Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS /08

Wielkość: px
Rozpocząć pokaz od strony:

Download "Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08"

Transkrypt

1 Kryteria oceniania z matematyki dla klasy III LO poziom podstawowy, na podstawie programu nauczania DKOS /08 1. Oprocentowanie lokat i kredytów - zna pojęcie procentu prostego i składanego; - oblicza oprocentowanie lokaty w prostych sytuacjach. - potrafi stosować procent prosty i składany w zadaniach dotyczących oprocentowania lokat i kredytów. Ocena dobra - oblicza wysokość kapitału przy różnym okresie kapitalizacji; -rozwiązuje zadania związane z kredytami dotyczące okresu oszczędzania i wysokości oprocentowania w trudniejszych przypadkach. 2. Funkcja wykładnicza i funkcja logarytmiczna zna definicję funkcji wykładniczej; potrafi odróżnić funkcję wykładniczą od innych funkcji; potrafi szkicować wykresy funkcji wykładniczych dla różnych podstaw; potrafi opisać własności funkcji wykładniczej na podstawie jej wykresu; potrafi rozwiązywać graficznie proste równania oraz nierówności z wykorzystaniem wykresu funkcji wykładniczej; potrafi obliczyć logarytm liczby dodatniej; zna i potrafi stosować własności logarytmów: logarytm iloczynu, logarytm ilorazu, logarytm potęgi o wykładniku naturalnym zna definicję funkcji logarytmicznej; potrafi odróżnić funkcję logarytmiczną od innej funkcji; potrafi szkicować wykresy funkcji logarytmicznych; potrafi opisać własności funkcji logarytmicznej na podstawie jej wykresu. potrafi przekształcać wykresy funkcji wykładniczych (S OX, S OY, S (0,0), przesunięcie równoległe o dany wektor);

2 potrafi rozwiązywać proste równania wykładnicze. Ocena dobra potrafi sprawnie przekształcać wyrażenia zawierające logarytmy, stosując poznane twierdzenia o logarytmach. - potrafi zastosować proste równania i nierówności wykładnicze w rozwiązywaniu zadań dotyczących własności funkcji wykładniczych. Ocena celująca - zna definicję funkcji logarytmicznej; - potrafi odróżnić funkcję logarytmiczną od innych funkcji; - potrafi sporządzać wykresy funkcji logarytmicznych dla różnych podstaw; - potrafi opisać własności funkcji logarytmicznej na podstawie jej wykresu; -potrafi przekształcać wykresy funkcji logarytmicznych (S OX, S OY, S (0,0), przesunięcie równoległe o dany wektor); potrafi rozwiązywać graficznie proste równania oraz nierówności z wykorzystaniem wykresu funkcji logarytmicznej; -potrafi rozwiązywać proste równania logarytmiczne; -potrafi rozwiązywać proste nierówności logarytmiczne; -potrafi zastosować równania i nierówności logarytmiczne do rozwiązywania zadań dotyczących własności funkcji logarytmicznych. 3. Kombinatoryka i rachunek prawdopodobieństwa -zlicza obiekty w prostych sytuacjach kombinatorycznych, nie wymagających użycia wzorów kombinatorycznych; -stosuje regułę mnożenia i regułę dodawania; -zna pojęcia: doświadczenie losowe, zdarzenie elementarne, przestrzeń zdarzeń elementarnych, zdarzenie pewne, zdarzenie niemożliwe, zdarzenia wykluczające się; - zna i rozumie aksjomatyczną definicję prawdopodobieństwa; - zna własności prawdopodobieństwa i umie je stosować w rozwiązaniach prostych zadań; -umie określić(skończoną) przestrzeń zdarzeń elementarnych danego doświadczenia losowego i obliczyć jej moc; - umie określić, jakie zdarzenia elementarne sprzyjają danemu zdarzeniu; - zna i umie stosować w prostych sytuacjach klasyczną definicję prawdopodobieństwa. - umie własności prawdopodobieństw stosować w rozwiązaniach prostych zadań; -umie stosować w średnio prostych sytuacjach klasyczną definicję prawdopodobieństwa.

3 Ocena dobra - zna pojęcie permutacji i umie stosować wzór na liczbę permutacji; - zna pojęcie wariacji z powtórzeniami i bez powtórzeń i umie stosować wzory na liczbę takich wariacji; - zna pojęcie kombinacji i umie stosować wzór na liczbę kombinacji; - umie rozwiązywać proste zadania kombinatoryczne z zastosowaniem poznanych wzorów; - umie rozwiązywać zadania dotyczące rachunku prawdopodobieństwa o średnim stopniu trudności, z wykorzystaniem wcześniej poznanych twierdzeń. - umie udowodnić twierdzenie mówiące o własnościach prawdopodobieństwa; - umie rozwiązywać zadania kombinatoryczne o średnim stopniu trudności; - oblicza prawdopodobieństwo zdarzenia doświadczenia wieloetapowego. Ocena celująca - umie stosować własności prawdopodobieństwa do rozwiązywania zadań teoretycznych ; -potrafi rozwiązywać nietypowe zadania dotyczące kombinatoryki i rachunku prawdopodobieństwa o podwyższonym stopniu trudności, z wykorzystaniem poznanych twierdzeń. 4. Elementy statystyki opisowej -potrafi odczytywać dane statystyczne z tabel, diagramów i wykresów; -potrafi przedstawiać dane empiryczne w postaci tabel, diagramów i wykresów, -potrafi obliczać średnią z próby; -potrafi obliczać medianę z próby ; - potrafi obliczać modę z próby; -potrafi obliczać wariancję i odchylenie standardowe ; -potrafi na podstawie obliczonych wielkości przeprowadzać analizę przedstawionych danych; -potrafi określać zależności między odczytanymi danymi. Ocena dobra - potrafi rozwiązać proste zadania teoretyczne dotyczące pojęć statystycznych. - potrafi rozwiązać średniej trudności zadania teoretyczne dotyczące pojęć statystycznych.

4 5. Geometria przestrzenna -potrafi określić położenie dwóch płaszczyzn w przestrzeni; -potrafi określić położenie prostej i płaszczyzny w przestrzeni; -potrafi rysować figury płaskie w rzucie równoległym na płaszczyznę; -umie scharakteryzować prostopadłość prostej i płaszczyzny; -zna i umie stosować twierdzenie o trzech prostopadłych; -zna określenie graniastosłupa; umie wskazać: podstawy, ściany boczne, krawędzie podstaw, krawędzie boczne, wysokość, wierzchołki graniastosłupa; -zna podział graniastosłupów; -umie narysować siatki graniastosłupów prostych; -zna określenie ostrosłupa; umie wskazać: podstawy ściany boczne, krawędzie podstaw, krawędzie boczne, wysokość, wierzchołki ostrosłupa; - zna podział ostrosłupów; -umie narysować siatki ostrosłupów prostych; -zna określenie walca; umie wskazać: podstawy, powierzchnię boczną, tworzącą, wysokość, oś obrotu walca; -rozumie określenie przekrój osiowy walca; -zna określenie przekrój osiowy stożka; umie wskazać: podstawę,powierzchnię boczną, tworzącą, wysokość, oś obrotu, wierzchołek stożka; - rozumie określenie przekrój osiowy stożka; -zna określenie kuli; - rozpoznaje w walcach i stożkach kąt między odcinkami oraz kąt między odcinkami i płaszczyznami ( np. kąt rozwarcia stożka, kąt między tworzącą a podstawą), oblicza miary tych kątów; - umie obliczać objętość i pole powierzchni graniastosłupów; - umie obliczać objętość i pole powierzchni ostrosłupów prawidłowych; - umie obliczać objętość i pole powierzchni brył obrotowych(stożka, kuli, walca); -potrafi określić położenie dwóch prostych w przestrzeni; -umie scharakteryzować prostopadłość dwóch płaszczyzn; -rozumie pojęcie kąta między prostą i płaszczyzną; -rozumie pojęcie kąta dwuściennego, poprawnie posługuje się terminem: kąt liniowy kąta dwuściennego; - rozpoznaje w graniastosłupach i ostrosłupach kąty między odcinkami(np. krawędziami i krawędziami przekątnymi itp.),oblicza miary tych kątów; - rozpoznaje w graniastosłupach i ostrosłupach kąty między ścianami; -potrafi rozwiązywać proste zadania geometryczne dotyczące brył, w tym z wykorzystaniem trygonometrii poznanych wczesnej twierdzeń.

5 Ocena dobra - określa, jaką figura jest dany przekrój prostopadłościanu; -zna i umie stosować twierdzenia charakteryzujące ostrosłup prosty i prawidłowy. - potrafi rozwiązywać zadania geometryczne dotyczące brył o średnim stopniu trudności, z wykorzystaniem wcześniej poznanych twierdzeń. Ocena celująca - potrafi skonstruować przekrój wielościanu płaszczyzną i udowodnić poprawność konstrukcji; -potrafi rozwiązywać nietypowe zadania geometryczne dotyczące brył o podwyższonym stopniu trudności, z wykorzystaniem poznanych twierdzeń. U ucznia oceniana jest: 1.Odpowiedź ustna- wiadomości i umiejętności z trzech ostatnich lekcji oraz systematyczne utrwalanie umiejętności. 2. Jeżeli Uczeń nie umie wykonywać prostych działań matematycznych otrzymuje ocenę niedostateczną. 3.Zapowiedziane lub niezapowiedziane kartkówki(ok.20 min) obejmujące materiał z trzech tematów wstecz. 4.Całogodzinne sprawdziany zapowiedziane z co najmniej tygodniowym wyprzedzeniem. 5. Aktywność na lekcji: oceną lub plusami(5 + bdb,4+ db,3+ dst ).Plusy zostają zamienione na ocenę, jeżeli jest ich 5 lub koniec semestru. 6.Zadanie domowe lub jego brak. Przy zgłoszonym braku zadana uczeń otrzymuje minusa. Trzy minusy zamienione zostają na ocenę niedostateczną. Jeżeli Uczeń nie zgłosi braku zadania otrzymuje ocenę niedostateczną. 7.Za odpisane zadanie Uczeń otrzymuje ocenę niedostateczną. 8.Za korzystanie z niedozwolonych materiałów w trakcie kartkówki lub sprawdzianu Uczeń otrzymuje ocenę niedostateczną. 9.Za podpowiadanie uczeń otrzymuje minusa, trzy minusy zamienione zostają na ocenę niedostateczną. 10. Za brak podręcznika, zeszytu, zbioru Uczeń otrzymuje minusa. 11.Wyżej wymienione minusy są równoważne. 12. Uczeń może raz w ciągu semestru zgłosić nieprzygotowanie do lekcji zanim nauczyciel rozpocznie odpytywanie (nie dotyczy lekcji z zapowiedzianymi sprawdzianami i kartkówkami).

6 Przedział procentowy a uzyskana ocena z prac pisemnych: sprawdzianów i klasówek kartkówek z trzech ostatnich lekcji 0% - 29 % - niedostateczny 0% - 40%- niedostateczny 30%-55% - dopuszczający 41%- 54 %- dopuszczający 56% - 74 %- dostateczny 55% - 74% - dostateczny 75% - 89% - dobry 75% - 89% - dobry 90%- 100% bardzo dobry 90% % - bardzo dobry Jeśli Uczeń uzyska 90% punktów lub więcej i rozwiąże zadanie dodatkowe o podwyższonym stopniu trudności otrzyma ocenę celującą.

1.Funkcja logarytmiczna

1.Funkcja logarytmiczna Kryteria oceniania z matematyki dla klasy IV TI poziom podstawowy, na podstawie programu nauczania DKOS- 5002-05/08 1.Funkcja logarytmiczna -potrafi obliczyć logarytm liczby dodatniej; -zna i potrafi stosować

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Plan wynikowy klasa 3

Plan wynikowy klasa 3 Plan wynikowy klasa 3 Przedmiot: matematyka Klasa 3 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 28 tyg. 3 h = 84 h (78 h + 6 h do dyspozycji

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2015/2016 Przedmiot: MATEMATYKA Klasa: III 2 godz/tyg 30 = 60 godzin Rozkład materiału nauczania Temat I. LOGARYTMY

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Klasa II LP. Matematyka

Klasa II LP. Matematyka Klasa II LP Matematyka zakres podstawowy (3 godz. tygodniowo) Nauczyciel: Urszula Stopka I. FORMY SPRAWDZANIA WIADOMOŚCI: 1) zadanie domowe- uczeń może otrzymać z zadania domowego ocenę (jeśli zadanie

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku: 72 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W KLASIE III

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W KLASIE III PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W KLASIE III Przedmiotowe Zasady Oceniania z matematyki są zgodne z Wewnątrzszkolnym Ocenianiem GIMNAZJUM IM. JANA PAWŁA II W BOGUSZYCACH 1/8 ZASADY OCENIANIA:

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - zamieniać procent/promil na liczbę i odwrotnie, - zamieniać procent na promil i odwrotnie, - obliczać

Bardziej szczegółowo

Planimetria 1 12 godz.

Planimetria 1 12 godz. Planimetria 1 1 godz. Funkcje trygonometryczne kąta ostrego 1 definicje funkcji trygonometrycznych kąta ostrego wartości funkcji trygonometrycznych kątów 30º, 45º, 60º Trygonometria zastosowania Rozwiązywanie

Bardziej szczegółowo

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego

Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego Wykaz treści i umiejętności zawartych w podstawie programowej z matematyki dla IV etapu edukacyjnego 1. Liczby rzeczywiste P1.1. Przedstawianie liczb rzeczywistych w różnych postaciach (np. ułamka zwykłego,

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

III. Wyrażenia algebraiczne, równania i nierówności. Uczeń: 1) używa wzorów skróconego mnożenia na. b ;

III. Wyrażenia algebraiczne, równania i nierówności. Uczeń: 1) używa wzorów skróconego mnożenia na. b ; Wymagania edukacyjne, kryteria oceniania oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów XV LO w Krakowie Matematyka Klasa pierwsza. Poziom podstawowy. Rok szkolny 2014/2015 Wymagania ogólne zdobywa

Bardziej szczegółowo

MATEMATYKA LICEUM. 1. Liczby rzeczywiste. Uczeń:

MATEMATYKA LICEUM. 1. Liczby rzeczywiste. Uczeń: MATEMATYKA LICEUM Stopień niedostateczny otrzymuje uczeń, który nie opanował wiadomości i umiejętności określonych w podstawie programowej i braki uniemożliwiają dalsze zdobywanie wiedzy z tego przedmiotu,

Bardziej szczegółowo

SZCZEGÓŁOWY REGULAMIN OCENIANIA OSIĄGNIĘĆ EDUKACYJNYCH Z MATEMATYKIW KLASIE III b LO rok szkolny 2015/2016

SZCZEGÓŁOWY REGULAMIN OCENIANIA OSIĄGNIĘĆ EDUKACYJNYCH Z MATEMATYKIW KLASIE III b LO rok szkolny 2015/2016 SZCZEGÓŁOWY REGULAMIN OCENIANIA OSIĄGNIĘĆ EDUKACYJNYCH Z MATEMATYKIW KLASIE III b LO rok szkolny 2015/2016 I. Podstawa prawna: Rozdział 33a ustawy o systemie oświaty z dnia 7 września 1991r. z późniejszymi

Bardziej szczegółowo

Cele kształcenia wymagania ogólne (przedruk z podstawy programowej) kształcenie w zakresie rozszerzonym. Podręcznik 3 (6 godzin 25 tygodni)

Cele kształcenia wymagania ogólne (przedruk z podstawy programowej) kształcenie w zakresie rozszerzonym. Podręcznik 3 (6 godzin 25 tygodni) PLAN WYNIKOWY dla techników i liceów ogólnokształcących zakres podstawowy i rozszerzony do Podręcznika 3 z serii Matematyka w otaczającym nas świecie Wydawnictwa Podkowa Plan wynikowy polega na zaplanowaniu

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.)

Nowa podstawa programowa z matematyki ( w liceum od 01.09.2012 r.) IV etap edukacyjny Nowa podstawa programowa z matematyki ( w liceum od 01.09.01 r.) Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń

Bardziej szczegółowo

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne

PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA IV etap edukacyjny: liceum Cele kształcenia wymagania ogólne ZAKRES PODSTAWOWY ZAKRES ROZSZERZONY I. Wykorzystanie i tworzenie informacji. Uczeń używa języka matematycznego

Bardziej szczegółowo

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności

klasa III technikum I. FIGURY I PRZEKSZTAŁCENIA Wiadomości i umiejętności I. FIGURY I PRZEKSZTAŁCENIA - zna i rozumie pojęcia, zna własności figur: ogólne równanie prostej, kierunkowe równanie prostej okrąg, równanie okręgu - oblicza odległość dwóch punktów na płaszczyźnie -

Bardziej szczegółowo

PRZEDMIOTOWE OCENIANIE Z MATEMATYKI I. CELE KSZTAŁCENIA I TREŚCI NAUCZANIA

PRZEDMIOTOWE OCENIANIE Z MATEMATYKI I. CELE KSZTAŁCENIA I TREŚCI NAUCZANIA PRZEDMIOTOWE OCENIANIE Z MATEMATYKI I. CELE KSZTAŁCENIA I TREŚCI NAUCZANIA Cele kształcenia i treści nauczania reguluje podstawa programowa przedmiotu, zatwierdzona przez właściwego ministra dla II etapu

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE Z MATEMATYKI GIMNAZJUM

WYMAGANIA PROGRAMOWE Z MATEMATYKI GIMNAZJUM WYMAGANIA PROGRAMOWE Z MATEMATYKI GIMNAZJUM I. Wymagania na poszczególne oceny semestralne i roczne Ocenę celującą otrzymuje uczeń, który: wykorzystuje na lekcjach matematyki wiadomości z innych przedmiotów,

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

PLAN WYNIKOWY (zakres rozszerzony) klasa 3.

PLAN WYNIKOWY (zakres rozszerzony) klasa 3. PLAN WYNIKOWY (zakres rozszerzony) klasa. Wstęp Plan wynikowy kształcenia matematycznego jest dostosowany do programu nauczania matematyki w liceach i technikach zakres rozszerzony, autorstwa Marcina Kurczaba,

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W GIMNAZJUM SPOŁECZNYM SPLOT IMIENIA JANA KARSKIEGO W NOWYM SĄCZU I. Cele edukacyjne: W zakresie rozwoju intelektualnego ucznia: wykształcenie umiejętności operowania

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

Przedmiotowy System Oceniania w SP 77. w klasach IV - VI. matematyka

Przedmiotowy System Oceniania w SP 77. w klasach IV - VI. matematyka Przedmiotowy System Oceniania w SP 77 w klasach IV - VI matematyka Spis treści I. Główne założenia PSO... 2 II. Obszary aktywności podleające ocenie... 2 III. Wymagania na poszczególne oceny z uwzględnieniem

Bardziej szczegółowo

1. Przedmiot oceniania:

1. Przedmiot oceniania: Przedmiotowy system oceniania z matematyki w Gimnazjum w Posądzy Opracowano na podstawie Wewnątrzszkolnego Systemu Oceniania oraz w oparciu o program "Matematyka 2001 1. Przedmiot oceniania: a) wiadomości,

Bardziej szczegółowo

klasa I Dział Główne wymagania edukacyjne Forma kontroli

klasa I Dział Główne wymagania edukacyjne Forma kontroli semestr I 2007 / 2008r. klasa I Liczby wymierne Dział Główne wymagania edukacyjne Forma Obliczenia procentowe Umiejętność rozpoznawania podzbiorów zbioru liczb wymiernych. Umiejętność przybliżania i zaokrąglania

Bardziej szczegółowo

OKREŚLENIE WYMAGAŃ NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM

OKREŚLENIE WYMAGAŃ NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM OKREŚLENIE WYMAGAŃ NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM (założone osiągnięcia ucznia w klasach I III gimnazjum zgodnie z programem nauczania Matematyka z plusem (DPN-5002-17/08) realizującym

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ REALIZOWANY PRZY POMOCY PODRĘCZNIKA MATEMATYKA 2001 DLA KLASY VI I.

Bardziej szczegółowo

Statystyka opisowa i elementy rachunku prawdopodobieostwa

Statystyka opisowa i elementy rachunku prawdopodobieostwa MATEMATYKA (wg programu Nie tylko wynik ) Wymagania programowe na poszczególne oceny wymagao edukacyjnych: K konieczny (ocena ) P podstawowy (ocena ) R rozszerzający (ocena dobra) D dopełniający (ocena

Bardziej szczegółowo

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ

PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ PORÓWNANIE TREŚCI ZAWARTYCH W OBOWIĄZUJĄCYCH STANDARDACH EGZAMINACYJNYCH Z TREŚCIAMI NOWEJ PODSTAWY PROGRAMOWEJ L.p. 1. Liczby rzeczywiste 2. Wyrażenia algebraiczne bada, czy wynik obliczeń jest liczbą

Bardziej szczegółowo

MATEMATYKA WYMAGANIA SZCZEGÓŁOWE 1. LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną *, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem pojęcie potęgi o wykładniku naturalnym wzór na mnożenie i dzielenie potęg o tych samych podstawach wzór na potęgowanie

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. I. Podstawowe pojęcia statystyki. 1. Sposoby prezentowania danych, interpretacja wykresów. 2. Mediana i dominanta. 3. Średnia arytmetyczna

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I Ocenę dopuszczającą otrzymuje uczeń, który: 1. Zna pojęcie liczby naturalnej, całkowitej, wymiernej 2. Rozumie rozszerzenie osi liczbowej na liczby ujemne 3. Umie

Bardziej szczegółowo

Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach

Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach www.awans.net Publikacje nauczycieli Jolanta Widzińska Zespół Szkół Ogólnokształcących w Żorach Program nauczania matematyki dla 3 letniego liceum ogólnokształcącego dla dorosłych (po zasadniczej szkole

Bardziej szczegółowo

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ ALGEBRA Klasa I 3 godziny tygodniowo Klasa II 4 godziny tygodniowo Klasa III 3 godziny tygodniowo A. Liczby (24) 1. Liczby naturalne i całkowite. a. Własności, kolejność

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 20 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-2 2. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 1 1-2 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Materiał nauczania i przewidywane umiejętności uczniów. Klasa I. XCII LO z Oddziałami Integracyjnymi i Sportowymi. Treści nauczania. I.

Materiał nauczania i przewidywane umiejętności uczniów. Klasa I. XCII LO z Oddziałami Integracyjnymi i Sportowymi. Treści nauczania. I. XCII LO z Oddziałami Integracyjnymi i Sportowymi Materiał nauczania i przewidywane umiejętności uczniów Klasa I Treści nauczania I. Liczby 1. Liczby rzeczywiste, zapis dziesiętny liczby rzeczywistej, zamiana

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa III program Matematyka z plusem Dział: LICZBY I WYRAŻENIA ALGEBRAICZNE POZIOM KONIECZNY - ocena dopuszczająca Uczeń umie: szacować wyniki działań, zaokrąglać liczby

Bardziej szczegółowo

Zespół Szkół im. Ignacego Łukasiewicza w Policach PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA. Liceum Ogólnokształcące zakres podstawowy

Zespół Szkół im. Ignacego Łukasiewicza w Policach PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA. Liceum Ogólnokształcące zakres podstawowy Zespół Szkół im. Ignacego Łukasiewicza w Policach PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA Liceum Ogólnokształcące zakres podstawowy Formy i metody sprawdzania i oceniania osiągnięć ucznia: Osiągnięcia

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA. Szkoła Podstawowa w Stęszewie

PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA. Szkoła Podstawowa w Stęszewie PRZEDMIOTOWY SYSTEM OCENIANIA MATEMATYKA Szkoła Podstawowa w Stęszewie Przedmiotowy System Oceniania z Matematyki I. Zasady oceniania 1) Ocenie podlegają wszystkie wymienione formy aktywności ucznia określone

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI - GIMNAZJUM

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI - GIMNAZJUM 1 PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI - GIMNAZJUM I System oceniania w nauczaniu matematyki ma sprzyjać : dostarczaniu uczniowi bieżącej informacji o poziomie jego osiągnięć edukacyjnych i postępach

Bardziej szczegółowo

PLAN WYNIKOWY Z ROZKŁADEM MATERIAŁU klasa 3

PLAN WYNIKOWY Z ROZKŁADEM MATERIAŁU klasa 3 PLAN WYNIKOWY Z ROZKŁADEM MATERIAŁU klasa 3 W planie wynikowym wraz z rozkładem materiału dla klasy trzeciej uwzględniono zarówno nowy materiał, zawarty w programie nauczania Matematyka wokół nas Gimnazjum

Bardziej szczegółowo

Przedmiotowy system oceniania

Przedmiotowy system oceniania Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA DLA KLAS IV VI SZKOŁA PODSTAWOWA NR 10 W KOSZALINIE

PRZEDMIOTOWY SYSTEM OCENIANIA DLA KLAS IV VI SZKOŁA PODSTAWOWA NR 10 W KOSZALINIE PRZEDMIOTOWY SYSTEM OCENIANIA DLA KLAS IV VI SZKOŁA PODSTAWOWA NR 10 W KOSZALINIE (opracowali Janina Kurek, Henryk Zarach, Katarzyna Matusz) ZASADY PSO 1. PSO ma na celu czytelne przedstawienie wymagań

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE, KRYTERIA OCEN I PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI KLASA II

WYMAGANIA EDUKACYJNE, KRYTERIA OCEN I PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI KLASA II WYMAGANIA EDUKACYJNE, KRYTERIA OCEN I PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI KLASA II 1. Podstawowe (odpowiadające ocenie dostatecznej) wymagania z matematyki w klasie II gimnazjum ( * oznacza wymagania

Bardziej szczegółowo

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący Liczby i wyrażenia zna pojęcie liczby naturalnej, całkowitej, wymiernej zna pojęcie liczby niewymiernej, rzeczywistej zna sposób zaokrąglania liczb umie zapisać i odczytać liczby naturalne dodatnie w systemie

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R),

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Kryteria oceniania z matematyki KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Arytmetyka: Ocenę dopuszczającą otrzymuje uczeń, który potrafi : - określić pojęcie liczby naturalnej, całkowitej,

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: ocena dopuszczająca wymagania na poziomie (K)

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: ocena dopuszczająca wymagania na poziomie (K) - 1 - Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe, rozszerzające (R), dopełniające (D) i wykraczające poza program nauczania (W). Wymienione poziomy wymagań odpowiadają

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

2. Kryteria oceniania

2. Kryteria oceniania 2. Kryteria oceniania OSIĄGNIĘCIA PONADPRZEDMIOTOWE W rezultacie kształcenia matematycznego w klasie 1 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe Umiejętności ponadpodstawowe Konieczne

Bardziej szczegółowo

Matematyka 2 wymagania edukacyjne

Matematyka 2 wymagania edukacyjne Matematyka wymagania edukacyjne Zakres podstawowy POZIOMY WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY VI

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY VI MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY VI WYMAGANIA EDUKACYJNE NA OCENĘ DOPUSZCZAJĄCĄ DLA KLASY VI : 1. zamieni ułamek zwykły na dziesiętny dowolnym sposobem 2. porówna ułamek zwykły i dziesiętny 3.

Bardziej szczegółowo

Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa druga. Poziom podstawowy.

Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa druga. Poziom podstawowy. Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa druga. Poziom podstawowy. Wymagania ogólne interpretuje tekst matematyczny, po rozwiązaniu

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki oraz zastosowań matematyki w Liceum Ogólnokształcącym w Zespole Szkół Samorządowych w Ełku

Przedmiotowy system oceniania z matematyki oraz zastosowań matematyki w Liceum Ogólnokształcącym w Zespole Szkół Samorządowych w Ełku Przedmiotowy system oceniania z matematyki oraz zastosowań matematyki w Liceum Ogólnokształcącym w Zespole Szkół Samorządowych w Ełku Przedmiotowy system oceniania został skonstruowany w oparciu o następujące

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI GIMNAZJUM

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI GIMNAZJUM PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI GIMNAZJUM CELE EDUKACJI MATEMATYCZNEJ ROZWIJAJĄCE MYŚLENIE: Rozwijanie pamięci oraz umiejętności myślenia abstrakcyjnego i logicznego rozumowania. Rozwijanie

Bardziej szczegółowo

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy)

ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) 1 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II ( zakres podstawowy) Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku:

Bardziej szczegółowo

W zakresie TREŚCI PODSTAWOWYCH uczeń potrafi:

W zakresie TREŚCI PODSTAWOWYCH uczeń potrafi: PLAN WYNIKOWY Z MATEMATYKI DLA LICEUM OGÓLNOKSZTAŁCĄCEGO, LICEUM PROFILOWANEGO I TECHNIKUM 4 LETNIEGO (kształcenie ogólne w zakresie podstawowym z obowiązkową maturą z matematyki, wydawnictwo Nowa Era)

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA ORAZ SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI

PRZEDMIOTOWY SYSTEM OCENIANIA ORAZ SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI I. Ustalenia ogólne. PRZEDMIOTOWY SYSTEM OCENIANIA ORAZ SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI dla Liceum 1. Formy sprawdzania wiedzy i umiejętności uczniów klas I i II: odpowiedź ustna, obejmująca

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki

Przedmiotowy system oceniania z matematyki Przedmiotowy system oceniania z matematyki Przedmiotowy system oceniania został skonstruowany w oparciu o następujące dokumenty: 1. Rozporządzenie Ministra Edukacji Narodowej z dnia 7 września 2004 roku

Bardziej szczegółowo

NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy

NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy 1 NOWA PODSTAWA PROGRAMOWA Z MATEMATYKI liceum zakres podstawowy 1. Cele kształcenia wymagania ogólne. NOWA ZAKRES PODSTAWOWY w postawie programowej obowiązującej począwszy od 01.09.2012 r. w klasach pierwszych

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 0 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 4. Dodawanie i odejmowanie liczb dodatnich 1 1-

Bardziej szczegółowo

PODSTAWOWE WYMAGANIA Z MATEMATYKI W KLASIE II GIMNAZJUM, KRYTERIA OCEN I PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

PODSTAWOWE WYMAGANIA Z MATEMATYKI W KLASIE II GIMNAZJUM, KRYTERIA OCEN I PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI PODSTAWOWE WYMAGANIA Z MATEMATYKI W KLASIE II GIMNAZJUM, KRYTERIA OCEN I PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI 1. Podstawowe (odpowiadające ocenie dostatecznej) wymagania z matematyki w klasie II

Bardziej szczegółowo

Wymagania edukacyjne klasa pierwsza.

Wymagania edukacyjne klasa pierwsza. Wymagania edukacyjne klasa pierwsza. TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA Liczby Rozwinięcia dziesiętne liczb wymiernych Zaokrąglanie liczb. Szacowanie wyników Dodawanie

Bardziej szczegółowo

ZESTAW ZADAŃ NA OCENĘ DOPUSZCZAJĄCY Z MATEMATYKI W KLASIE IV.

ZESTAW ZADAŃ NA OCENĘ DOPUSZCZAJĄCY Z MATEMATYKI W KLASIE IV. ZESTAW ZADAŃ NA OCENĘ DOPUSZCZAJĄCY Z MATEMATYKI W KLASIE IV. I. POTĘGI. LOGARYTMY. FUNKCJA WYKŁADNICZA 1. Przedstaw liczby 16,4, w postaci potęgi liczby: 2; 4;. 2. Wykonaj działania: a) = b) 25 5 5 =

Bardziej szczegółowo

Matematyka Wymagania edukacyjne, kryteria oceniania i sposoby sprawdzania osiągnięć edukacyjnych uczniów

Matematyka Wymagania edukacyjne, kryteria oceniania i sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka Wymagania edukacyjne, kryteria oceniania i sposoby sprawdzania osiągnięć edukacyjnych uczniów Wymagania edukacyjne ogólne 1. Uczeń interpretuje i tworzy teksty o charakterze matematycznym, używa

Bardziej szczegółowo

P 2.3. Plan wynikowy z rozkładem materiału klasa 3

P 2.3. Plan wynikowy z rozkładem materiału klasa 3 P 2.3. Plan wynikowy z rozkładem materiału klasa 3 W planie wynikowym wraz z rozkładem materiału dla klasy trzeciej uwzględniono zarówno nowy materiał, zawarty w programie nauczania Matematyka wokół nas

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI Zespół Szkół Ekonomicznych w Brzozowie PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI Przedmiotowy System Oceniania (PSO) z matematyki opracowany na podstawie programu nauczania nr DKW-4015-37/01 oraz podręczników

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA

PRZEDMIOTOWY SYSTEM OCENIANIA Marzena Bardzik PRZEDMIOTOWY SYSTEM OCENIANIA z matematyki w klasie IV i VI został opracowany w oparciu o: rozporządzenie MEN (z dnia 30 kwietnia 2007 roku sprawie warunków i sposobu oceniania, klasyfikowania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III OPRACOWANO NA PODSTAWIE PROGRAMU MATEMATYKA Z PLUSEM DZIAŁ I: LICZBY I WYRAŻENIA ALGEBRAICZNE Na o cenę dopuszczający uczeń: zna pojęcie liczby naturalnej,

Bardziej szczegółowo

Procedury osiągania celów

Procedury osiągania celów Cele wychowawcze Istotną część procesu nauczania stanowi proces wychowywania. W nauczaniu matematyki szczególnie eksponowane są następujące cele wychowawcze: przygotowanie do życia we współczesnym świecie,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) MATEMATYKA Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy) Omawiając dane zagadnienie programowe lub rozwiązując zadanie, nauczyciel określa, do jakiego zakresu

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 Ocenę dopuszczającą otrzymuje uczeń, który: (Liczby i działania) zna pojęcie liczby naturalnej, całkowitej, wymiernej

Bardziej szczegółowo

MATEMATYKA KLASA III GIMNAZJUM

MATEMATYKA KLASA III GIMNAZJUM Ogólne wymagania edukacyjne Ocenę celującą otrzymuje uczeń, który: MATEMATYKA KLASA III GIMNAZJUM Potrafi stosować wiadomości w sytuacjach nietypowych (problemowych) Operuje twierdzeniami i je dowodzi

Bardziej szczegółowo

Wymagania z matematyki na poszczególne oceny III klasy gimnazjum

Wymagania z matematyki na poszczególne oceny III klasy gimnazjum Wymagania z matematyki na poszczególne oceny III klasy gimnazjum Opracowano na podstawie planu realizacji materiału nauczania matematyki Matematyka Podręcznik do gimnazjum Nowa wersja Praca zbiorowa pod

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM na rok szkolny 2014/2015 Wymagania edukacyjne na poszczególne oceny: (na każdą wyższą ocenę obowiązują również wiadomości na oceny niższe oraz wiadomości

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym tworzyć teksty w stylu

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA III 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA III 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA III 2015/2016 Ocenę dopuszczającą otrzymuje uczeń, który: (Statystyka) zna pojęcie wykresu, zna pojęcie diagramu słupkowego i kołowego,

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE ŚRÓDROCZNE I ROCZNE OCENY Z MATEMATYKI PROGRAM NAUCZANIA: MATEMATYKA WOKÓŁ NAS GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE ŚRÓDROCZNE I ROCZNE OCENY Z MATEMATYKI PROGRAM NAUCZANIA: MATEMATYKA WOKÓŁ NAS GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE ŚRÓDROCZNE I ROCZNE OCENY Z MATEMATYKI PROGRAM NAUCZANIA: MATEMATYKA WOKÓŁ NAS GIMNAZJUM PODRĘCZNIK: MATEMATYKA WOKÓŁ NAS KLASA 2 NAUCZYCIEL: BARBARA MIKA Ocena dopuszczająca:

Bardziej szczegółowo

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych.

MATEMATYKA Z SENSEM. Ryszard Kalina Tadeusz Szymański Marek Lewicki. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. MATEMATYKA Z SENSEM Ryszard Kalina Tadeusz Szymański Marek Lewicki Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Klasa I Zakres podstawowy i rozszerzony Wymagania konieczne (K)

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa I

Wymagania edukacyjne z matematyki Klasa I Wymagania edukacyjne z matematyki Klasa I Ocena Celujący (obejmuje wymagania na ocenę bardzo dobrą) Ocena śródroczna DZIAŁ I - LICZBY I DZIAŁANIA - umie znajdować liczby spełniające określone nietypowe

Bardziej szczegółowo