Pierwsze zawody indywidualne

Podobne dokumenty
Pierwsze zawody indywidualne

Treści zadań Obozu Naukowego OMG

STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW SZCZYRK 2017

Treści zadań Obozu Naukowego OMG

Treści zadań Obozu Naukowego OMJ

Treści zadań Obozu Naukowego OMG

XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych. zestaw A klasa I

Jednoznaczność rozkładu na czynniki pierwsze I

IX Olimpiada Matematyczna Gimnazjalistów

2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia.

Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów

LXI Olimpiada Matematyczna

Zadania otwarte krótkiej odpowiedzi na dowodzenie

GEOMETRIA ELEMENTARNA

Ćwiczenia z Geometrii I, czerwiec 2006 r.

Bukiety matematyczne dla gimnazjum

VII Olimpiada Matematyczna Gimnazjalistów

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

O D P O W I E D Z I D O Z A D A Ń T E S T O W Y C H

Internetowe Ko³o M a t e m a t yc z n e

LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów)

XXXVIII Regionalny Konkurs Rozkosze łamania Głowy

X Olimpiada Matematyczna Gimnazjalistów

Matematyka rozszerzona matura 2017

Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10

Jarosław Wróblewski Matematyka Elementarna, zima 2014/15

XI Olimpiada Matematyczna Gimnazjalistów

Internetowe Ko³o M a t e m a t yc z n e

1. ODPOWIEDZI DO ZADAŃ TESTOWYCH

Zadania, które zaproponowałem na różne konkursy Olimpiada Matematyczna. bc(b 3 + c 3 ) + c4 + a 4. ca(c 3 + a 3 ) 1. c + ca + cab 1 ( 1

LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)

VIII Olimpiada Matematyczna Gimnazjalistów

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów

Test kwalifikacyjny na I Warsztaty Matematyczne

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

LX Olimpiada Matematyczna

Równania prostych i krzywych; współrzędne punktu

Kolorowanie płaszczyzny, prostych i okręgów

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

LVIII Olimpiada Matematyczna

XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2016 r. 17 października 2016 r.)

PRÓBNY EGZAMIN MATURALNY

Internetowe Kółko Matematyczne 2003/2004

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH )

Wielkopolskie Mecze Matematyczne

Internetowe Ko³o M a t e m a t yc z n e

Egzamin wstępny z Matematyki 1 lipca 2011 r.

LXV Olimpiada Matematyczna

Bukiety matematyczne dla gimnazjum

LXIII Olimpiada Matematyczna

Uniwersytet Mikołaja Kopernika w Toruniu. Egzamin wstępny z matematyki

LVIII Olimpiada Matematyczna

VII Olimpiada Matematyczna Gimnazjalistów

Zadanie 1. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S 1

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki

Obozowa liga zadaniowa (seria I wskazówki)

ZADANIE 2 Czy istnieje taki wielokat, który ma 2 razy więcej przekatnych niż boków?

Indukcja matematyczna

Zadania na dowodzenie Opracowała: Ewa Ślubowska

Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie

Planimetria VII. Wymagania egzaminacyjne:

PRÓBNY EGZAMIN MATURALNY

LVII Olimpiada Matematyczna

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

V Międzyszkolny Konkurs Matematyczny

XII Olimpiada Matematyczna Juniorów

XIII Olimpiada Matematyczna Juniorów

Podstawowe pojęcia geometryczne

XIV Olimpiada Matematyczna Juniorów

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria

KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Inwersja w przestrzeni i rzut stereograficzny zadania

Tematy: zadania tematyczne

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM

I Liceum Ogólnokształcące w Warszawie

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

Rysunek 1. Udowodnij, że AB CD = BC DA. Rysunek 2. Po inwersji o środku w punkcie E. Rysunek 3. Po inwersji o środku w punkcie A

PRÓBNY EGZAMIN MATURALNY

Bukiety matematyczne dla szkoły podstawowej

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

a) Wykaż, że przekształcenie P jest izometrią b) W prostokątnym układzie współrzędnych narysuj trójkąt o wierzchołkach A ( 1;2)

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY

Transkrypt:

Pierwsze zawody indywidualne sobota, 21 września 2002 11. Znajdź wszystkie funkcje f : R R spełniające dla wszystkich x, y R zależność f(x + y) = f(x 2 ) + f(y 2 ). 12. Udowodnij, że dla dowolnych dodatnich liczb a, b zachodzi nierówność a 5 + a 3 b 2 + a 2 b 3 + b 5 2(a 4 b + ab 4 ). 13. Udowodnij, że jeżeli liczby a i m są względnie pierwsze, to istnieje liczba całkowita dodatnia n taka, że m a n 1. 14. Z wierzchołka A trójkąta ABC poprowadzono prostą przecinającą bok BC w punkcie D. W trójkąty ABD i ADC wpisano okręgi styczne do BC odpowiednio w punktach E i F. Udowodnij, że AD + BC = AB + AC + BC 2 + EF. 15. Rozważmy ciąg (a n ) określony następującymi zależnościami: a 1 = 1, a n 2 +k = a n + a k dla n > 0, 0 < k 2n + 1. Rozstrzygnij, czy każda liczba całkowita dodatnia należy do tego ciągu. Zadania poranne niedziela, 22 września 2002 21. Wewnątrz trójkąta dana jest skończona liczba punktów, z których żadne trzy nie są współliniowe. Punkty te połączono między sobą i z wierzchołkami trójkąta nieprzecinającymi się odcinkami tak, iż duży trójkąt podzielono na mniejsze trójkąty. Udowodnij, że liczba powstałych trójkątów jest nieparzysta. 22. Rozstrzygnij, czy istnieje ciąg arytmetyczny o wyrazach całkowitych, niezawierający 0 ani 1 i taki że dla każdego n Z + istnieje a Z + dla którego a n należy do tego ciągu. 23. Dany jest kwadrat ABCD i romb P QRS, przy czym A P Q, B QR, C RS, D SP. Niech k, l, m, n będą prostymi przechodzącymi odpowiednio przez A, B, C, D i prostopadłymi odpowiednio do P Q, QR, RS, SP. Udowodnij, że pary prostych k, m i l, n są równoległe oraz odległości między nimi są równe. 24. Na bokach BC i CD kwadratu ABCD obrano punkty M i K takie, że MAK = BAM. Udowodnij, że BM + KD = AK.

Drugie zawody indywidualne niedziela, 22 września 2002 31. Na szachownicy 2001 na 2003 są rozmieszczone pionki, po jednym na każdym polu. Czy można je tak poprzestawiać, aby każdy pionek stał na polu sąsiadującym bokiem z polem, które zajmował i żeby wciąż na każdym polu stał dokładnie jeden pionek? 32. Udowodnij, że dla dowolnych liczb dodatnich a, b, c zachodzi następująca nierówność: a b + c + b c + a + c a + b 3 2. 33. W trójkącie ABP zachodzi równość AB = AP i kąt P AB jest ostry. P C jest prostą prostopadłą do BP i punkt C jest po tej samej stronie BP co A. Punkt D uzupełnia równoległobok ABCD. Proste P C i DA przecinają się w punkcie M. Udowodnij, że punkt M jest środkiem odcinka DA. 34. Niech ABC będzie trójkątem równobocznym, a P dowolnym punktem leżącym na okręgu opisanym na nim, na łuku BC niezawierającym A. Udowodnij, że BP + CP = AP. 35. W pewnym nieskończonym ciągu arytmetycznym o wszystkich wyrazach będących liczbami całkowitymi występuje wyraz będący sześcianem liczby całkowitej. Udowodnij, że w tym ciągu występuje nieskończenie wiele liczb będących sześcianami liczb całkowitych. Zawody drużynowe poniedziałek, 23 września 2002 41. Każdy punkt płaszczyzny pomalowano na jeden z trzech kolorów. Udowodnij, że istnieją dwa punkty jednego koloru odległe o 1. 42. Rozstrzygnij, czy kwadratową szachownicę o boku 2002 da się pokryć klockami o wymiarach 4 1 tak, aby żadne dwa klocki na siebie nie nachodziły i aby żaden klocek nie wystawał poza szachownicę. 43. Rozstrzygnij, czy istnieje taka liczba całkowita dodatnia n, że 10 100 jest dzielnikiem liczby 3 n + 1. 44. Dane są różne liczby rzeczywiste a, b oraz dodatnie liczby całkowite k, m, przy czym k + m = n 3 oraz k 2m i m 2k. Rozważamy ciągi (x 1, x 2,..., x n ) o następujących własnościach: (a) k wyrazów x i jest równych a; w szczególności x 1 = a. (b) m wyrazów x i jest równych b; w szczególności x n = b. (c) Żadne trzy kolejne wyrazy ciągu x i nie są równe. Wyznacz wszystkie możliwe wartości sumy x n x 1 x 2 + x 1 x 2 x 3 +... + x n 2 x n 1 x n + x n 1 x n x 1.

45. Znajdź wszystkie funkcje f : R R takie, że dla każdych x, y R zachodzi f(x 2 + y) + f(f(x) y) = 2f(f(x)) + 2y 2. 46. Dana jest liczba naturalna n > 1 oraz liczba pierwsza p taka, że p 1 dzieli się przez n, zaś n 3 1 dzieli się przez p. Udowodnij, że 4p 3 jest kwadratem liczby całkowitej. 47. W trójkącie ABC dwusieczne kątów przy wierzchołkach A i B przecinają boki BC i CA odpowiednio w punktach D i E. Ponadto AE + DB = AB. Wyznacz miarę kąta ACB. 48. W przestrzeni dany jest punkt O oraz skończony zbiór wektorów v 1, v 2,..., v n. Rozważmy zbiór tych punktów P, dla których wektor OP daje się przedstawić w postaci sumy a 1v1 + a 2v2 +... + a nvn, gdzie 0 a i 1 dla i = 1, 2,..., n. Rozstrzygnij, czy zbiór ten może być czworościanem. 49. Udowodnij, że dla dowolnych liczb całkowitych dodatnich n i k takich, że k < n, zachodzi następująca równość: 1 k + 2 k 3 k + 4 k +... ± (2 n 1) k = 0, przy czym m k występuje ze znakiem +, jeśli w zapisie dwójkowym liczby m występuje nieparzysta liczba jedynek, a w przeciwnym razie występuje ze znakiem. 410. Udowodnij, że dla każdej liczby n N, n 1, zachodzi następująca podzielność: n! 2 n (2n + 1)(2n + 3)... (4n 1). Pierwsza seria zadań powtórzeniowych wtorek, 24 września 2002 51. Dane są liczby całkowite dodatnie n i k > n+1 2 oraz k-elementowy zbiór liczb całkowitych dodatnich nie większych niż n. Udowodnij, że można z tego zbioru wybrać takie trzy niekoniecznie różne liczby x, y, z, że x + y = z. 52. Dany jest okrąg O oraz dwa różne punkty A i B. Skonstruuj okrąg przechodzący przez punkty A i B, styczny do okręgu O. 53. Udowodnij, że prostokąt o wymiarach a b można pokryć prostokątami o wymiarach n 1 wtedy i tylko wtedy, gdy n a lub n b. 54. Udowodnij, że jeśli W (x) jest wielomianem o współczynnikach całkowitych i W (3) = W (7) = 1, to W (x) nie ma pierwiastków całkowitych.

Trzecie zawody indywidualne środa, 25 września 2002 61. Okręgi S i T przecinają się w punktach M i N. Niech k będzie wspólną styczną tych dwóch okręgów, przy czym punkt M leży bliżej prostej k niż punkt N. P i Q są punktami styczności prostej k odpowiednio z okręgami S i T. Prosta P N przecina okrąg T w punktach N i R. Udowodnij, że dwusieczna kąta P MR jest zawarta w prostej MQ. 62. Udowodnij, że jeżeli liczby a, b, c są dodatnie, to: a 3 b + b 3 c + c 3 a a 2 bc + b 2 ca + c 2 ab. 63. W pewnym państwie istnieje n miast i każde dwa łączy droga jednokierunkowa. Udowodnij, że istnieje miasto, z którego da się dojechać do każdego innego (niekoniecznie bezpośrednio). 64. Niech a 1, a 2,..., a 7 będą liczbami całkowitymi, zaś b 1, b 2,..., b 7 pewną ich permutacją (tymi samymi liczbami ustawionymi niekoniecznie w tej samej kolejności). Udowodnij, że (a 1 b 1 )(a 2 b 2 )... (a 6 b 6 )(a 7 b 7 ) jest liczbą parzystą. 65. Rozstrzygnij, czy istnieje taki ciąg liczb całkowitych dodatnich (a n ), że dla każdej liczby całkowitej nieujemnej k ciąg (b n ) zdefiniowany następująco: b n = k + a n dla n = 0, 1, 2,... zawiera skończoną liczbę wyrazów będących liczbami pierwszymi. Druga seria zadań powtórzeniowych środa, 25 września 2002 71. Udowodnij, że dla dowolnych liczb rzeczywistych dodatnich a, b zachodzi nierówność: a 3 + b 6 2 3ab 2 4. 72. Wyznacz wszystkie funkcje f : R R spełniające dla każdych x, y R warunek f(x + y) = f(f(x)) + y + 1. 73. Za siedmioma górami, za siedmioma rzekami, w czasach, kiedy Ziemia była jeszcze płaszczyzną, żyli sobie dwaj druidzi. Zbudowali oni swoje domki specjalnie w miejscach koncentracji energii magicznej jeden w punkcie A, drugi w punkcie C. Wkrótce odkryli oni w okolicy dwa inne ośrodki energii magicznej, w których to wznieśli obeliski (są to punkty B i D). Trzy miejsca koncetracji energii nie mogą być współliniowe. Druidzi szybko zauważyli, że jeśli umówią się pod obeliskiem B i wyjdą z domków o tej samej porze, dotrą tam jednocześnie. Tak samo jest z obeliskiem D (druidzi chodzą zawsze ze stałą prędkością, aczkolwiek każdy może chodzić z inną). Pewnego dnia druidzi obrazili swojego boga Manitulualoa i aby go przebłagać muszą wznieść trzeci obelisk w punkcie E na prostej AC tak, aby BE było dwusieczną ABC i DE było dwusieczną ADC. Udowodnij, że druidzi mogą przebłagać swojego boga.

Mecz Matematyczny i starsza czwartek, 26 września 2002 81. W trójkącie ABC prosta k jest równoległa do boku AC i przechodzi przez wierzchołek B. Okrąg styczny do prostej k w punkcie B i przechodzący przez wierzchołek C przecina bok AB w punkcie D. Punkt E leży na półprostej CD i spełnia równanie CE = AC. Udowodnij, że BE AD jeżeli okrąg opisany na BDE jest styczny do BC, to ACB = 2 CAB. 82. Dany jest okrąg O, punkt A leżący na tym okręgu i punkt I leżący wewnątrz okręgu O. Skonstruuj trójkąt wpisany w okrąg O o wierzchołku w A, którego środek okręgu wpisanego leży w I. 83. Świat ma kształt sfery. Onufry, spoglądając na świat z dowolnego punktu leżącego na zewnątrz świata, uszczęśliwia tę część świata, którą widzi. Z ilu co najmniej punktów Onufry musi spojrzeć na świat, aby cały uszczęśliwić? 84. W danym czworościanie prowadzimy w następujący sposób sześć płaszczyzn: wybieramy jedną z sześciu krawędzi i prowadzimy płaszczyznę przechodzącą przez jej środek i prostopadłą do naprzeciwległej krawędzi. Udowodnij, że te płaszczyzny mają punkt wspólny. 85. Niech n 1 będzie liczbą całkowitą dodatnią. Udowodnij, że dla każdych liczb rzeczywistych dodatnich x 1, x 2,..., x n zachodzi nierówność: n i=1 4 i 1 x i (2n 1) 2 ni=1 x i. 86. Wyznacz wszystkie pary liczb rzeczywistych (a, b) takie, że dla każdej liczby całkowitej dodatniej n zachodzi a[bn] = b[an]. 87. Udowodnij, że dla każdej liczby całkowitej dodatniej n > 3 liczba n 2 ma w zapisie dziesiętnym przynajmniej jedną cyfrę parzystą. 88. Gracze A i B grają na szachownicy (2n + 1) (2n + 1) w następującą grę: na początku jeden z rogów planszy jest pokolorowany na czarno, zaś naprzeciwległy na biało. W swoim ruchu A koloruje na czarno jedno z pól planszy, które dotychczas było niepokolorowane, a które sąsiadowało bokiem z jakimś czarnym polem. Analogicznie gracz B w swoim ruchu koloruje na biało pewnego sąsiada białego pola. W momencie, w którym jeden z graczy nie może wykonać ruchu, drugi wykonuje wszystkie dostępne mu ruchy i gra się kończy. Każdy dąży do tego, by pod koniec gry mieć jak najwięcej pól swojego koloru na planszy. Jaki będzie wynik gry, jeżeli obydwaj gracze nie popełniają żadnych błędów? 89. Niech k i n > 6 będą liczbami całkowitymi dodatnimi takimi, że 1 n < k < 2 n. Wyznacz 2 3 minimalną liczbę pól, którą należy usunąć z szachownicy n n tak, aby nie dało się na niej położyć klocka k 1. 810. Na okręgu napisano 50 liczb należących do zbioru { 1, 1}. Możemy zadać pytanie o iloczyn trzech sąsiednich liczb. Ile minimalnie razy musimy się zapytać, aby poznać iloczyn wszystkich liczb? 811. Rozważmy nieskończoną szachownicę, na której na każdym polu napisano liczbę rzeczywistą. Tetrisem nazwijmy klocek składający się ze skończonego podzbioru pól (niekoniecznie spójny). Tetrisa możemy kłaść w dowolny sposób na szachownicę tak, aby boki tetrisa pokrywały się z bokami pól na szachownicy, możemy również go obracać. Mamy dane dwa różne tetrisy. Jakkolwiek byśmy nie położyli na szachownicy pierwszego tetrisa, suma liczb w polach, które on pokryje, będzie nieujemna. Udowodnij, że możemy tak położyć drugiego tetrisa, aby suma liczb w polach, które on przykrył, była nieujemna.

Sprawdzian końcowy piątek, 27 września 2002 91. Dany jest trójkąt ostrokątny ABC wpisany w okrąg ω. Proste zawierające wysokości AD, BE i CF przecinają okrąg ω odpowiednio w punktach A i K, B i L oraz C i M. Wyznacz możliwe wartości stosunku pola sześciokąta AM BKCL do pola trójkąta ABC. 92. Udowodnij, że dla dowolnej liczby całkowitej nieujemnej n zachodzi równość: ( ) n n k(k 1) = n(n 1)2 n 2. k=1 k 93. W równoległoboku ABCD punkty K, L, M i N są odpowiednio środkami boków AB, BC, CD oraz DA. Proste AM, BN, CK i DL ograniczają pewien równoległobok. Oblicz stosunek pola tego równoległoboku do pola równoległoboku ABCD. 94. Znajdź wszystkie pary liczb pierwszych p oraz q, spełniających warunek: p q q p = 1. 95. Udowodnij, że jeżeli a, b są liczbami rzeczywistymi oraz b 0, to wielomian W (x) = x 4 + ax + b nie ma czterech pierwiastków rzeczywistych. 96. We wnętrzu trójkąta równobocznego o boku 12 wybrano 300 punktów. Udowodnij, że istnieją wśród nich trzy, tworzące trójkąt (być może zdegenerowany) o obwodzie nie większym niż 3.