Matematyka finansowa 09.12.2000 r. 10. / 42! 1 A$!! )$$$% 0 " + 42 + 1 +! "!" 1!" ""!1!!!!42 % "" * t "1%/4( " + i 10%. 7 4'8 A. 5.62 B. 5.67 C. 5.72 D. 5.77 E. 5.82 10
Matematyka finansowa 24.03.2001 r. 6. P na dwa lata. Przedstawiono mu dwie oferty: (i) trwania inwestycji. (ii) a (force of interest) t t 0,1t! P ( 1 ) P! " #$ %$ & P oraz odsetki) 200 '''! ( 2P &) ( 1 2 ) P #$ %$ *' 000! +%, P. "# $ % #&' A.! B.!! C. 2 D. 2! E., 6
Matematyka finansowa 24.03.2001 r. 9. Dana jest n-letnia (n > 1) obligacja, o stopie kuponowej równej i (i > 0). nominalnej równej F C + / * F. y w równych ratach rocznych przez n 9 i. 6 $duration& % (yield rate) j (j > 0). )* 0 8 (i) (ii) (iii) % *. F=C %. i j % % * i czas trwania kredytu, gdy i > j "#' A. tylko (i) B. tylko (ii) C. tylko (iii) D. tylko (ii) i (iii) E. 3. 4. 5. / 9
Matematyka finansowa 24.03.2001 r. 10. n-letniej obligacji o nominale 1. nominale. S 2: %. %!:8 /. % 2n- %! "# $ % &' A. ( B. C. 1 D. - E. ; 10
Matematyka finansowa 15.06.2002 r. 7. Inwestor kupuje 20 - $ +, $ $ %$ 1 500 % + $$ $j wynosi 150 % efektywnej rocznej stopy zwrotu j $ $ + 3 000 na okres 5 lat. Po okresie 5 lat $ $ % + $ $ efektywnej rocznej stopy zwrotu równej j $ % $ tywnej rocznej stopie zwrotu i. + % $ % 5 letniej $ + $ + 2 000 dokonywanych na k, $ + skalkulowana przy efektywnej rocznej stopie zwrotu i = 8%. Wyznacz v 5 j 0.75, gdzie v i oraz efektywnym rocznym stopom zwrotu i oraz j. 5 v i, $ v j $% $% $%!"0$$ % 1# A. 0.45 B. 0.50 C. 0.55 D. 0.60 E. 0.65 7
Matematyka finansowa 12.10.2002 r. 4. Dany jest pakiet 10 obligacji o kuponach p atnych pó rocznie w wysoko ci 50 ka dy oraz warto ci wykupu równej 1 000. Termin wykupu obligacji przypada co rok pocz wszy od ko ca 10 roku tj. pierwsza obligacja zapada na ko cu 10 roku, druga na ko cu 11 roku,, dziesi ta obligacja zapada na ko cu 19 roku. Inwestor bierze kredyt na zakup obligacji w wysoko ci 70% warto ci zakupu obligacji, a za pozosta cz p aci z w asnych rodków. Odsetki otrzymane z obligacji s reinwestowane w funduszu. Inwestor po dwóch latach sprzedaje pakiet obligacji, wycofuje rodki z funduszu i sp aca kredyt w ca o ci wraz z nale nymi odsetkami. Oblicz efektywn roczn stop zwrotu i z zainwestowanych w asnych rodków, je eli wiadomo e: ( 2 ) (i) cena zakupu pakietu obligacji zosta a ustalona przy stopie procentowej i 10%, 1 ( 2 ) (ii) cena sprzeda y pakietu obligacji zosta a ustalona przy stopie procentowej i 6%, (iii) fundusz, w którym inwestowane s rodki otrzymane z zapad ych kuponów s ( 2 ) reinwestowane przy stopie i 8%, 3 ( 2 ) (iv) kredyt na sfinansowanie zakupu jest oprocentowany przy stopie i 16%. 4 2 Odpowied (podaj najbli sz warto ): A. 22% B. 32% C. 42% D. 52% E. 62% 4
Matematyka finansowa 17.05.2003 1. Na pocz tku roku (w chwili t 0 ) portfel pewnego funduszu inwestycyjnego sk ada si z 40% obligacji typu I oraz 60% obligacji typu II. O obligacjach typu I oraz typu II wiadomo, e: (i) obligacja typu I p aci kupony rocznie z do u w wysoko ci 4% warto ci nominalnej tej obligacji; (ii) cena oraz duration obligacji typu I wyznaczone przy stopie procentowej i = 6% wynosz odpowiednio 80% jej warto ci nominalnej oraz d 0, I 9. 98 ; (iii) obligacja typu II p aci kupony rocznie z do u w wysoko ci 6% warto ci nominalnej tej obligacji; (iv) cena oraz duration obligacji typu II wyznaczone przy stopie procentowej i = 6% wynosz odpowiednio 90% jej warto ci nominalnej oraz d 0, II 8. 85. Na ko cu pierwszego roku kwoty otrzymane z kuponów s reinwestowane w dwuletnie obligacje zerokuponowe. Wyznacz duration d 1 (w chwili t 1) przy stopie procentowej i = 6%. Odpowied (podaj najbli sz warto ): portfela funduszu inwestycyjnego na pocz tku nast pnego roku A. 7.95 B. 8.15 C. 8.35 D. 8.55 E. 8.75 1
Matematyka finansowa 17.05.2003 7. Do funduszu oprocentowanego przy stopie procentowej równej 12% na pocz tku ka dego roku dokonywana jest wp ata w wysoko ci 1 000. Na ko cu ka dego roku dokonywana jest wyp ata w wysoko ci 50% obecnego stanu funduszu. Wyznacz czn kwot wyp acon z funduszu od pocz tku 6 roku do ko ca 20 roku. Odpowied (podaj najbli sz warto ): A. 19 000 B. 19 100 C. 19 200 D. 19 300 E. 19 400 7
Matematyka finansowa 11.10.2003 r. 6. Portfel inwestycyjny Zak adu Ubezpiecze sk ada si z trzech rodzajów obligacji: 10 - letnich obligacji o kuponach p atnych rocznie w wysoko ci 10.00% ich warto ci nominalnej (ang. face value), 20 - letnich obligacji zerokuponowych oraz niesko czonych obligacji p ac cych co rok na ko cu roku sta kwot (ang. perpetuity). Wyznacz jaki jest udzia procentowy obligacji 10 - letnich w ca ym portfelu inwestycyjnym Zak adu Ubezpiecze, je eli wiadomo, e: (i) duration ca ego portfela jest równe d1 12. 00 (ii) duration portfela z o onego jedynie z obligacji 20 - letnich oraz obligacji niesko czonych wynosi d 2 15. 50, (iii) stopa procentowa przyj ta do oblicze wynosi i 10.00%. Odpowied (podaj najbli sz warto ): A. 40% B. 43% C. 46% D. 49% E. 52% 6
Matematyka finansowa 06.12.2003 roku 2. Informacje o warto ci jednostki w czasie w pewnym funduszu inwestycyjnym zestawiono w poni szej tabeli: Data Warto jednostki 31.12.2001 r. 10.00 31.03.2002 r. 11.50 30.04.2002 r. 12.00 30.06.2002 r. 8.00 31.12.2002 r. 13.00 Wiadomo, e do funduszu dokonywane s wp aty wysoko ciach 100 000 w dniu 31.12.2001 r. i 150 000 w dniu 30.06.2002 r. oraz wyp aty w wysoko ciach 20 000 w dniu 31.03.2002 r. i 50 000 w dniu 30.04.2002 r. Wiadomo te, e w dniu 31.12.2002 r. wycofywane s wszystkie rodki z funduszu i e w tym dniu nast puje zako czenie okresu inwestowania. Oblicz, ile wynosi ró nica pomi dzy stop zwrotu z inwestowania rodków w tym funduszu w 2002 r. wyznaczon za pomoc metody kapita owej (ang. dollar - weighted) oraz metody wa enia czasem (ang. time - weighted). Odpowied (podaj najbli sz warto ): A. 0.3% B. 12.3% C. 30.7% D. 32.8% E. 62.3% 2
Matematyka finansowa 05.12.2005 r. 4. Bie ca rynkowa krzywa zerokuponowa w PLN dana jest funkcj f(t) > 0 dla t > 0, gdzie f(t) stopa zerokuponowa w skali roku, t - czas inwestycji w latach. Uniemo liwiaj cy arbitra kurs terminowy USD / PLN dany jest funkcj : 1 f ( t) g( t) 4, t 1.02 300 gdzie g(t) t-letni kurs terminowy 1 USD wyra ony w PLN. Bie cy kurs wynosi 1 USD = 4 PLN. Ile wynosi warto bie ca 5-letniej obligacji skarbowej denominowanej w USD o kuponie rocznym 150 USD i nominale 1200 USD? Podaj najbli sz warto. t A) 6 493 PLN B) 6 597 PLN C) 6 672 PLN D) 6 741 PLN E) 6 825 PLN 5
Matematyka finansowa 08.10.2007 r. 5. W dniu 31 grudnia 2007 Pan Jan kupuje na rynku pierwotnym 4-letni obligacj po cenie 1000 PLN. Nominał obligacji wynosi 1000 PLN, za stałe kupony płatne s na koniec ka dego roku. Struktur czasow stóp procentowych na dzie 31 grudnia 2007 opisuje krzywa stóp spot (krzywa zerokuponowa): s n 1 12n 8 =, n = 1,2,. 100 2n 1 gdzie s n oznacza n-letni stop spot. Wyznacz stop kuponu tej obligacji. Odpowied (podaj najbli sz warto ). A) 4.0% B) 4.4% C) 5.0% D) 5.3% E) 5.7% 6
Matematyka finansowa 17.03.2008 r. 1. RozwaŜmy portfel składający się z dwóch aktywów: obligacji wygasającej za 2 lata z nominałem 100 000 PLN, płacącej półroczne kupony w wysokości 3% nominału oraz długiej pozycji w wygasającym za 2 lata kontrakcie futures na 3-letnią (w chwili wygaśnięcia kontraktu) obligację o nominale 50 000 PLN, płacącą półroczne kupony w wysokości 3% nominału. Stopa wolna od ryzyka jest stała i wynosi 5.. Duration, w latach, tego portfela wynosi w przybliŝeniu: A) 1.50 B) 1.65 C) 1.85 D) 2.45 E) 3.69 2
Matematyka finansowa 17.03.2008 r. 2. Bank inwestycyjny emituje 3-letnią obligacją o nominale 1 mln PLN. Wysokość kuponu tej obligacji związana jest z indeksem XYZ w następujący sposób: w k-tą rocznicę emisji, k=1,2,3, obligacja płaci kupon: C k = + 50% max( XYZ( k) / XYZ( k 1) 1,0), k = 1,2,3, XYZ(0) = 1250 Wyznaczyć cenę tej obligacji w momencie emisji jeŝeli: rynek oczekuje, Ŝe w ciągu kaŝdego roku indeks XYZ wzrośnie o 20% z prawdopodobieństwem 60%, bądź zmaleje o 20% z prawdopodobieństwem 40%, ceny indeksowanych inflacją obligacji zerokuponowych o nominale 1000 PLN są w momencie wyceny następujące: obligacja 1-roczna 968 PLN, obligacja 2-letnia 937 PLN, obligacja 3-letnia 907 PLN, w momencie wyceny prognoza inflacji jest następująca: 1% w pierwszym roku, 1.1% w drugim roku, 1.2% w trzecim roku. A) 1.18 mln PLN B) 1.22 mln PLN C) 1.02 mln PLN D) 1.29 mln PLN E) 1.32 mln PLN Uwaga: Obligacje indeksowane inflacją to takie, które są wyceniane stopą realną. 3
Matematyka finansowa 17.03.2008 r. 3. Dwie róŝne firmy Φ i Ψ wystawiają dwie obligacje zerokuponowe, o tym samym terminie wykupu i wartości wykupu równej 10 000 PLN. KaŜda z tych firm moŝe stać się niewypłacalna z prawdopodobieństwem ale po bankructwie jednej z nich nie moŝe nastąpić bankructwo drugiej. Jeśli zbankrutuje firma Φ, to jej obligacja wypłaca 6 000 lub 7 000 z jednakowym prawdopodobieństwem. Jeśli natomiast firma Ψ stanie się niewypłacalna, to jej obligacja wypłaca 6 200 lub 6 800, równieŝ z jednakowym prawdopodobieństwem. Ceny obligacji są równe i wynoszą 9 000. Niech A oznacza zwrot z obligacji firmy Φ, natomiast B zwrot z obligacji firmy Ψ. Ponadto, niech VaR α (A) oznacza Value-at-Risk na poziomie α dla zwrotu A, VaR α (B) Value-at-Risk na poziomie α dla zwrotu B, natomiast VaR ( A + B) Value-at-Risk na poziomie α dla α zwrotu z portfela złoŝonego z obligacji firm Φ i Ψ. Które z poniŝszych stwierdzeń jest prawdziwe: A) VaR A) + VaR ( B) > VaR ( A + ) i VaR A) < VaR ( ) ( B 2. ( 2. B B) VaR A) + VaR ( B) < VaR ( A + ) i VaR A) < VaR ( ) 2. ( 2. 2. B ( B C) VaR A) + VaR ( B) > VaR ( A + ) i VaR A) < VaR ( ) 2. ( 2. 2. B ( B D) VaR A) + VaR ( B) < VaR ( A + ) i VaR A) < VaR ( ) ( B E) śadne z powyŝszych 2. ( 2. B Uwaga: Niech α (0,1). VaR α (Value-at-Risk) na poziomie α dla zwrotu X określamy wzorem: VaRα ( X ) = sup{ x R : P( X < x) < α}. 4