotyczące brył wpisanych w kulę 17. Inne bryły wpisane walec opisany na graniastosłupie i opisane walec wpisany w graniastosłup rysuje przekroje brył wpisanych i opisanych walec opisany na stożku rozwiązuje zadania dotyczące brył wpisanych i opisanych walec wpisany w stożek inne bryły wpisane i opisane 2. PRZYŁADY DOWODÓW W MATEMATYCE 1. Dowody w algebrze pojęcie implikacji twierdzenia dotyczące własności liczb dowodzi własności liczb twierdzenia dotyczące wyrażeń dowodzi prawdziwości nierówności algebraicznych przeprowadza dowód nie wprost dowód nie wprost 2. Dowody w geometrii twierdzenia dotyczące własności figur płaskich dowodzi własności figur płaskich twierdzenie o dwusiecznej kąta wykorzystuje własności figur płaskich do dowodzenia w trójkącie twierdzeń 3.POWTÓRZENIE PRZED MATURĄ Wszystkie zrealizowane treści w klasach niższych Wymagania jak w trakcie realizacji działu w klasach niższych P R R D R R D R R W D D W D D
6 Ogólne kryteria ocen z matematyki Ocena celujący Ocenę tę otrzymuje uczeń, którego wiedza znacznie wykracza poza obowiązujący program nauczania, a ponadto spełniający jeden z podpunktów: twórczo rozwija własne uzdolnienia i zainteresowania; uczestniczy w zajęciach pozalekcyjnych; pomysłowo i oryginalnie rozwiązuje nietypowe zadania; bierze udział i osiąga sukcesy w konkursach i olimpiadach matematycznych. Ocena bardzo dobry Ocenę tę otrzymuje uczeń, który opanował pełen zakres wiadomości przewidziany programem nauczania oraz potrafi: sprawnie rachować; samodzielnie rozwiązywać zadania; wykazać się znajomością definicji i twierdzeń oraz umiejętnością ich zastosowania w zadaniach; posługiwać się poprawnym językiem matematycznym; samodzielnie zdobywać wiedzę; przeprowadzać rozmaite rozumowania dedukcyjne. Ocena dobry Ocenę tę otrzymuje uczeń, który opanował wiadomości i umiejętności przewidziane podstawą programową oraz wybrane elementy programu nauczania, a także potrafi: samodzielnie rozwiązać typowe zadania; wykazać się znajomością i rozumieniem poznanych pojęć i twierdzeń oraz algorytmów; posługiwać się językiem matematycznym, który może zawierać jedynie nieliczne błędy i potknięcia; sprawnie rachować; przeprowadzić proste rozumowania dedukcyjne.
7 Ocena dostateczny Ocenę tę otrzymuje uczeń, który opanował wiadomości i umiejętności przewidziane podstawą programową, co pozwala mu na: wykazanie się znajomością i rozumieniem podstawowych pojęć i algorytmów stosowanie poznanych wzorów i twierdzeń w rozwiązywaniu typowych ćwiczeń i zadań; wykonywanie prostych obliczeń i przekształceń matematycznych. Ocena dopuszczający Uczeń opanował wiadomości i umiejętności przewidziane podstawą programową w takim zakresie, że potrafi: samodzielnie lub z niewielką pomocą nauczyciela wykonywać ćwiczenia i zadania o niewielkim stopniu trudności; wykazać się znajomością i rozumieniem najprostszych pojęć oraz algorytmów; operować najprostszymi obiektami abstrakcyjnymi (liczbami, zbiorami, zmiennymi i zbudowanymi z nich wyrażeniami). Ocena niedostateczny Ocenę tę otrzymuje uczeń, który nie opanował podstawowych wiadomości i umiejętności wynikających z programu nauczania oraz: nie radzi sobie ze zrozumieniem najprostszych pojęć, algorytmów i twierdzeń; popełnia rażące błędy w rachunkach; nie potrafi (nawet przy pomocy nauczyciela, który między innymi zadaje pytania pomocnicze) wykonać najprostszych ćwiczeń i zadań; nie wykazuje najmniejszych chęci współpracy w celu uzupełnienia braków i nabycia podstawowej wiedzy i umiejętności. ryteria ocen wypowiedzi ustnych: Ocena celujący - odpowiedź wskazuje na szczególne zainteresowanie przedmiotem, spełniając kryteria oceny bardzo dobrej, wykracza poza obowiązujący program nauczania, zawiera treści poza programowe, własne przemyślenia i oceny. Ocena bardzo dobry - odpowiedź wyczerpująca, zgodna z programem, swobodne operowanie faktami i dostrzeganie związków między nimi. Ocena dobry - odpowiedź zasadniczo samodzielna, zawiera większość wymaganych treści, poprawna pod względem języka, nieliczne błędy, nie wyczerpuje zagadnienia. Ocena dostateczny - uczeń zna najważniejsze fakty, umie je zinterpretować, odpowiedź odbywa się przy niewielkiej pomocy nauczyciela, występują nieliczne błędy rzeczowe.
8 Ocena dopuszczający - podczas odpowiedzi możliwe są liczne błędy, zarówno w zakresie wiedzy merytorycznej jak i w sposobie jej prezentowania, uczeń zna podstawowe fakty i przy pomocy nauczyciela udziela odpowiedzi. Ocena niedostateczny - odpowiedź nie spełnia podanych powyżej kryteriów ocen pozytywnych (brak elementarnych wiadomości, rezygnacja z odpowiedzi). ryteria oceny wypowiedzi pisemnych (zadania domowe, kartkówki, prace klasowe). Ocena bardzo dobry Uzyskanie co najmniej 90% możliwych do uzyskania punktów. Ocena dobry Uzyskanie 75-89% możliwych do uzyskania punktów. Ocena dostateczny Uzyskanie 50-74% możliwych do uzyskania punktów. Ocena dopuszczający Uzyskanie 30-49% możliwych do uzyskania punktów. Ocena niedostateczny Uzyskanie 0-29% możliwych do uzyskania punktów. Zasady przeprowadzania prac pisemnych: kartkówka obejmująca materiał ostatniej lekcji lub zadanie domowe nie musi być zapowiedziana, kartkówka trwa około 10 minut, zadanie klasowe obejmujące materiał całego działu musi być zapowiedziane z przynajmniej tygodniowym wyprzedzeniem, poprzedzone powtórzeniem wiadomości i jego termin uzgodniony z klasą, aby nie pokrywał się z terminem już zapowiedzianej pracy pisemnej, zadanie klasowe uczniowie piszą przez całą lekcję. Zasady poprawiania prac pisemnych: na lekcji powtórzeniowej uczeń może poprawić kartkówki lub sprawdziany dotyczące aktualnie powtarzanego materiału jeśli uczeń nie pisał kartkówki lub sprawdzianu ma obowiązek je zaliczyć w terminie uzgodnionym z nauczycielem, na poprawę pracy klasowej przeznaczona jest osobna lekcja i każdy uczeń ma prawo przystąpić do poprawy swojej oceny, przy czym każda ocena jest wpisywana do dziennika, każdy uczeń, który nie pisał pracy klasowej ma obowiązek napisania jej w terminie poprawy (wyjątek stanowią dłuższe nieobecności spowodowane chorobą, które traktowane są indywidualnie). Oprócz ocen za odpowiedzi ustne, prace pisemne i zadania domowe uczeń może otrzymać dodatkowe oceny:
9 za aktywność na lekcji, za udział w konkursach przedmiotowych, nawet na etapie szkolnym.
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV ZAKRES ROZSZERZONY (135 godz.)
Rok szkolny 2018/19 klasa 4bB oraz 4iA WYMAGANIA EDUACYJNE Z MATEMATYI LASA IV ZARES ROZSZERZONY (135 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV ZAKRES ROZSZERZONY (135 godz.)
Rok szkolny 2019/20 klasa 4bB Joanna Mikułka YMAGANIA EDUACYJNE Z MATEMATYI LASA IV ZARES ROZSZERZONY (135 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny);
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV budownictwo ZAKRES ROZSZERZONY (135 godz.)
l. 4bA WYMAGANIA EDUACYJNE Z MATEMATYI LASA IV budownictwo ZAES OZSZEZONY (135 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); wymagania rozszerzające (dobry);
Plan wynikowy klasa 3. Zakres podstawowy
Plan wynikowy klasa 3 Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające. RACHUNE PRAWDOPODOBIEŃSTWA
Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019
Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019 Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające,
Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania
Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej.
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające;
Założenia ogólne przedmiotowego systemu oceniania z matematyki:
Założenia ogólne przedmiotowego systemu oceniania z matematyki: 1. Zgodnie z założeniami wewnątrzszkolnego regulaminu oceniania, klasyfikowania i promowania uczniów, ocena powinna być jawna. 2. Ocenianiu
2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego
Wymagania dla kl. 3 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa
Plan wynikowy, klasa 3 ZSZ
Plan wynikowy, klasa 3 ZSZ Nazwa działu Temat Liczba godzin 1. Trójkąty prostokątne powtórzenie 1. Trygonometria (10 h) 2. Funkcje trygonometryczne kąta ostrego 3. 4. Trygonometria zastosowania 5. 6. Związki
Uczeń otrzymuje ocenę dostateczną, jeśli opanował wiadomości i umiejętności konieczne na ocenę dopuszczającą oraz dodatkowo:
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI Rok szkolny 2018 / 2019 POZIOM PODSTAWOWY KLASA 3 1. RACHUNEK PRAWDOPODOBIEŃSTWA wypisuje
PRZEDMIOTOWY SYSTEM OCENIANIA z przedmiotu matematyka
PRZEDMIOTOWY SYSTEM OCENIANIA z przedmiotu matematyka 1. Wymagania edukacyjne treści i umiejętności podlegające ocenie. Ocena celująca Ocenę tę otrzymuje uczeń, którego wiedza wykracza poza obowiązujący
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II BRANŻOWA SZKOŁA I STOPNIA WYRAŻENIA ALGEBRAICZNE. PROPORCJONALNOŚĆ ODWROTNA
Rok szkolny 2018/19 klasa 3w WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA II BRANŻOWA SZKOŁA I STOPNIA WYRAŻENIA ALGEBRAICZNE. PROPORCJONALNOŚĆ ODWROTNA opisać za pomocą wyrażeń algebraicznych związki między
Przedmiotowy system oceniania z matematyki.
Zespół Szkół Ponadgimnazjalnych Im. Jarosława Iwaszkiewicza W Twardogórze Przedmiotowy system oceniania z matematyki. I OGÓLNE KRYTERIA OCEN Z MATEMATYKI OCENA CELUJĄCA Ocenę tę otrzymuje uczeń, którego
PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W XXXIX LICEUM OGÓLNOKSZTAŁCĄCYM im. LOTNICTWA POLSKIEGO
PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W XXXIX LICEUM OGÓLNOKSZTAŁCĄCYM im. LOTNICTWA POLSKIEGO 1. Przedmiotowe Zasady Oceniania z matematyki są zgodne z Wewnątrzszkolnymi Zasadami Oceniania w Zespole
MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia)
MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia) ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Potęgi. Logarytmy. Funkcja wykładnicza sprawnie wykonywać działania na
Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy i rozszerzony
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające;
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV budownictwo ZAKRES ROZSZERZONY (135 godz.)
l. 4bB YMAGANIA EDUACYJNE Z MATEMATYI LASA IV budownictwo ZARES ROZSZERZONY (135 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające
Poziom wymagań K P K R K R. 2. Permutacje definicja permutacji definicja n! liczba permutacji zbioru n-elementowego K K K P D
Plan wynikowy klasa 3g - Jolanta Pająk Matematyka 3. dla liceum ogólnokształcącego, liceum profilowanego i technikum. ształcenie ogólne w zakresie rozszerzonym rok szkolny 2015/2016 Wymagania edukacyjne
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 4bA ZAKRES ROZSZERZONY (135 godz.)
YMAGANIA EDUACYJNE Z MATEMATYI LASA 4bA ZARES ROZSZERZONY (135 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania
MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych
MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy Klasa 3 Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające
1. Przedmiotowe Zasady Oceniania z matematyki są zgodne z Wewnątrzszkolnymi Zasadami Oceniania w Zespole Szkół nr 119.
PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W GIMNAZJUM nr 71 im. Krzysztofa Kamila Baczyńskiego oraz W XXXIX LICEUM OGÓLNOKSZTAŁCĄCYM im. LOTNICTWA POLSKIEGO 1. Przedmiotowe Zasady Oceniania z matematyki
Wymagania kl. 3. Zakres podstawowy i rozszerzony
Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 4 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI I ZASTOSOWAŃ MATEMATYKI OBOWIĄZUJĄCE W ZSPS I VIII LO W TORUNIU zewaluowane 1 września 2017
PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI I ZASTOSOWAŃ MATEMATYKI OBOWIĄZUJĄCE W ZSPS I VIII LO W TORUNIU zewaluowane 1 września 2017 1. Przedmiotowe Zasady Oceniania z matematyki są zgodne z Wewnątrzszkolnymi
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI ROK SZKOLNY 2018/2019 POZIOM PODSTAWOWY I ROZSZERZONY KLASA 3 UWAGI: 1. Zakłada się,
Przedmiotowe Zasady Oceniania MATEMATYKA klasy VII i VIIII
Przedmiotowe Zasady Oceniania MATEMATYKA klasy VII i VIIII I. Uwagi ogólne: Opracowała Dorota Kiersk-Królikowska 1. Ocenianiu podlegają osiągnięcia edukacyjne uczniów poprzez rozpoznawanie przez nauczyciela
Wymagania edukacyjne, sposoby i formy sprawdzania osiągnięć i postępów edukacyjnych z matematyki.
Propozycja szczegółowego rozkładu materiału Program zakłada powtórzenie i utrwalenie wiadomości i umiejętności z wcześniejszych etapów edukacyjnych, niezbędnych w dalszym toku kształcenia (np. działania
MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony
Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania
PRZEDMIOTOWE OCENIANIE Z MATEMATYKI
PRZEDMIOTOWE OCENIANIE Z MATEMATYKI w XLV Liceum Ogólnokształcącym im. Romualda Traugutta w Warszawie I. Przedmiotowe Ocenianie (PO) opiera się na Wewnątrzszkolnym Ocenianiu, które z kolei reguluje: 1.
Stopień celujący otrzymuje uczeń, który otrzymał stopień bardzo dobry i rozwiązał zadanie wskazane jako dodatkowe.
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI 50 1. Oceny bieżące, oceny klasyfikacyjne, śródroczne i oceny klasyfikacyjne roczne ustala się w stopniach według następującej skali: 1) stopień celujący 6 2)
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZEDMIOTU MATEMATYKA V LICEUM OGÓLNOKSZTAŁCĄCE IM. KLAUDYNY POTOCKIEJ W POZNANIU
PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZEDMIOTU MATEMATYKA V LICEUM OGÓLNOKSZTAŁCĄCE IM. KLAUDYNY POTOCKIEJ W POZNANIU Każdy uczeń ma prawo zdobywać wiedzę na lekcjach matematyki, rozwijać ją i utrwalać samodzielną
Kryteria oceniania z matematyki Klasa III poziom podstawowy
Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi
Matematyka CIĄGI. Zakres materiału i wymagania edukacyjne, KLASA TRZECIA poziom podstawowy. Temat lekcji Zakres treści Osiągnięcia ucznia.
Matematyka Zakres materiału i wymagania edukacyjne, KLASA TRZECIA poziom podstawowy CIĄGI 1. Pojęcie ciągu definicja ciągu wykres ciągu wyznacza kolejne wyrazy ciągu, gdy danych jest kilka jego początkowych
MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych
MATeMAtyka 4 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI w ZSEiL W WARSZAWIE
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI w ZSEiL W WARSZAWIE ROZDZIAŁ I: Przepisy ogólne 1. Ocenianiu podlegają osiągnięcia edukacyjne uczniów poprzez rozpoznawanie przez nauczycieli poziomu i postępów
PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA
PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA I. FORMY SPRAWDZANIA WIADOMOŚCI Na początku roku szkolnego nauczyciel informuje o przewidywanych sprawdzianach a także o innych formach sprawdzania wiadomości Różne
POZIOMY WYMAGAŃ I OGÓLNE KRYTERIA OCEN. Z MATEMATYKI. kl. I
POZIOMY WYMAGAŃ I OGÓLNE KRYTERIA OCEN Ocenę niedostateczna Z MATEMATYKI. kl. I Ocenę tę otrzymuje uczeń, który nie opanował podstawowych wiadomości i umiejętności wynikających z programu nauczania oraz:
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I BRANŻOWA SZKOŁA I STOPNIA LICZBY RZECZYWISTE
Rok szkolny 2018/19 klasa 1w WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I BRANŻOWA SZKOŁA I STOPNIA LICZBY RZECZYWISTE /ocena rozpoznać liczby naturalne w tym pierwsze i złożone, całkowite, wymierne, niewymierne,
Kształcenie w zakresie rozszerzonym. Klasa IV
Kształcenie w zakresie rozszerzonym. Klasa IV Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu
Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu Wymagania edukacyjne niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z obowiązkowych
Przedmiotowy System Oceniania z matematyki w klasach 4 6 Szkoły Podstawowej im. Wincentego Witosa w Borku Strzelińskim.
2015/2016 Przedmiotowy System Oceniania z matematyki w klasach 4 6 Szkoły Podstawowej im. Wincentego Witosa w Borku Strzelińskim. Przedmiotowy System Oceniania z matematyki jest zgodny z Wewnątrzszkolnym
Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa III
Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa III Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja potęgowa - zna i stosuje tw. o potęgach - zna wykresy funkcji potęgowej
Przedmiot Klasa Poziom Imię i Nazwisko nauczyciela Matematyka kl. 4 ga ZAKRES PODSTAWOWY I ROZSZERZONY Mirosława Jursza
Przedmiot lasa Imię i Nazwisko nauczyciela Matematyka kl. 4 ga ZARES PODSTAOY I ROZSZERZONY Mirosława Jursza Rok szkolny 2018/2019 Autorzy: Dorota Ponczek, arolina ej -ocena dopuszczająca- wymagania na
MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KLASA III GIMNAZJUM Wymagania konieczne (K) dotyczą zagadnień elementarnych, podstawowych; powinien je opanować każdy uczeń. Wymagania podstawowe
MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA
MATEMATYKA Wymagania edukacyjne i zakres materiału dla klasy drugiej poziom podstawowy w roku szkolnym 2013/2014 ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Funkcje i ich własności. odróżnić przyporządkowanie,
Kryteria oceniania z matematyki Klasa III poziom rozszerzony
Kryteria oceniania z matematyki Klasa III poziom rozszerzony Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja potęgowa - zna i stosuje tw. o potęgach - zna wykresy funkcji potęgowej o dowolnym
Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08
Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 1. Oprocentowanie lokat i kredytów - zna pojęcie procentu prostego i składanego; - oblicza
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)
Wymagania edukacyjne z matematyki i zasady oceniania
Przedmiot lasa Imię i Nazwisko nauczyciela Matematyka kl. 4 GI ZARES PODSTAOY I ROZSZERZONY Mirosława Jursza ymagania edukacyjne z matematyki i zasady oceniania 1. roku szkolnym 2019/2020 w klasie 4 GI
I Liceum Ogólnokształcące im. Tadeusza Kościuszki w Busku Zdroju
I Liceum Ogólnokształcące im. Tadeusza Kościuszki w Busku Zdroju PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI obowiązuje od 1 września 2017 roku 1 I. Cele kształcenia i wychowania Cele związane z kształceniem
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W LICEUM OGÓLNOKSZTAŁCĄCYM im. Gen. Władysława Andersa w Lesku
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W LICEUM OGÓLNOKSZTAŁCĄCYM im. Gen. Władysława Andersa w Lesku Przedmiotowy system oceniania z matematyki jest zgodny z Ustawą o Systemie Oświaty, Rozporządzeniem
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: IV 67 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
Plan wynikowy klasa 3
Plan wynikowy klasa 3 Przedmiot: matematyka Klasa 3 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 28 tyg. 3 h = 84 h (78 h + 6 h do dyspozycji
Przedmiotowy System Oceniania z Matematyki
Przedmiotowy System Oceniania z Matematyki Opracowany na podstawie: 1. Podstawy programowej dla szkoły podstawowej z matematyki. 2. Programu nauczania Matematyka z kluczem klasa 4, 5, 6 i 7 3. Podręcznika
1.Funkcja logarytmiczna
Kryteria oceniania z matematyki dla klasy IV TI poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 1.Funkcja logarytmiczna -potrafi obliczyć logarytm liczby dodatniej; -zna i potrafi stosować
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA 4iB ZAKRES ROZSZERZONY (160 godz.)
WYMAGANIA EDUACYJNE Z MATEMATYI LASA 4iB ZARES ROZSZERZONY (160 godz.) Oznaczenia: wymagania konieczne (dopuszczający); wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania
Przedmiotowe zasady oceniania i wymagania edukacyjne
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa 3 Przedmiotowe zasady oceniania i wymagania edukacyjne Przed przystąpieniem do omawiania zagadnień programowych i przed rozwiązywaniem
Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP. Kryteria oceny
Wymagania programowe z matematyki na poszczególne oceny w klasie III A i III B LP Przygotowane w oparciu o propozycję Wydawnictwa Nowa Era 2017/2018 Kryteria oceny Znajomość pojęć, definicji, własności
reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa reguła dodawania definicja n! liczba permutacji zbioru n-elementowego
FUNKCJE LOGARYTMICZNE powtórzenie 4 godziny RACHUNEK PRAWDOPODOBIEŃSTWA 28 godz. Moduł - dział -temat Reguła mnożenia. Reguła dodawania Lp 1 2 reguła mnożenia ilustracja zbioru wyników doświadczenia za
Wymagania edukacyjne z matematyki dla klasy III gimnazjum
Wymagania edukacyjne z matematyki dla klasy III gimnazjum Poziomy wymagań edukacyjnych: K konieczny dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować każdy
Przedmiotowe Zasady Oceniania i wymagania edukacyjne z matematyki w klasach 4 7 Szkoły Podstawowej im. Wincentego Witosa w Borku Strzelińskim.
2017/2018 Przedmiotowe Zasady Oceniania i wymagania edukacyjne z matematyki w klasach 4 7 Szkoły Podstawowej im. Wincentego Witosa w Borku Strzelińskim. Przedmiotowe Zasady Oceniania z matematyki są zgodne
Wymagania edukacyjne z matematyki Klasa III zakres podstawowy
Wymagania edukacyjne z matematyki Klasa III zakres podstawowy Program nauczania zgodny z: Kurczab M., Kurczab E., Świda E., Program nauczania w liceach i technikach. Zakres podstawowy., Oficyna Edukacyjna
Program do nauczania matematyki w klasie trzeciej - zakres rozszerzony
Program do nauczania matematyki w klasie trzeciej - zakres rozszerzony I. Procedury oceniania osiągnięć uczniów Ocenę celującą otrzymuje uczeń, którego wiedza znacznie wykracza poza obowiązujący program
MATEMATYKA. Zakres materiału i wymagania edukacyjne KLASA TRZECIA, poziom rozszerzony
MATEMATYKA Zakres materiału i wymagania edukacyjne KLASA TRZECIA, poziom rozszerzony 1. RACHUNEK RÓŻNICZKOWY 1. Granica funkcji w punkcie intuicyjne pojęcie granicy określenie granicy funkcji w punkcie
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASACH 4-8 SZKOŁY PODSTAWOWEJ Rok szkolny 2017/2018
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W KLASACH 4-8 SZKOŁY PODSTAWOWEJ Rok szkolny 2017/2018 I. Założenia ogólne: 1. Każdy uczeń jest oceniany zgodnie z zasadami sprawiedliwości. 2. Prace klasowe
Przedmiotowy System Oceniania z matematyki w klasach 4 6 Szkoły Podstawowej im. Wincentego Witosa w Borku Strzelińskim.
2016/2017 Przedmiotowy System Oceniania z matematyki w klasach 4 6 Szkoły Podstawowej im. Wincentego Witosa w Borku Strzelińskim. Przedmiotowy System Oceniania z matematyki jest zgodny z Wewnątrzszkolnym
PRZEDMIOTOWE ZASADY OCENIANIA CHEMIA OBSZARY AKTYWNOŚCI
PRZEDMIOTOWE ZASADY OCENIANIA CHEMIA OBSZARY AKTYWNOŚCI Na lekcjach chemii oceniane są następujące obszary aktywności ucznia: 1. Rozumienie pojęć chemicznych i znajomości ich definicji. 2. Znajomość i
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI I LICEUM OGÓLNOKSZTAŁCĄCE IM. MIKOŁAJA KOPERNIKA W KROŚNIE
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI I LICEUM OGÓLNOKSZTAŁCĄCE IM. MIKOŁAJA KOPERNIKA W KROŚNIE Przedmiotowy system oceniania z matematyki jest zgodny z Rozporządzeniem Ministra Edukacji Narodowej
I LICEUM OGÓLNOKSZTAŁCĄCE im. Tadeusza Kościuszki. w Busku Zdroju PRZEDMIOTOWE ZASADY OCENIANIA Z CHEMII
I LICEUM OGÓLNOKSZTAŁCĄCE im. Tadeusza Kościuszki w Busku Zdroju PRZEDMIOTOWE ZASADY OCENIANIA Z CHEMII I. Cele kształcenia i wychowania Cele związane z kształceniem 1. Kształcenie umiejętności opisywania
POZIOMY WYMAGAŃ EDUKACYJNYCH: K ocena dopuszczająca (2) P ocena dostateczna (3) R ocena dobra (4) D ocena bardzo dobra (5) W ocena celująca (6)
YMAGANIA EDUACYJNE MATEMATYA LASA 3LO ZARES ROZSZERZONY OZIOMY YMAGAŃ EDUACYJNYCH: ocena dopuszczająca (2) ocena dostateczna (3) R ocena dobra (4) D ocena bardzo dobra (5) ocena celująca (6) Temat lekcji
Wymagania edukacyjne z matematyki i zasady oceniania
Przedmiot lasa Poziom Imię i Nazwisko nauczyciela Matematyka kl. 4 ia ZARES PODSTAOY I ROZSZERZONY Mirosława Jursza ymagania edukacyjne z matematyki i zasady oceniania 1. roku szkolnym 2019/2020 w klasie
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI PSP nr 1 W BRZEGU. rok szkolny 2013/2014
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI PSP nr 1 W BRZEGU OPRACOWANY NA PODSTAWIE: rok szkolny 2013/2014 1. Rozporządzenia MENiS z dnia 30 kwietnia 2007 r. W sprawie warunków i sposobu oceniania, klasyfikowania
Matematyka 3 wymagania edukacyjne
Matematyka 3 wymagania edukacyjne Zakres podstawowy 1 POZIOMY WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
2. Uczniowie zostają poinformowani o zasadach PZO na początku roku szkolnego, a o ewentualnych poprawkach natychmiast po ich wprowadzeniu.
PRZEDMIOTOWE ZASADY OCENIANIA (PZO) NA LEKCJACH FIZYKI ZAŁOŻENIA OGÓLNE 1. Niniejszy regulamin jest zgodny ze Statutem Szkoły. 2. Uczniowie zostają poinformowani o zasadach PZO na początku roku szkolnego,
PRZEDMIOTOWY SYSTEM OCENIANIA z przedmiotu Fizyka. 1. Wymagania edukacyjne treści i umiejętności podlegające ocenie.
PRZEDMIOTOWY SYSTEM OCENIANIA z przedmiotu Fizyka 1. Wymagania edukacyjne treści i umiejętności podlegające ocenie. Ocenie podlegają poniższe formy sprawdzenia wiedzy zdobytej podczas lekcji zgodnie z
Ogólne kryteria oceniania z biologii
Ogólne kryteria oceniania z biologii Ocenę celującą otrzymuje uczeń, którego wiedza znacznie wykracza poza obowiązujący program nauczania, a ponadto spełnia jeden z warunków: opanował w pełni rozszerzone
Wymagania edukacyjne zakres podstawowy klasa 3A
Ciągi Pojęcie ciągu. Sposoby opisywania ciągów Monotoniczność ciągów Ciąg arytmetyczny Suma początkowych wyrazów ciągu arytmetycznego Ciąg geometryczny Suma początkowych wyrazów ciągu geometrycznego Procent
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV geodezja ZAKRES ROZSZERZONY (224 godz.)
YMAGANIA EDUACYJNE Z MATEMATYI LASA IV geodezja ZARES ROZSZERZONY (224 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV geodezja ZAKRES ROZSZERZONY (224 godz.)
YMAGANIA EDUACYJNE Z MATEMATYI LASA IV geodezja ZARES ROZSZERZONY (224 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D
1. Potęgi. Logarytmy. Funkcja wykładnicza
1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności
ZESPÓŁ SZKÓŁ W OBRZYCKU
Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne
Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)
Program nauczania: Matematyka z plusem, Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku: 72 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019
WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 Przedmiot Klasa Nauczyciele uczący Poziom matematyka 4e Łukasz Jurczak rozszerzony 2. Elementy analizy matematycznej ocena dopuszczająca ocena dostateczna ocena
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W SZKOLE PONADGIMNAZJALNEJ
PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W SZKOLE PONADGIMNAZJALNEJ I. OGÓLNE KRYTERIA STOPNI SZKOLNYCH Celujący otrzymuje uczeń, który: Realizuje normy przedmiotowego systemu oceniania dotyczące ocen
PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3
PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3 I. FUNKCJE grupuje elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowań
Wymagania Edukacyjne w Szkole Podstawowej nr 4. im. Marii Dąbrowskiej w Kaliszu. Matematyka. Przedmiotem oceniania są:
Wymagania Edukacyjne w Szkole Podstawowej nr 4 im. Marii Dąbrowskiej w Kaliszu Matematyka - sprawność rachunkowa ucznia, Przedmiotem oceniania są: - sprawność manualna i wyobraźnia geometryczna, - znajomość
PRZEDMIOTOWY SYSTEM OCENIANIA Z BIOLOGII, BOLOGII DWUJĘZYCZNEJ I BIOLOGII DOŚWIADCZALNEJ
Zespół Szkół nr 2 Gimnazjum Dwujęzyczne nr 4 im. Zjednoczonej Europy w Lesznie PRZEDMIOTOWY SYSTEM OCENIANIA Z BIOLOGII, BOLOGII DWUJĘZYCZNEJ I BIOLOGII DOŚWIADCZALNEJ Przedmiotowy system oceniania z biologii
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji
Przedmiotowy system oceniania z wiedzy o społeczeństwie. w gimnazjum
Przedmiotowy system oceniania z wiedzy o społeczeństwie w gimnazjum Wiedzę i umiejętności ucznia z wiedzy o społeczeństwie sprawdza się poprzez: - obowiązkowe sprawdziany. Jeśli uczeń opuścił sprawdzian
PRZEDMIOTOWY SYSTEM OCENIANIA
ZESPÓŁ SZKÓŁ EKONOMICZNYCH nr 1 Kraków, ul. Kapucyńska 2 PRZEDMIOTOWY SYSTEM OCENIANIA Przedmiot: GEOGRAFIA TURYSTYCZNA Klasa: pierwsza Technik Hotelarstwa Technik Obsługi Turystycznej Opracowanie: mgr
Temat lekcji Zakres treści Osiągnięcia uczeń: I. FUNKCJE 14
I. FUNKCJE 1 Podstawowe Ponadpodstawowe grupuje dane elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowa opisanych słownie lub za pomocą grafu
PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA
PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA Rozporządzenia Ministra Edukacji Narodowej z dnia 10 czerwca 2015 r. w sprawie szczegółowych warunków i sposobu oceniania, klasyfikowania i promowania uczniów i
Zespół Szkół w Augustowie. Przedmiotowy system oceniania z matematyki w klasach I,II,III gimnazjum. Opracował: zespół n-li matematyki
Zespół Szkół w Augustowie Przedmiotowy system oceniania z matematyki w klasach I,II,III gimnazjum Opracował: zespół n-li matematyki I. OGÓLNE ZASADY PRZEDMIOTOWEGO SYSTEMU OCENIANIA. - PSO ma na celu wspieranie
PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZYRODY PRZEDMIOT UZUPEŁNIAJĄCY W I LICEUM OGÓLNOKSZTAŁCĄCYM W PIEKARACH ŚLĄSKICH
PRZEDMIOTOWY SYSTEM OCENIANIA Z PRZYRODY PRZEDMIOT UZUPEŁNIAJĄCY W I LICEUM OGÓLNOKSZTAŁCĄCYM W PIEKARACH ŚLĄSKICH 1. CELE KSZTAŁCENIA Rozumienie metody naukowej, polegającej na stawianiu hipotez i ich
Przedmiotowy system oceniania z matematyki w Publicznym Gimnazjum nr 9 w Opolu
Przedmiotowy system oceniania z matematyki w Publicznym Gimnazjum nr 9 w Opolu I. Podstawy prawne opracowania PSO. Przedmiotowy system oceniania z matematyki jest zgodny z: 1. Rozporządzeniem Ministra
Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Gimnazjum, klasa 3 Rozkład materiału i plan wynikowy
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa Rozkład materiału i plan wynikowy I. FUNKCJE 1 1. Pojęcie funkcji zbiór i jego elementy pojęcie przyporządkowania pojęcie funkcji
PRZEDMIOTOWY SYSTEM OCENIANIA
ZESPÓŁ SZKÓŁ OGÓLNOKSZTAŁCĄCYCH ul. M.Curie-Skłodowskiej 58-400 Kamienna Góra tel.:(+48) 75-645-0-8 fax: (+48) 75-645-0-83 E-mail: zso@kamienna-gora.pl WWW: http://www.zso.kamienna-gora.pl PRZEDMIOTOWY