LABORATORIUM Z TECHNOLOGII CHEMICZNEJ

Podobne dokumenty
LABORATORIUM Z TECHNOLOGII CHEMICZNEJ

LABORATORIUM Z TECHNOLOGII CHEMICZNEJ

WYDZIAŁ CHEMICZNY POLITECHNIKI WARSZAWSKIEJ. Katedra Technologii Chemicznej

Termograwimetryczne badanie dehydratacji pięciowodnego siarczanu (VI) miedzi (II)

Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium specjalizacyjne

WSTĘP DO ANALIZY TERMICZNEJ

SPECYFIKACJA TECHNICZNA ZESTAWU DO ANALIZY TERMOGRAWIMETRYCZNEJ TG-FITR-GCMS ZAŁĄCZNIK NR 1 DO ZAPYTANIA OFERTOWEGO

Fizykochemia i właściwości fizyczne polimerów

Badania właściwości struktury polimerów metodą róŝnicowej kalorymetrii skaningowej DSC

Charakterystyka wybranych metod termicznych (cz.1)

Zastosowanie metod termograwimetrycznych do oceny stabilności termicznej dodatków detergentowych do oleju napędowego

Badanie dylatometryczne żeliwa w zakresie przemian fazowych zachodzących w stanie stałym

Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil

ĆWICZENIE 5. Różnicowa kalorymetria skaningowa

Metody badań - ANALIZA TERMICZNA

Metody analizy termicznej połączone z analizą produktów gazowych (TG-DSC-MS)

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali

TYPY REAKCJI CHEMICZNYCH

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 2 Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya.

Zakres akredytacji Laboratorium Badawczego Nr AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 12 z 7 lipca 2015r.

Analiza termiczna w ceramice możliwości i zastosowania. DTA

DWICZENIE. Oznaczanie składu nanokompozytów metodą analizy termograwimetrycznej TGA

ĆWICZENIE. Oznaczanie indeksu tlenowego metodą różnicowej kalorymetrii skaningowej (DSC)

Próżnia w badaniach materiałów

imię i nazwisko, nazwa szkoły, miejscowość Zadania I etapu Konkursu Chemicznego Trzech Wydziałów PŁ V edycja

Szkła specjalne Wykład 6 Termiczne właściwości szkieł Część 1 - Wstęp i rozszerzalność termiczna

dobry punkt wyjściowy do analizy nieznanego związku

Techniki immunochemiczne. opierają się na specyficznych oddziaływaniach między antygenami a przeciwciałami

Za poprawną metodę Za poprawne obliczenia wraz z podaniem zmiany ph

STABILNOŚĆ TERMICZNA TWORZYW SZTUCZNYCH

POLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNOLOGII POLIMERÓW

SPEKTROMETRIA IRMS. (Isotope Ratio Mass Spectrometry) Pomiar stosunków izotopowych (R) pierwiastków lekkich (H, C, O, N, S)

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza

STA 6000/8000 Symultaniczne analizatory termiczne MAŁY ROZMIAR DUŻY POTENCJAŁ

ZASTOSOWANIE ANALIZY TERMICZNEJ DO SYMULACJI ZJAWISK W PROCESACH METALURGICZNYCH

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA, Kraków, PL BUP 21/05. RYSZARD LECH, Kraków, PL JAN OBŁĄKOWSKI, Kraków, PL

Differential Scaning Calorimetry D S C. umożliwia bezpośredni pomiar ciepła przemiany

NAGRZEWANIE ELEKTRODOWE

Proteomika. Spektrometria mas. i jej zastosowanie do badań białek

Opracowała: mgr inż. Ewelina Nowak

Spektrometria mas (1)

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

TECHNIKI SEPARACYJNE ĆWICZENIE. Temat: Problemy identyfikacji lotnych kwasów tłuszczowych przy zastosowaniu układu GC-MS (SCAN, SIM, indeksy retencji)

BADANIE PARAMETRÓW PROCESU SUSZENIA

Ilościowa analiza mieszaniny alkoholi techniką GC/FID

MATERIAŁY POMOCNICZE 1 GDYBY MATURA 2002 BYŁA DZISIAJ CHEMIA ZESTAW EGZAMINACYJNY PIERWSZY ARKUSZ EGZAMINACYJNY I

Analiza termiczna, kalorymetria, właściwości termofizyczne

OKREŚLENIE TEMPERATURY I ENTALPII PRZEMIAN FAZOWYCH W STOPACH Al-Si

SUROWCE MINERALNE. Wykład 3

Laboratorium z Konwersji Energii. Ogniwo Paliwowe PEM

V KONKURS CHEMICZNY 23.X. 2007r. DLA UCZNIÓW GIMNAZJÓW WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO Etap I czas trwania: 90 min Nazwa szkoły

METODY PRZYGOTOWANIA PRÓBEK DO POMIARU STOSUNKÓW IZOTOPOWYCH PIERWIASTKÓW LEKKICH. Spektrometry IRMS akceptują tylko próbki w postaci gazowej!

2. Metody, których podstawą są widma atomowe 32

Procentowa zawartość sodu (w molu tej soli są dwa mole sodu) wynosi:

LABORATORIUM SPEKTRALNEJ ANALIZY CHEMICZNEJ (L-6)

OZNACZENIE JAKOŚCIOWE I ILOŚCIOWE w HPLC

Szkło. T g szkła używanego w oknach katedr wynosi ok. 600 C, a czas relaksacji sięga lat. FIZYKA 3 MICHAŁ MARZANTOWICZ

Ćwiczenie. dq dt. mc p dt

Jakościowa i ilościowa analiza mieszaniny alkoholi techniką chromatografii gazowej

Lista materiałów dydaktycznych dostępnych w Multitece Chemia Nowej Ery dla klasy 7

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS

a) jeżeli przedstawiona reakcja jest reakcją egzotermiczną, to jej prawidłowy przebieg jest przedstawiony na wykresie za pomocą linii...

LABORATORIUM SPALANIA I PALIW

Reakcje chemiczne. Typ reakcji Schemat Przykłady Reakcja syntezy

Identyfikacja węglowodorów aromatycznych techniką GC-MS

Ćwiczenie 2: Elektrochemiczny pomiar szybkości korozji metali. Wpływ inhibitorów korozji

Wyznaczanie stopnia krystaliczności wybranych próbek polimerów wykorzystanie programu WAXSFIT

Krzywe energii potencjalnej dla molekuły dwuatomowej ilustracja przejść dysocjacyjnych IDENTYFIKACJA ZWIĄZKÓW ORGANICZNYCH

X / \ Y Y Y Z / \ W W ... imię i nazwisko,nazwa szkoły, miasto

Termochemia elementy termodynamiki

CHEMIA I GIMNAZJUM WYMAGANIA PODSTAWOWE

XXIII KONKURS CHEMICZNY DLA GIMNAZJALISTÓW ROK SZKOLNY 2015/2016

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie

WOJEWÓDZKI KONKURS PRZEDMIOTOWY Z CHEMII DLA UCZNIÓW GIMNAZJÓW - rok szkolny 2011/2012 eliminacje rejonowe

ĆWICZENIE. Wpływ nano- i mikroproszków na udział wody związanej przez składniki hydrauliczne ogniotrwałych cementów glinowych

UNIWERSYTET OPOLSKI - KONSORCJANT NR 8. projektu pt.: Nowe przyjazne dla środowiska kompozyty polimerowe z wykorzystaniem surowców odnawialnych

Chemia - laboratorium

WYZNACZANIE ZAWARTOŚCI POTASU

Ćwiczenie 3. Woda w substancjach stałych

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni

STABILNOŚĆ TERMICZNA SPOIW POLIAKRYLANOWYCH NA PRZYKŁADZIE SOLI SODOWEJ KOPOLIMERU KWAS MALEINOWY-KWAS AKRYLOWY

Instrukcja do ćwiczeń laboratoryjnych

ĆWICZENIE. Oznaczanie przemian termicznych nanomateriałów polimerowych metodą DSC

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu

Różne dziwne przewodniki

Powstawanie żelazianu(vi) sodu przebiega zgodnie z równaniem: Ponieważ termiczny rozkład kwasu borowego(iii) zachodzi zgodnie z równaniem:

W tej reakcji stopień utleniania żelaza wzrasta od 0 do III. Odwrotnie tlen zmniejszył stopień utlenienia z 0 na II.

Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X

Wyznaczanie temperatur charakterystycznych przy użyciu mikroskopu wysokotemperaturowego

OFERTA TEMATÓW PROJEKTÓW DYPLOMOWYCH (MAGISTERSKICH) do zrealizowania w Katedrze INŻYNIERII CHEMICZNEJ I PROCESOWEJ

Zadanie 2. [2 pkt.] Podaj symbole dwóch kationów i dwóch anionów, dobierając wszystkie jony tak, aby zawierały taką samą liczbę elektronów.

Instrukcja dla uczestnika

Kryteria oceniania z chemii kl VII

i elementy z półprzewodników homogenicznych część II

ET AAS 1 - pierwiastkowa, GW ppb. ICP OES n - pierwiastkowa, GW ppm n - pierwiastkowa, GW <ppb

Podstawowe wiadomości o zagrożeniach

MATERIAŁY SPIEKANE (SPIEKI)

Efekty interferencyjne w atomowej spektrometrii absorpcyjnej

Transkrypt:

WYDZIAŁ CHEMICZNY POLITECHNIKI WARSZAWSKIEJ Katedra Technologii Chemicznej LABORATORIUM Z TECHNOLOGII CHEMICZNEJ Instrukcja do ćwiczenia: Charakterystyka ciał stałych z wykorzystaniem techniki TG-MS Pracownia analizy termograwimetrycznej, Gmach Technologii Chemicznej, pok. 230 Prowadzący: mgr inż. Aleksandra Tarka (GTCh pok. 311) atarka@ch.pw.edu.pl Warszawa 2017

1. WPROWADZENIE Mianem analizy termicznej określa się zespół metod, w których badane są zmiany wybranych właściwości fizycznych substancji pod wpływem działania temperatury. W zależności od wybranej metody zmianie może ulegać nie tylko temperatura, ale również środowisko otaczające badaną próbkę (np. atmosfera gazowa). Materiał może być poddawany również działaniu aktywnej chemicznie atmosfery (np. wodoru). W ten sposób metody analizy termicznej umożliwiają badanie zmian właściwości substancji wraz ze zmianą temperatury oraz w różnych warunkach pomiarowych. Analiza termiczna znajduje obecnie szerokie zastosowanie do badania obszernej gamy materiałów, m. in. minerałów, substancji nieorganicznych, metali, ceramiki, materiałów elektronicznych, polimerów, substancji organicznych czy środków farmakologicznych. Metody analizy termicznej wykorzystywane są m. in. do: badania zmian właściwości substancji w czasie ogrzewania/studzenia, badania reakcji chemicznych i przemian fazowych, określania składu chemicznego i fazowego substancji, wyznaczania parametrów termodynamicznych i kinetycznych reakcji, określania czystości surowców, oznaczania zawartości wody i wilgoci, badania trwałości termicznej materiałów. Analiza termiczna obejmuje szereg technik pomiarowych. Najbardziej popularne techniki zestawiono w poniższej tabeli. Tab. Wybrane techniki analizy termicznej Nazwa metody Skrót Badane właściwości materiałów Termograwimetria TG zmiany masy Termiczna analiza różnicowa DTA różnica temperatur Różnicowa kalorymetria skaningowa DSC efekty cieplne powstałe w procesach fizycznych i chemicznych, ciepło właściwe Termodylatometria TD zmiany wymiarów Analiza termomechaniczna TMA deformacje pod wpływem obciążeń Analiza składu produktów gazowych EGD analiza składu chemicznego wydzielanych gazów Nowoczesna aparatura do analizy termicznej pozwala dokładnie ustalić zakres temperatury poszczególnych reakcji termicznych oraz ich maksima, umożliwia przyporządkowanie każdej reakcji wartości ubytku masy. W połączeniu z termicznymi efektami różnicowymi niesłychanie ułatwia to zarówno interpretację składu materiałów badanych (pod względem jakościowym i ilościowym), jak i identyfikację przemian zachodzących w badanych próbkach pod wpływem zmian temperatury. Jest to niezwykle istotne m. in. w działalności geologicznej, chemicznej, ceramicznej i technologicznej. 2

2. NAJCZĘŚCIEJ STOSOWANE METODY ANALIZY TERMICZNEJ TERMOGRAWIMETRIA (TG) polega na ciągłej rejestracji zmian masy badanej próbki w funkcji czasu lub temperatury podczas ogrzewania próbki z kontrolowaną szybkością. Podczas analizy rejestrowane są następujące krzywe: krzywa temperatury (T), odwzorowuje wartość temperatury panującej w piecu; służy do odczytywania temperatury poszczególnych reakcji. krzywa termograwimetryczna (TG ang. thermogravimetric), odwzorowuje zmiany masy próbki w funkcji temperatury lub czasu. Zmiany te zazwyczaj polegają na ubytku masy na skutek m.in. dehydratacji, dehydroksylacji, spalania substancji organicznych czy termicznego rozkładu soli. Na krzywej TG daje się zaobserwować stopnie związane z ubytkiem lub przyrostem masy próbki podczas ogrzewania lub studzenia. Często stopnie te są dość rozmyte. Zdarza się także, że w próbce kilka reakcji następuje po sobie i ich efekty na krzywej TG mogą się na siebie nakładać. Dlatego aby poprawić czytelność krzywej TG oraz ułatwić jej analizę wykorzystuje się (obok krzywej TG) również termograwimetryczną krzywą różniczkową DTG. pochodna krzywej termograwimetrycznej (DTG ang. derivative thermogravimetric), stanowi podstawę interpretacji wyników analizy termograwimetrycznej. Dzięki krzywej DTG możliwe jest ustalenie początku i końca każdej przemiany wiążącej się ze zmianą masy, inaczej mówiąc zakresu reakcji, a tym samym odczytanie z krzywej TG wartości zmiany masy. Zjawisko ubytku masy jest odwzorowane na krzywej DTG jako ugięcie od linii bazowej ku dołowi, natomiast zjawisko wzrostu masy próbki odwzorowane jest jako ugięcie krzywej DTG od linii bazowej ku górze. Krzywa DTG w zakresie temperatury przemian polimorficznych, niszczenia struktury i syntezy nowych faz nie rejestruje zmian masy i zazwyczaj jest to odcinek prostej. O zaistnieniu tych trzech typów reakcji informują egzotermy i endotermy rejestrowane podczas pomiaru z wykorzystaniem różnicowej analizy termicznej DTA (opis dalej). Przykładowy przebieg krzywych TG oraz DTG przedstawiono na rys. 1. 3

TG (%) 100 DTG (%/min) 90 80 krzywa TG krzywa DTG 70 60 0 200 400 600 800 1000 Temperatura ( C) Rys. 1. Przykładowy przebieg krzywych TG i DTG. Krzywa DTG musi być bardzo czytelna. Wagi analityczne i związane z nimi układy wzmacniające są bardzo czułe nie tylko na zmiany masy próbki, ale również na wstrząsy mechaniczne, np. stąpanie przy termowadze, szybkie ruchy powietrza wywołane przechodzeniem osób, otwieranie/zamykanie drzwi. Te niezauważalne na pozór zakłócenia pracy wagi znajdują natomiast odbicie w przebiegu rejestrowanych krzywych, które w takich przypadkach upodabniają się do wykresu sejsmografu (widoczne zaszumienie na rejestrowanych liniach). Przykład zdeformowanej krzywej TG przedstawia rys. 2. Rys. 2. Wpływ zakłóceń na przebieg krzywych rejestrowanych podczas analizy termicznej 4

RÓŻNICOWA ANALIZA TERMICZNA (DTA) oparta jest na rejestracji różnic temperatur (ΔT) między substancją badaną i substancją odniesienia względem temperatury lub czasu. Pozwala na określenie efektów cieplnych związanych z zachodzeniem w próbce przemian (fizycznych oraz chemicznych). Podczas pomiaru rejestrowana jest termiczna krzywa różnicowa (DTA ang. differential thermal analysis), która odwzorowuje reakcje endotermiczne i egzotermiczne zachodzące w próbce podczas jej ogrzewania. Reakcje te są rejestrowane jako różnice między temperaturą próbki a temperaturą substancji wzorcowej. Reakcje endotermiczne są rejestrowane jako ugięcia krzywej DTA ku dołowi. Ugięcie te są nazywane pikami endotermicznymi (endotermami). Są one związane z: dehydratacją, dehydroksylacją, czyli oddawaniem grup OH -, przemianami polimorficznymi minerałów, termicznym rozkładem węglanów, dysocjacją termiczną, niszczeniem struktury minerałów. Reakcje egzotermiczne są rejestrowane jako ugięcia krzywej DTA ku górze. Są to piki egzotermiczne (egzotermy), związane głównie z : spalaniem substancji organicznych, utlenianiem (np. siarki uwalnianej z siarczków, dwuwartościowego żelaza do trójwartościowego itp.), powstawaniem nowych faz mineralnych. Na obraz krzywej DTA, oprócz reakcji zachodzących w próbce, wpływają także inne czynniki, m.in.: różne przewodnictwo ciepła substancji wzorcowej i analizowanej, wynikające zarówno z właściwości tych substancji, jak i stopnia ich zagęszczenia, nierównomierne ogrzewanie próbki i substancji wzorcowej, spowodowane np. różną odległością od elementu grzewczego, nierównym emitowaniem ciepła, zmniejszenie, w stosunku do stałej masy substancji wzorcowej, masy próbki w trakcie nagrzewania, spiekanie się próbki w wyższej temperaturze, powodujące jej odstawanie od ścian tygla, a tym samym zmianę warunków przewodnictwa ciepła. W termicznej analizie różnicowej jako substancje odniesienia stosuje się materiały, które w czasie ogrzewania/studzenia nie ulegają reakcjom związanym z wydzielaniem lub pochłanianiem ciepła. Właściwości fizyczne (głównie przewodnictwo cieplne) takich substancji powinny być bliskie właściwościom badanej próbki. Najczęściej jako substancję odniesienia stosuje się termicznie obojętny tlenek glinu, uprzednio prażony w temperaturze do 1500 C. Często stosuje się również pusty tygiel odniesienia wykonany z Al 2 O 3. 5

RÓŻNICOWA KALORYMETRIA SKANINGOWA (DSC) oparta jest na rejestracji różnic przepływu strumienia ciepła pomiędzy substancją badaną a otoczeniem (układem grzewczym) i substancją wzorcową a otoczeniem (układem grzewczym) w funkcji temperatury. Substancja badana oraz wzorcowa są ogrzewane lub chłodzone w jednakowych warunkach, zgodnie z ustalonym przez eksperymentatora programem temperaturowym. W wyniku pomiaru otrzymuje się krzywą DSC, która przedstawia ilość ciepła wymienionego przez próbkę z otoczeniem w funkcji czasu lub temperatury. Pole pików uzyskanych na krzywej DSC jest bezpośrednio związane z ciepłem zachodzącej przemiany. Obecnie coraz częściej stosuje się tzw. symultaniczną analizę termiczną (STA), polegającą na równoczesnym prowadzeniu niezależnych pomiarów, np. TG-DTA, TG-DSC. 3. APARATURA BADAWCZA Próbki materiałów poddawane będą analizie termicznej za pomocą urządzenia do symultanicznej analizy termicznej termowagi STA 449C firmy Netzsch. Schemat budowy aparatu przedstawiono na rys. 3. Rys. 3. Schemat budowy urządzenia STA 449C Jupiter (firma Netzsch) Dodatkowo, analizator termiczny połączony jest z kwadrupolowym spektrometrem masowym, co umożliwia prowadzenie analizy składu lotnych związków wydzielających się w trakcie badania materiału. Rys. 4 przedstawia aparaturę badawczą, stosowaną do badań w pracowni analizy termograwimetrycznej w Katedrze Technologii Chemicznej Wydziału Chemicznego Politechniki Warszawskiej. 6

Rys. 4. Termowaga STA 449C (Netzsch) po lewej, sprzężona ze spektrometrem masowym QMS 403 Aëolos (Netzsch) po prawej; (Katedra Technologii Chemicznej, Wydział Chemiczny PW). Parametry układu pomiarowego STA 449C (Netzsch): tryby pomiarowe: TG, TG-DTA, TG-DSC, tygle wykonane z tlenku glinu lub platyny, wysokotemperaturowy piec z elementem grzejnym wykonanym z SiC, zakres temperatur do 1600 C, szybkość nagrzewania 0,1-50 K/min, możliwe atmosfery gazowe obojętna, utleniająca, redukująca, czułość wagi 0,1µg. Aparatura pozwala na zadeklarowanie przez eksperymentatora dowolnego programu temperaturowego i stałą obserwację postępu analizy próbki na ekranie monitora (zarówno sygnałów przekazywanych przez termowagę, jak i spektrometr masowy). Dane są rejestrowane w sposób ciągły. Odpowiednie oprogramowanie umożliwia obróbkę uzyskanych danych po zakończonej analizie. 4. SPEKTROMETRIA MAS JAKO TECHNIKA WSPOMAGAJĄCA ANALIZĘ TERMICZNĄ Spektrometria mas jest techniką analityczną, polegającą na otrzymaniu z obojętnych cząsteczek próbki cząstek naładowanych i rozdzieleniu ich według stosunku masy do ładunku (m/z). Spektrometr mas rejestruje elektrycznie naładowane cząstki. Stąd, aby widmo mas mogło powstać, badana substancja musi ulec jonizacji. Cząsteczka może ulec jonizacji poprzez oddanie lub przyłączenie elektronu, dając naładowaną cząstkę o masie praktycznie identycznej z masą cząsteczki, gdyż masa elektronu w tym przypadku jest pomijalnie mała. 7

Najczęściej stosowaną metodą jonizacji jest jonizacja elektronami (EI ang. electron impact, czyli bombardowanie elektronami), polegająca na usunięciu ( wybiciu ) elektronu z cząsteczki za pomocą innego elektronu. Inne metody jonizacji próbek to jonizacja chemiczna (CI), jonizacja polem elektrycznym, rozpylanie i odparowywanie jonów czy jonizacja substancji stałych przez wyładowanie żarowe. Analizowaną próbkę wprowadza się do komory jonizacyjnej, gdzie następuje jonizacja i fragmentacja analizowanych cząsteczek. Bez względu na model spektrometru masowego, wszystkie urządzenia tego typu składają się z kilku podstawowych elementów, które przedstawia poniższy schemat. układ wlotowy źródło jonów rozdział jonów detekcja jonów zapis widma Rys. 5. Schemat blokowy spektrometru masowego Źródło jonów jest rozumiane jako obszar, w którym zachodzi jonizacja próbki. Zwykle ogranicza się on do małej komory, w której próbka podlega jonizacji. Wytworzone jony są następnie wypychane z komory przez szczelinę wyjściową w wyniku przyłożenia niewielkiego potencjału dodatniego. Rozdział jonów pod względem stosunku masy do ładunku (m/z) wykonywany jest na wiele sposobów, jednak w większości przypadków z zastosowaniem oddzielnych pól magnetycznych i elektrycznych lub też pól połączonych. Kwadrupol, będący integralną częścią spektrometru masowego przedstawionego na rys. 4, jest analizatorem masy działającym w specyficzny sposób. Działa jak filtr masy, tzn. w danej chwili przepuszcza tylko jony o określonym stosunku m/z. Układ czterech, równoległych, połączonych elektrycznie prętów wytwarza pole elektromagnetyczne, w którym jony o odpowiednim stosunku m/z poruszają się w części centralnej, zaś pozostałe ulegają rozproszeniu. Spektrometry mas z filtrem kwadrupolowym umożliwiają monitorowanie wybranych jonów w prosty sposób. Sterowane komputerem napięcie przykładane na pręty kwadrupola ulega szybkim zmianom od jednej wartości do drugiej, tak aby umożliwić detekcję jonów o różnych masach. Za analizatorem musi znajdować się detektor jonów, którym najczęściej jest fotopowielacz. Wzmocnione sygnały są przesyłane do komputera, który rejestruje wchodzące dane i pozwala na ich obserwacje na ekranie monitora. LITERATURA 1. D. Schultze, Termiczna analiza różnicowa, PWN Warszawa 1974. 2. R. A. W. Johnstone, M. E. Rose, Spektrometria mas, PWN Warszawa 2001. 3. T. Ozawa, Thermal analysis review and prospect, Thermochimica Acta 355 (2000) 35. 8

5. CEL I WYKONANIE ĆWICZENIA Celem ćwiczenia jest zapoznanie z techniką TG-MS poprzez oznaczenie składu materiału będącego mieszaniną dwóch różnych tlenków oraz analizę rozkładu termicznego wybranej soli nieorganicznej lub redukcji wybranego tlenku metalu w odpowiednio dobranych warunkach. Oznaczenie składu materiału zawierającego mieszaninę tlenków Należy oznaczyć zawartość procentową tlenku ceru w materiale będącym mieszaniną tlenków Co 3 O 4 i CeO 2, otrzymanym w wyniku współstrącania węglanów kobaltu i ceru i ich następczej kalcynacji. Próbkę materiału ogrzewa się w atmosferze gazu obojętnego według określonego programu temperaturowego. Na podstawie uzyskanej krzywej ubytku masy oraz zarejestrowanych sygnałów masowych wybranych gazów należy: 1) ustalić, jakim przemianom chemicznym/fizycznym ulegała próbka materiału podczas analizy, 2) określić zakresy temperaturowe poszczególnych przemian, 3) zapisać równania zachodzących reakcji, 4) wyznaczyć ubytek masy towarzyszący zachodzącym przemianom i określić zawartość tlenku CeO 2 w % wag. w badanej próbce. Badanie rozkładu termicznego/redukcji soli nieorganicznej lub tlenku metalu Należy dokonać analizy rozkładu termicznego/redukcji wybranej soli nieorganicznej lub tlenku wybranego metalu. Na podstawie uzyskanej krzywej ubytku masy oraz zarejestrowanych sygnałów masowych wybranych gazów należy: 1) ustalić, jakim przemianom chemicznym/fizycznym ulegała próbka materiału podczas analizy, 2) określić zakresy temperaturowe poszczególnych przemian, 3) zapisać równania reakcji rozkładu/redukcji badanych związków, 4) wyznaczyć ubytek masy towarzyszący zachodzącym przemianom. 9