Metody wyznaczania geometrii i charakterystyk dyszy typu aerospike program pm_contour

Podobne dokumenty
Metody wyznaczania geometrii i charakterystyk dyszy typu aerospike. Program PM_contour.

Obliczenia osiągów dyszy aerospike przy użyciu pakietu FLUENT Michał Folusiaak

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH. Opracował. Dr inż. Robert Jakubowski

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej

LABORATORIUM MECHANIKI PŁYNÓW

prędkości przy przepływie przez kanał

Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

Środowisko symulacji parametry początkowe powietrza

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1

Spis treści. PRZEDMOWA.. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ.. 13

Wojskowa Akademia Techniczna Katedra Pojazdów Mechanicznych i Transportu

APLIKACJA NAPISANA W ŚRODOWISKU LABVIEW SŁUŻĄCA DO WYZNACZANIA WSPÓŁCZYNNIKA UZWOJENIA MASZYNY INDUKCYJNEJ

MODELOWANiE TURBiNOWYCH SiLNiKÓW ODRZUTOWYCH W ŚRODOWiSKU GASTURB NA PRZYKŁADZiE SiLNiKA K-15

Zadanie ChemCad kolumna destylacyjna SHOR

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

[1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy.

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH

Chłodnictwo i Kriogenika - Ćwiczenia Lista 4

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia.

Supply air nozzle. Wymiary

Zastosowanie programu DICTRA do symulacji numerycznej przemian fazowych w stopach technicznych kontrolowanych procesem dyfuzji" Roman Kuziak

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

Modelowanie zjawisk przepływowocieplnych. i wewnętrznie ożebrowanych. Karol Majewski Sławomir Grądziel

Zadania treningowe na kolokwium

Aparatura Chemiczna i Biotechnologiczna Projekt: Filtr bębnowy próżniowy

ANALiZA WPŁYWU PARAMETRÓW SAMOLOTU NA POZiOM HAŁASU MiERZONEGO WEDŁUG PRZEPiSÓW FAR 36 APPENDiX G

Badania właściwości dynamicznych sieci gazowej z wykorzystaniem pakietu SimNet TSGas 3

SILNIK TURBINOWY ANALIZA TERMO-GAZODYNAMICZNA OBIEGU SILNIKA IDEALNEGO

Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 2, zadanie nr 1 1

KOMPUTEROWE WSPOMAGANIE PROCESU PROJEKTOWANIA ODSTOJNIKA

SPOSOBY POMIARU KĄTÓW W PROGRAMIE AutoCAD

Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika)

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI

Studentom zostaną dostarczone wzory lub materiały opisujące. Zachęcamy do wykonania projektów programistycznych w postaci apletów.

Krzysztof Gosiewski, Anna Pawlaczyk-Kurek

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.

WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA KOŁA NA ZMIANĘ SZTYWNOŚCI ZAZĘBIENIA

Zadanie Cyfryzacja grida i analiza geometrii stropu pułapki w kontekście geologicznym

Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej

Symulacja Monte Carlo izotermy adsorpcji w układzie. ciało stałe-gaz

Mgr inż. Marta DROSIŃSKA Politechnika Gdańska, Wydział Oceanotechniki i Okrętownictwa

System wspomagania harmonogramowania przedsięwzięć budowlanych

Rozwiązywanie równań nieliniowych

Nowoczesne narzędzia obliczeniowe do projektowania i optymalizacji kotłów

KOMPENDIUM WIEDZY. Opracowanie: BuildDesk Polska CHARAKTERYSTYKA ENERGETYCZNA BUDYNKÓW I ŚWIADECTWA ENERGETYCZNE NOWE PRZEPISY.

Termodynamika ć wićzenia

Ćwiczenie 5. Wyznaczanie widm IR i Ramana formaldehydu oraz obliczenia za pomocą pakietu Gaussian 03W

Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013

Temodynamika Roztwór N 2 i Ar (gazów doskonałych) ma wykładnik adiabaty κ = 1.5. Określić molowe udziały składników. 1.7

Warunki izochoryczno-izotermiczne

Nasyp przyrost osiadania w czasie (konsolidacja)

SPIS TREŚCI WSTĘP LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

Porównanie metod określania własności termodynamicznych pary wodnej

POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

Program BEST_RE. Pakiet zawiera następujące skoroszyty: BEST_RE.xls główny skoroszyt symulacji RES_VIEW.xls skoroszyt wizualizacji wyników obliczeń

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

KLUCZ PUNKTOWANIA ODPOWIEDZI

Ćwiczenie 5: Wymiana masy. Nawilżanie powietrza.

Stosowane metody wykrywania nieszczelności w sieciach gazowych

Badanie klasy wymaganej odporności ogniowej wentylatora przy wykorzystaniu programu FDS

Katarzyna Jesionek Zastosowanie symulacji dynamiki cieczy oraz ośrodków sprężystych w symulatorach operacji chirurgicznych.

Wykład 4. Przypomnienie z poprzedniego wykładu

składa się z m + 1 uporządkowanych niemalejąco liczb nieujemnych. Pomiędzy p, n i m zachodzi następująca zależność:

MODELE STRUMIENIA POWIETRZA W PNEUMATYCE

Instrukcja stanowiskowa

Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Ćwiczenie 3 Generator liczb losowych o rozkładzie Rayleigha.

TERMOCHEMIA SPALANIA

Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki

SPIS TREŚCI Obliczenia zwężek znormalizowanych Pomiary w warunkach wykraczających poza warunki stosowania znormalizowanych

POLITECHNIKA WROCŁAWSKA, INSTYTUT INŻYNIERII BIOMEDYCZNEJ I POMIAROWEJ LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH I-21

Destylacja z parą wodną

CHARAKTERYSTYKA I ZASTOSOWANIA ALGORYTMÓW OPTYMALIZACJI ROZMYTEJ. E. ZIÓŁKOWSKI 1 Wydział Odlewnictwa AGH, ul. Reymonta 23, Kraków

IDENTIFICATION OF NUMERICAL MODEL AND COMPUTER PROGRAM OF SI ENGINE WITH EGR

POMIAR STRUMIENIA PŁYNU ZA POMOCĄ ZWĘŻEK.

Przemiany termodynamiczne

SYMULACYJNE BADANIE SKUTECZNOŚCI AMUNICJI ODŁAMKOWEJ

Rozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem:

Zapora ziemna analiza przepływu nieustalonego

Notacja Denavita-Hartenberga

OPTYMALIZACJA ZBIORNIKA NA GAZ PŁYNNY LPG

Łukasz Januszkiewicz Technika antenowa

Przetwornik wielu zmiennych 267/269CS Kompensacja przepływu Wiadomości ogólne

FDS 6 - Nowe funkcje i możliwości: Modelowanie instalacji HVAC część 2 zagadnienia hydrauliczne

Dopasowanie prostej do wyników pomiarów.

Ćw. 18: Pomiary wielkości nieelektrycznych II

CECHOWANIE TERMOELEMENTU Fe-Mo I WYZNACZANIE PUNKTU INWERSJI

Inżynieria procesów przetwórstwa węgla, zima 15/16

Funkcja liniowa - podsumowanie

MODELOWANIE NUMERYCZNE POLA PRZEPŁYWU WOKÓŁ BUDYNKÓW

WYMIANA CIEPŁA W PROCESIE TERMICZNEGO EKSPANDOWANIA NASION PROSA W STRUMIENIU GORĄCEGO POWIETRZA

Modelowanie bilansu energetycznego pomieszczeń (1)

Cel i zakres ćwiczenia

dr inż. Cezary Żrodowski Wizualizacja Informacji WETI PG, sem. V, 2015/16

WPŁYW METODY DOPASOWANIA NA WYNIKI POMIARÓW PIÓRA ŁOPATKI INFLUENCE OF BEST-FIT METHOD ON RESULTS OF COORDINATE MEASUREMENTS OF TURBINE BLADE

ANALIZA BELKI DREWNIANEJ W POŻARZE

Laboratorium InŜynierii i Aparatury Przemysłu SpoŜywczego

Transkrypt:

Metody wyznaczania geometrii i charakterystyk dyszy typu aerospike program pm_contour Michał Folusiak Instytut Lotnictwa StoSowane oznaczenia Indeksy temperatura, gęstość, ciśnienie stała gazowa, uniwersalna stała gazowa ciepło właściwe, entalpia wykładnik izentropy prędkość dźwięku, liczba Macha kąt Macha funkcja Prandtla-Meyera współrzędne polarne punktów współrzędne kartezjańskie punktów pole przekroju i średnica głębokość dyszy liniowej stagnacja parametry krytyczne i-ty punkt konturu dyszy wylot z dyszy powierzchnia bazowa Streszczenie W poniższym artykule przedstawiono i krótko opisano algorytmy służące do wyznaczania geometrii dyszy aerospike. Przedstawiono również i dokładnie opisano jeden z wybranych algorytmów oraz program komputerowy napisany na jego podstawie. Metody wyznaczania geometrii i charakterystyk dyszy typu aerospike 105

1. wstęp Program komputerowy P-M contour napisany został w międzyplatformowym, zintegrowanym środowisku programistycznym Lazarus (Cross platform IDE Lazarus) w języku programowania FreePascal[1][2]. Oprogramowanie, które posłużyło do stworzenia programu P-M contour jest niekomercyjnym, otwartym oprogramowaniem rozwijanym przez społeczność użytkowników. Program P-M contour skompilowany został na platformę Linux i Windows. 2. Metody wyznaczania konturów dyszy Geometria idealnej dyszy typu aerospike może być wyznaczona na dwa sposoby. Pierwszy z nich bazuje na metodzie Prandtla-Meyera, dlatego w ogólnym przypadku nie może być zastosowany dla dysz osiowosymetrycznych. Drugą metodą jest dobrze znana metoda charakterystyk. Metoda prandtla-meyera Zastosowanie metody Prandtla-Meyera do wyznaczenia konturów dyszy aerospike zaproponowali niezależnie Angelino i Lee. Zakłada ona, że ekspansja Prandtla-Meyera w dyszy zachodzi wokół zewnętrznej krawędzi przekroju krytycznego (Rys. 1), a przepływ jest jednorodny. W przypadku liniowej dyszy aerospike, wachlarz fal rozrzedzeniowych kształtujących się wokół tego punktu(krawędzi) stanowi grupę prostych charakterystyk. Równania bilansowe wydatku masowego przepływu pozwalają określić na tych charakterystykach punkty opisujące kontur dyszy. Metoda opisana powyżej nadaje się do wyznaczania konturu dyszy płaskiej(liniowej), ale może zostać rozszerzona na przypadek osiowosymetryczny. Przybliżona metoda wyznaczania konturów osiowosymetrycznych dysz typu aerospike została opisana przez Angelino[3]. Zastosowanie tej metody jest oczywiście ograniczone poprzez założenie, że wyznaczane charakterystyki są liniami prostymi. Takiego przybliżenia nie można według autora stosować w przypadku: dużego względnego skrócenia dyszy, niezależnie od liczby Macha w przekroju wylotowym; dużych liczb Macha w przekroju wylotowym, niezależnie od względnego skrócenia dyszy. Metoda charakterystyk Druga z metod wyznaczania konturu dyszy opiera się na dobrze znanej metodzie charakterystyk. Jest ona właściwa zarówno dla dysz liniowych jak i osiowosymetrycznych. Metoda ta jest trudniejsza w implementacji od opisanej powyżej, ale jest również bardziej uniwersalna i nadaje się do obliczana bardziej wyrafinowanych przypadków w których przepływ w przekroju krytycznym nie jest jednorodny lub przypadków dysz w których zachodzi częściowe wewnętrzne rozprężanie. Szczegółowy opis metody i algorytmów postępowania przy wyznaczaniu konturów opisane zostały m.in. w [4]. 3. algorytm obliczeń Do dalszych rozważań wybrano metodę Prandtla-Meyera. Metoda ta posłuży do wyznaczania konturów i charakterystyk dysz liniowych i osiowosymetrycznych z użyciem zarówno idealnego jak i pół-idealnego modelu gazu. 106 prace instytutu Lotnictwa nr. 198

Model gazu Zastosowano model gazu wieloskładnikowego. Własności termodynamiczne składników gazu opisane są 9-współczynnikowymi funkcjami temperatury: gdzie: Współczynniki we wzorach określone są dla ponad 2000 substancji w przedziałach temperatur 200-1000, 1000-6000 i 6000-20000 K i podane w 9-współczynnikowym formacie danych termodynamicznych NASA (NASA thermo data file format) [5]. W zależności od wybranego modelu gazu, idealnego lub pół-idealnego, własności termodynamiczne przyjęte mogą być względem pewnej temperatury referencyjnej, lub jako funkcje temperatury. Przyjęcie liniowego przebiegu zmiany entalpii i stałej wartości ciepła właściwego obarczone jest dość dużym błędem[4], dlatego poleca się stosowanie modelu gazu pół-idealnego. Uogólnienie metody Prandtla-Meyera na dysze osiowosymetryczne[3] zostało również poszerzone o model gazu pół-idealnego przez autora tego artykułu. Funkcje termodynamiczne Zmiana entalpii względem entalpii spiętrzenia gazu wyraża się następującym wzorem:, stąd: Przy obliczeniach parametrów termodynamicznych wykorzystuje się następujące wzory: Wybrana metoda wymaga ponadto określenia wartości kąta Macha (µ) oraz funkcji Prandtla- Meyera. Funkcje te oblicza się na podstawie wzorów:, gdzie: Metody wyznaczania geometrii i charakterystyk dyszy typu aerospike 107

dane wejściowe Danymi wejściowymi do obliczeń geometrii dyszy aerospike są: skład spalin i udział molowy składników (FROZEN); T* temperatura w przekroju krytycznym dyszy; T E temperatura w przekroju wylotowym dyszy; p 0 ciśnienie w komorze spalania; N ilość punktów obliczeniowych na konturze dyszy; T REF temperatura referencyjna(w przypadku gazu idealnego); A* pole powierzchni przekroju krytycznego; Trzy pierwsze wartości można uzyskać z prostych obliczeń równowagi chemicznej, np. programem CEA[5]. Należy przy tym pamiętać, że opisana metoda zakłada niezmienność składu mieszaniny produktów spalania wzdłuż dyszy (FROZEN). inicjalizacja obliczeń Punktem wyjściowym do obliczeń jest wyznaczenie rozkładu temperatur wzdłuż dyszy oraz postawienie warunku początkowego. Dyszę o nieznanej wstępnie geometrii dzieli się w tym celu na N punktów, o stałym spadku temperatury od T* do T E. Temperatura w punkcie 1. odpowiada w tym układzie temperaturze w przekroju krytycznym, w punkcie N. temperaturze w przekroju wylotowym: Wyznaczone w ten sposób temperatury dzielą dyszę na N-1 paneli. Każdy z N punktów na konturze dyszy i wyznacza linię Macha o stałych wartościach funkcji termodynamicznych. Wyznaczenie wartości tych funkcji pozwoli określić współrzędne punktów konturu(rys. 1). rys. 1. Metoda prandtla-meyera. a- krawędź wokół której zachodzi ekspansja prandtla-meyera; a-1 przekrój krytyczny. obliczenia Obliczenia współrzędnych punktów dyszy realizowane są jawnie (nieiteracyjnie) w trzech następujących po sobie pętlach. Przed każdą z pętli następuje obliczenie warunków brzegowych do obliczeń w punkcie początkowym, odpowiadającym T 1 =T*. 108 prace instytutu Lotnictwa nr. 198

Pierwsza pętla ma na celu wyliczenie stosunków przekrojów, stosunków parametrów termodynamicznych, oraz wartości funkcji Prandtla-Meyera we wszystkich punktach konturu dyszy.,gdzie: Stosunki ciśnień w punktach konturu dyszy oblicza się na podstawie równania stanu: Wielkość przekroju wylotowego, średnicę zewnętrzną oraz szerokość przekroju krytycznego w przypadku dyszy płaskiej oblicza się z następujących wzorów: w przypadku dyszy osiowosymetrycznej: Metody wyznaczania geometrii i charakterystyk dyszy typu aerospike 109

Przed drugą pętlą, na podstawie wyznaczonych danych, następuje ponowne określenie warunków brzegowych: W pętli obliczane są kąty Macha dla kolejnych punktów konturu: oraz współrzędne biegunowe i Kartezjańskie punktów na konturze dyszy. W przypadku dyszy płaskiej korzysta się z następujących wzorów: W przypadku dyszy osiowosymetrycznej: W ostatniej, trzeciej pętli współrzędne y transformowane są do układu współrzędnych związanego z osią dyszy. 4. program p-m contour Schemat Program P-M contour realizuje algorytm opisany w rozdziale powyżej. Relacje pomiędzy najważniejszymi zmiennymi i funkcjami użytymi w programie przedstawione zostały na poniższym schemacie. interfejs programu Interfejs programu zaprojektowany został w środowisku Lazarus. Składa się z czterech podstawowych okien: - okno główne Prandtl-Meyer Plug Nozzle Contour zawiera najważniejsze dane wejściowe i wyniki, pozwala na wywołanie innych okien i przeprowadzenie obliczeń (Rys. 2, 3, 4); 110 prace instytutu Lotnictwa nr. 198

- okno NozzleProperties zawiera wyniki obliczeń osiągów dyszy i wykresy parametrów termodynamicznych w przekrojach (Rys. 2); - okno Performance zawiera wyniki obliczeń osiągów dyszy i wykresy charakterystyki wysokościowej dyszy dzwonowej, dyszy aerospike pełnej długości oraz skróconej o zadanej długości (Rys. 3). Charakterystyki dyszy skróconej określane są przy użyciu modeli zaproponowanych w [6]; - okno Mixture Definition pozwala zdefiniować skład spalin i odczytać ich uśrednione własności termodynamiczne (Rys. 4, 5); - okno Species Properties pozwala na podgląd własności termodynamicznych i transportowych wszystkich substancji w pliku thermo.inp (Rys. 5). Rys. 2. Okna: główne i Nozzle Properties Metody wyznaczania geometrii i charakterystyk dyszy typu aerospike 111

Rys. 3. Okna: główne i Performance Rys. 4. Okna: główne i Mixture Definition Rys. 5. Okna: Species Properties i Mixture Definition 112 prace instytutu Lotnictwa nr. 198

przykładowe obliczenia Możliwości programu zaprezentowane zostaną na przykładzie obliczeń silnika rakietowego zasilanego ciekłym metanem i ciekłym tlenem, w stosunku O/F=2,8. Wyniki otrzymane z programu CEA, dla silnika o ciśnieniu w komorze spalania 20 bar, składzie spalin niezmiennym wzdłuż dyszy(frozen, nfz=1), przedstawiają się następująco: Na podstawie uzyskanych danych o składzie molowym spalin, należy w oknie Mixture Definition programu P-M contour stworzyć model mieszaniny. Do obliczeń potrzebne są również: T*=2950,10 K temperatura w przekroju krytycznym dyszy; T E =1599,37 K temperatura w przekroju wylotowym dyszy; p 0 =20 bar ciśnienie w komorze spalania; N=100 ilość punktów obliczeniowych na konturze dyszy; m =10 kg/s wielkość przykładowa, ale niezbędna do obliczenia osiągów i wymiarów geometrycznych (pole powierzchni przekroju krytycznego, ciąg); Po kliknięciu przycisku Calculate w głównym oknie, program obliczy i wykreśli kontur dyszy oraz pokaże okno Nozzle Properties wraz z danymi o osiągach dyszy (Rys. 2). Porównanie danych dyszy z CEA i P-M contour przedstawione zostało w poniższej tabeli. Metody wyznaczania geometrii i charakterystyk dyszy typu aerospike 113

5. wnioski Wyniki otrzymywane z programu P-M contour zgadzają się bardzo dobrze z wynikami z programu CEA. Należy przy tym zwrócić uwagę, na zalety wynikające z zastosowania modelu gazu pół-doskonałego i błędy jakie mogą się pojawić przy modelowaniu dysz silników rakietowych. Zaprezentowane powyżej przykładowe obliczenia wykazały, że stosowanie uproszczonego modelu gazu doskonałego wiąże się z popełnieniem dużego błędu zarówno przy przewidywaniu osiągów dyszy, jak i obliczaniu jej konturu (Rys. 6). Stworzony program stanowi bardzo dobre narzędzie do projektowania dysz typu Aerospike. Zaprezentowana metoda, oraz elementy programu będą mogły być w przyszłości podstawą dla stworzenia programu opierającego się np. o metodę charakterystyk. Modele gazu i mieszaniny mogą zostać w łatwy sposób wyodrębnione z programu i stanowić podstawę dla bardziej zaawansowanych prac. bibliografia Rys. 6. Porównanie konturów dyszy aerospike obliczonych z użyciem różnych modeli gazu [1] Free Pascal Community: lazarus wiki.,:. [2] Free Pascal community: lazarus project Homepage.,:. [3] Angelino, G.: approximate Method for plug nozzle design. AIAA Journal 1964,2:1834-1835. 114 prace instytutu Lotnictwa nr. 198

[4] Zebbiche, T. & Youbi, Z.E.: Supersonic two-dimensional Minimum length nozzle design at High temperature. Emirates Journal for Engineering Research 2006,11:91-102. [5] McBride, B.J. & Gordon, S.: computer program for calculation of complex chemical equilibrium compositions and applications. 1996,:. [6] Onofri, M.: plug nozzles: Summary of Flow Features and engine performance. 2002,:. Michał Folusiak MetHodS of contour design and performance prediction of an aerospike nozzle. program pm_contour Abstract In the paper, existing contour design methods of an aerospike nozzle are presented and brieftly described. Methods of contour design and performance prediction implemented in the PM_contour program are described in details. Metody wyznaczania geometrii i charakterystyk dyszy typu aerospike 115