Metody i strategie genetyki i genomiki

Podobne dokumenty
Metody badawcze genetyki i genomiki. Od inżynierii genetycznej do biologii syntetycznej

Podstawy genetyki. Genetyka klasyczna, narzędzia badawcze genetyki

Podstawy genetyki II. Metody badawcze i strategie genetyki i genomiki. Organizmy modelowe.

Mapowanie genów cz owieka. podstawy

Podstawy genetyki I. Podstawowe pojęcia i genetyka klasyczna

Podstawowe strategie i techniki genetyki molekularnej

Podstawowe strategie i narzędzia genetyki molekularnej

Podstawowe strategie i narzędzia genetyki molekularnej

Podstawy genetyki I. Podstawowe pojęcia i genetyka klasyczna

Analiza sprzężeń u człowieka. Podstawy

Analiza sprzężeń u człowieka. Podstawy

Analiza sprzężeń u człowieka. Podstawy

Podstawy genetyki. Genetyka klasyczna, narzędzia badawcze genetyki

Analiza sprzężeń u człowieka. Podstawy

Biologia molekularna z genetyką

Podstawowe strategie i narzędzia genetyki molekularnej

Podstawy genetyki I. Podstawowe pojęcia i genetyka klasyczna

Plan wykładów z genetyki ogólnej

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki

Mapowanie genów cz owieka i badania asocjacji. podstawy

Mapowanie genów człowieka i badania asocjacji. podstawy

Tematyka zajęć z biologii

Imię i nazwisko...kl...

PODSTAWY GENETYKI. Prowadzący wykład: prof. dr hab. Jarosław Burczyk

GENETYKA. Genetyka. Dziedziczność przekazywanie cech rodziców potomstwu Zmienność występowanie różnic pomiędzy różnymi osobnikami tego samego gatunku

WSTĘP. Copyright 2011, Joanna Szyda

Podstawy biologii. Informacja, struktura i metabolizm.

ZARZĄDZANIE POPULACJAMI ZWIERZĄT

BLISKIE SPOTKANIA Z BIOLOGIĄ

Genetyka w nowej podstawie programowej

2. Rozdział materiału genetycznego w czasie podziałów komórkowych - mitozy i mejozy

Podstawy genetyki. Podstawowe pojęcia, zarys historii, genetyka klasyczna

GENETYKA POPULACJI. Ćwiczenia 1 Biologia I MGR /

Rozkład materiału z biologii do klasy III.

Konspekt do zajęć z przedmiotu Genetyka dla kierunku Położnictwo dr Anna Skorczyk-Werner Katedra i Zakład Genetyki Medycznej

mikrosatelitarne, minisatelitarne i polimorfizm liczby kopii

Inżynieria Genetyczna ćw. 3

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki

Pamiętając o komplementarności zasad azotowych, dopisz sekwencję nukleotydów brakującej nici DNA. A C C G T G C C A A T C G A...

Program ćwiczeń z przedmiotu BIOLOGIA MOLEKULARNA I GENETYKA, część I dla kierunku Lekarskiego, rok I 2015/2016. Ćwiczenie nr 1 (

a) Zapisz genotyp tego mężczyzny... oraz zaznacz poniżej (A, B, C lub D), jaki procent gamet tego mężczyzny będzie miało genotyp ax b.

Konkurs szkolny Mistrz genetyki etap II

Temat 6: Genetyczne uwarunkowania płci. Cechy sprzężone z płcią.

6. Uzupełnij zdanie, wstawiajac w odpowiednie miejsce wyrażenie ujawni się lub nie ujawni się :

Ćwiczenie 3/4. Prawa Mendla: zadania, analiza rodowodów Sprzężenia i odległość genetyczna. Kariotypy i chromosomopatie. Prof. dr hab.

ZARZĄDZANIE POPULACJAMI ZWIERZĄT 1. RÓWNOWAGA GENETYCZNA POPULACJI. Prowadzący: dr Wioleta Drobik Katedra Genetyki i Ogólnej Hodowli Zwierząt

Badanie funkcji genu

1 Podstawowe pojęcia z zakresu genetyki. 2 Podstawowy model dziedziczenia

Możliwości współczesnej inżynierii genetycznej w obszarze biotechnologii

Metody odczytu kolejności nukleotydów - sekwencjonowania DNA

Rozkład materiału z biologii dla klasy III AD. 7 godz / tyg rok szkolny 2016/17

WYMAGANIA EDUKACYJNE BIOLOGIA zakres podstawowy biologia na czasie

Wymagania edukacyjne

Wymagania edukacyjne Biologia na czasie zakres podstawowy przedmiot biologia nauczana dwujęzycznie poziom podstawowy klasa Ib i Ic

Wymagania edukacyjne Biologia na czasie zakres podstawowy

Specjalność (studia II stopnia) Oczyszczanie i analiza produktów biotechnologicznych

Badanie funkcji genu

NaCoBeZu klasa 8 Dział Temat nacobezu programu I. Genetyka 1. Czym jest genetyka? 2. Nośnik informacji genetycznej DNA 3. Podziały komórkowe

Zaoczne Liceum Ogólnokształcące Pegaz

Ewolucjonizm NEODARWINIZM. Dr Jacek Francikowski Uniwersyteckie Towarzystwo Naukowe Uniwersytet Śląski w Katowicach

WYMAGANIA EDUKACYJNE Z BIOLOGII, ZAKRES PODSTAWOWY 2018/19

Wymagania edukacyjne Biologia na czasie zakres podstawowy

Dziedziczenie cech sprzężonych, crossing-over i mapy chromosomów

Wymagania na poszczególne stopnie szkolne dla przedmiotu biologia. Klasa I Liceum Ogólnokształcącego poziom podstawowy

Technikum Nr 2 im. gen. Mieczysława Smorawińskiego w Zespole Szkół Ekonomicznych w Kaliszu

Wymagania edukacyjne Biologia na czasie, zakres podstawowy

Wymagania edukacyjne z biologii- zakres podstawowy: kl 1 ZSZ, 1LO

Genomika funkcjonalna

wykład dla studentów II roku biotechnologii Andrzej Wierzbicki

Zarys biologii molekularnej genu. Replikacja i stabilność genomu

definiuje pojęcia: inżynieria genetyczna, replikacja DNA wyjaśnia regułę komplementarności

Wymagania edukacyjne z biologii w klasie pierwszej, zakres podstawowy. Podręcznik Biologia na czasie - Wyd. Nowa Era

GENETYCZNE PODSTAWY ZMIENNOŚCI ORGANIZMÓW ZASADY DZIEDZICZENIA CECH PODSTAWY GENETYKI POPULACYJNEJ

Podstawy genetyki. ESPZiWP 2010

WYMAGANIA EDUKACYJNE BIOLOGIA NA CZASIE, ZAKRES PODSTAWOWY

Co to jest transkryptom? A. Świercz ANALIZA DANYCH WYSOKOPRZEPUSTOWYCH 2

Podstawy genetyki. Dziedziczenie wieloczynnikowe na przykładzie człowieka. Asocjacje.

Analizy wielkoskalowe w badaniach chromatyny

Praca klasowa waga 3. Sprawdzian waga 3. Kartkówka waga 2. Odpowiedź waga 1. Aktywność waga 1

1. Analiza asocjacyjna. Cechy ciągłe. Cechy binarne. Analiza sprzężeń. Runs of homozygosity. Signatures of selection

dostateczny oraz: wyjaśnia, z czego wynika komplementarność zasad przedstawia graficznie regułę

WYMAGANIA EDUKACYJNE Z BIOLOGII (Klasa 1B, 1C, 1D, 1E, 1F ;rok szkolny 2018/2019) - ZAKRES PODSTAWOWY - NOWA ERA. dostateczny (P) podstawowy

Biologia medyczna, materiały dla studentów

Wymagania edukacyjne Biologia na czasie klasa 1 LO, poziom podstawowy

BUDOWA I FUNKCJA GENOMU LUDZKIEGO

Wymagania programowe z biologii na poziomie podstawowym.

PODSTAWY BIOINFORMATYKI

a. Poziomy oczekiwanych osiągnięć ucznia

Wymagania edukacyjne klasa 1LO zakres podstawowy. Stopnie szkolne

Genetyka. Genetics. Nazwa przedmiotu. Kod przedmiotu UTH/Z/P/PI/A/ST/1(I)/2L/4. Rok akademicki. Wersja przedmiotu

Wymagania edukacyjne. Stopnie szkolne

Wymagania edukacyjne z biologii (zakres podstawowy) na poszczególne stopnie szkolne dla klas pierwszych w Zespole Szkół nr1 w Ełku.

Wymagania edukacyjne z biologii kl 1d, 1e, 1bm, rok szkolny 2016/17. Poziomy oczekiwanych osiągnięć ucznia. Stopnie szkolne

Wymagania edukacyjne Biologia na czasie zakres podstawowy

Wymagania edukacyjne. Poziomy oczekiwanych osiągnięć ucznia. Stopnie szkolne

Wymagania edukacyjne. Poziomy oczekiwanych osiągnięć ucznia. Stopnie szkolne

Wymagania edukacyjne. Poziomy oczekiwanych osiągnięć ucznia. Stopnie szkolne

Wymagania edukacyjne. Poziomy oczekiwanych osiągnięć ucznia. Stopnie szkolne

Przedmiotowy System Oceniania z Biologii

Techniki biologii molekularnej Kod przedmiotu

Transkrypt:

Metody i strategie genetyki i genomiki

Wybrane techniki genetyki klasycznej

Komplementacja Wiele mutacji dających taki sam, lub podobny fenotyp Czy są to mutacje w tym samym genie, czy w różnych

Podwójne heterozygoty cis i trans m1, m2 mutacje (bez znaczenia, czy w tym samym genie, czy w różnych m1 m2 m1 +m2 +m1 +m2 +m1 m2 Układ cis Układ trans Otrzymywanie: m1,m2 x wt (czyste linie) Otrzymywanie: m1 x m2 (czyste linie)

Komplementacja m1 m2 m1 m2 +m1 +m2 +m1 +m2 W układzie cis fenotyp zawsze dziki, niezależnie od tego, czy m1 i m2 są w tym samym genie, czy w różnych. Warunek m1 i m2 recesywne.

Komplementacja m1 +m2 m1 +m2 +m1 m2 +m1 m2 Jest funkcjonalny allel jednego i drugiego genu Oba allele niefunkcjonalne W układzie trans test daje odpowiedź Warunek m1 i m2 recesywne.

Test komplementacji wersja najprostsza Podwójna heterozygota trans Fenotyp dziki komplementacja, różne geny Fenotyp mutanta brak komplementacji ten sam gen Tylko dla mutacji recesywnych

Komplementacja Peter J. Russell, igenetics: Copyright Pearson Education, Inc., publishing as Benjamin Cummings.

Cistron Eksperymenty Benzera na bakteriofagach Łysinki fagowe

Cistron Mutacje w obrębie tego samego cistronu nie komplementują Peter J. Russell, igenetics: Copyright Pearson Education, Inc., publishing as Benjamin Cummings.

Geny i chromosomy Dwa allele genu dwa chromosomy homologiczne u organizmów diploidalnych W. S Klug, M.R Cummings Concepts of Genetics 8th edition, Prentice Hall, 2005

Geny i chromosomy Segregacja alleli do gamet (I prawo Mendla) koreluje z zachowaniem chromosomów podczas mejozy W. S Klug, M.R Cummings Concepts of Genetics 8th edition, Prentice Hall, 2005

I prawo Mendla każda gameta wytwarzana przez organizm posiada tylko jeden allel z danej pary alleli genu jest prawdziwe dla genów leżących na autosomach w jądrze cechy niemendlowskie - np. DNA organellarne

Chromosomy płci U wielu (ale nie wszystkich) organizmów płeć jest determinowana przez specjalną parę chromosomów Ssaki łożyskowe XX ; XY Y niezbędny do rozwoju fenotypu męskiego, X0 (zespół Turnera) fenotypowo kobiecy Drosophila XX ; XY Fenotyp determinowany przez stosunek X do autosomów, X0 fenotypowo samiec (niepłodny u D. melanogaster) Ptaki, owady, niektóre jaszczurki ZW ; ZZ

Sprzężenie z płcią w wt (w+) Thomas H. Morgan - 1910 W. S Klug, M.R Cummings Concepts of Genetics 8th edition, Prentice Hall, 2005

Sprzężenie z płcią - interpretacja W. S Klug, M.R Cummings Concepts of Genetics 8th edition, Prentice Hall, 2005

Geny i chromosomy Niezależne dziedziczenie alleli różnych genów niezależna segregacja różnych chromosomów W. S Klug, M.R Cummings Concepts of Genetics 8th edition, Prentice Hall, 2005

II prawo Mendla geny należące do jednej pary alleli są dziedziczone niezależnie od genów należących do drugiej pary alleli prawdziwe dla genów spełniających I prawo Mendla i leżących na różnych chromosomach, lub dostatecznie daleko od siebie

Sprzężenie Geny leżące na różnych chromosomach spełniają II prawo Mendla Dla 2 genów: 4 równoliczne klasy gamet W. S Klug, M.R Cummings Concepts of Genetics 8th edition, Prentice Hall, 2005

Sprzężenie Allele genów leżących na tym samym chromosomie dziedziczą się razem sprzężenie Dla 2 genów: 2 równoliczne klasy gamet rodzicielskich W. S Klug, M.R Cummings Concepts of Genetics 8th edition, Prentice Hall, 2005

Sprzężenie Crossing-over (rekombinacja chromatyd niesiostrzanych) Dla 2 genów: 2 równoliczne klasy gamet rodzicielskich 2 równoliczne klasy gamet zrekombinowanych Klasy zrekombinowane mniej liczne od rodzicielskich W. S Klug, M.R Cummings Concepts of Genetics 8th edition, Prentice Hall, 2005

Mapowanie genów Aby powstały gamety zrekombinowane, crossing-over musi zajść pomiędzy genami (loci) powstają gamety zrekombinowane W. S Klug, M.R Cummings Concepts of Genetics 8th edition, Prentice Hall, 2005

Mapowanie genów Prawdopodobieństwo crossing-over pomiędzy genami jest proporcjonalne do odległości między nimi na chromosomie Liczebność klas rodzicielskich w potomstwie jest miarą odległości genetycznej U Drosophila najlepiej mapować za pomocą heterozygotycznej samicy i samca recesywnego

Mapowanie genów U Drosophila najlepiej mapować za pomocą heterozygotycznej samicy i samca recesywnego U samców nie zachodzi crossing-over Reguła Haldane a-huxleya: u płci heterogametycznej (dwa różne chromosomy płci) częstość crossing-over może być obniżona (nawet do 0)

Mapowanie Jednostka cm (centymorgan) = 1% rekombinacji W rzeczywistości zależność nie jest liniowa Podwójny crossing-over gamety typu rodzicielskiego Interferencja zajście crossing-over w danym miejscu wpływa na prawdopodobieństwo zajścia kolejnego w pobliżu

Mapy genetyczne człowieka i innych organizmów Dla 3000Mb genomu autosomalnego 1 cm u mężczyzny 1,05 Mb 1 cm u kobiety 0,88Mb 1 cm u Drosophila 0,5 Mb 1cM u drożdży 3 kb

Czy genetyka klasyczna ma dziś znaczenie? Wciąż aktualne metody: Izolacja i charakterystyka mutantów Test komplementacji Interakcje genetyczne! jedna z podstaw biologii systemów Konstrukcje organizmów (głównie mikroorganizmy) przez odpowiednio dobrane krzyżówki Dziedziczenie mendlowskie w medycynie poradnictwo genetyczne. Metody probabilistyczne

Genetyka molekularna i genomika

Czym jest inżynieria genetyczna? Ang. recombinant DNA manipulacje DNA in vitro izolacja i amplifikacja DNA i cdna mapowanie i sekwencjonowanie DNA tworzenie nowych cząsteczek DNA przez rekombinację cząsteczek naturalnych przez syntezę de novo wprowadzanie konstruktów DNA do komórek i organizmów modyfikacje syntezy białek ekspresja heterologiczna bioinformatyka

A co nie jest inżynierią genetyczną? Inżynieria embrionalna (np. klonowanie) Tworzenie nowych form organizmów przez selekcję

Zastosowania Badania podstawowe Biotechnologia Granica między badaniami podstawowymi a stosowanymi jest płynna, stosowane techniki są podobne, różnice dotyczą głównie skali.

Podstawowe techniki Izolacja DNA cdna izolacja RNA i przepisanie na DNA Chemiczna synteza DNA de novo PCR Klonowanie DNA Mutageneza losowa i ukierunkowana w tym wprowadzanie modyfikacji do genomu Wykrywanie DNA, RNA i białek Sekwencjonowanie

Lektura Allison Podstawy biologii molekularnej, rozdział 8 i 9

Tradycyjny odczyt sekwencji A T C G Znakowanie radioaktywne, osobne reakcje

Sekwencjonowanie automatyczne Dideoksynukleotydy znakowane fluorescencyjnie (4 kolory) Elektroforeza kapilarna

Sekwencjonowanie - postęp techniczny Koszt sekwencjonowania między 1999 a 2009 obniżył sie 14 000 razy Prędkość odczytu sekwencji między 2000 a 2010 r. wzrosła 50 000 razy Cel: sekwencja genomu jednej osoby za 1000$ osiągalny w ciągu kilku lat Im więcej znamy sekwencji, tym łatwiej poznajemy kolejne

Sekwencjonowanie wysokoprzepustowe Tzw. deep sequencing, sekwencjonowanie nowej generacji (NGS) Generowanie w jednym przebiegu milionów niezależnych odczytów Pojedyncze odczyty krótkie (25-400 bp) Zastosowania sekwencjonowanie nowych genomów resekwencjonowanie np. analiza zmienności badanie ekspresji przez sekwencjonowanie cdna

Sekwencjonowanie Głównym wyzwaniem w sekwencjonowaniu nie jest sam odczyt sekwencji Odczytywane fragmenty są krótkie do ~700-800 nt (sekw. tradycyjne Sangera) 200-400 nt (454) 50-150 nt (Solexa) Wyzwaniem jest złożenie długiej sekwencji z tych krótkich fragmentów

Genomika Genomika jest dziedziną zajmującą się badaniem całych genomów (kompletu informacji genetycznej) różnych organizmów Techniki biologii molekularnej + robotyka + informatyka Sekwencjonowanie i charakteryzowanie genomów Badanie funkcji zawartych w nich genów

Metagenomika Izolacja DNA ze środowiska i sekwencjonowanie Jedyny sposób badania mikroorganizmów, które nie dają się hodować

Metagenomika Analiza sekwencji całości DNA wyizolowanego ze zbiorowiska organizmów

Odkrycia dzięki sekwencjonowaniu Tajemnicza UCYN-A Sinica (cyjanobakteria) Niewielki genom (1,4mln par zasad, 1200 genów) Brak zdolności fotosyntezy, cyklu Krebsa, syntezy niektórych aminokwasów Zdolność asymilacji azotu Symbioza (gospodarz - haptofit) Candidatus Atelocyanobacterium thalassa

Wielkie projekty Projekt 1000 genomów - różnorodność genetyczna człowieka Metagenomika mikrobiomu przewodu pokarmowego człowieka Genomy wymarłych gatunków (np. Neandertalczyk)

RNA-seq

Sekwencjonowanie nowej generacji wyzwanie dla bioinformatyki Krótkie odczyty (50-150 nt) pojedyncze paired-end Problem identyfikacji i składania sekwencji Indeksowanie i multipleks

Genomika funkcjonalna Wysokoprzepustowe analizy: ekspresji genów (mikromacierze, RNA-seq) proteomu interakcji genetycznych i fizycznych fenotypów

Genom człowieka

Craig Venter Francis Collins (NIH)

Czym jest znajomość genomu Nie jest odczytaniem księgi życia Sama sekwencja nie daje jeszcze zrozumienia, jak funkcjonują komórki Ale jest niezwykle cennym narzędziem w badaniach Sekwencja nie jest lekarstwem Ale bardzo pomaga w zrozumieniu mechanizmów chorób i wynajdywaniu nowych terapii

Co genom już dał nauce Dużo ciekawych i zaskakujących odkryć Dlaczego mamy tak mało genów Jak ewoluował człowiek Narzędzie do badania funkcji genów

Czy warto badać genomy Nowoczesne techniki generują bardzo dużo danych Dwa podejścia hypothesis driven dane zbierane dla zweryfikowania jakiejś hipotezy data driven dane zbierane bez wstępnych założeń, potem wyszukiwane w nich prawidłowości

Zbieranie danych Podejście zakładające poszukiwanie prawidłowości w dużych zbiorach danych, zbieranych bez wstępnych założeń, może być produktywne Ale niesie też (dobrze znane w literaturze) ryzyko Lem, S. Cyberiada, Wyprawa szósta: czyli jak Trurl i Klapaucjusz demona drugiego rodzaju stworzyli, aby zbójcę Gębona pokonać., 1965. http://www.portalwiedzy.pan.pl/images/stories/academia_2012/ academia_2013/022013/004-008_golik.pdf

Co to znaczy? TCACAATTTAGACATCTAGTCTTCCACTTAAGCATATTTAGATTGTTTCCAGTTTTCAGCTTTTATGACTAAATCTTCTAAAATTGTTTTTCCCTAAATGT ATATTTTAATTTGTCTCAGGAGTAGAATTTCTGAGTCATAAAGCGGTCATATGTATAAATTTTAGGTGCCTCATAGCTCTTCAAATAGTCATCCCATTTT ATACATCCAGGCAATATATGAGAGTTCTTGGTGCTCCACATCTTAGCTAGGATTTGATGTCAACCAGTCTCTTTAATTTAGATATTCTAGTACATACAA AATAATACCTCAGTGTAACCTCTGTTTGTATTTCCCTTGATTAACTGATGCTGAGCACATCTTCATGTGCTTATTGACCATTAATTAGTCTTATTTGTTA AATGTCTCAAATATTTTATACAGTTTTACATTGTGTTATTCATTTTTTAAAAAATTCATTTTAGGTTATATGTATGTGTGTGTCAAAGTGTGTGTACATCTAT TTGATATATGTATGTCTATATATTCTGGATACCATCTCTGTTTCATGCATTGCATATATATTTGCCTATTTAGTGGTTTATCTTTTCATTTTCTTTTGGTATCT TTTCATTAGAAATGTTATTTATTTTGAGTAAGTAACATTTAATATATTCTGTAACATTTAATGAATCATTTTATGTTATGTTTAGTATTAAATTTCTGAAAACAT TCTATGTATTCTACTAGAATTGTCATAATTTTATCTTTTATATACATTGATATTTTTATGTCAAATATGTAGGTATGTGATATTATGCACATGGTTTTAATTCAG TTAATTGTTCTTCCAGATGTTTGTACCATTCCAACATCATTTAAATCATTAAATGAAAAGCCTTTCCTTACTAGCTAGCCAGCTTTGAAAATCCATTCAT AGGGTTTGTGTTAATATATTTTTGTTCTTTTTTTTCCTTTCTACTGATCTCTTTATATTAATACCTACTGTGGCTTTATATGAAGTCATGGAATAATACGTA GTAAGCCCTCTAACACTGTTCTGTTACTGTTGTTATTGTTTTCTCAGGGTACTTTGAAATATTCGAGATTTTATTATTTTTTAGTAGCCTAGATTTCAAG ATTGTTTTGACGATCAATTTTTGAATCAATTGTCAATATTTTTAGTAATAAAATGATGATTTTTGATTGGAAATACATTAAATCTATAAGCCAAATTGGAGA TTATTGATATATTAACAAAAATGAGTTTTCCAGTCCATGAATGTATGCACATTATAAAATTCATTCTTAAGTATGTCATTTTTTAAGTTTTAGTTTCAGCAG TATATGTTTGTTACATAGGTAAACTCCTGTCATGGGGGTTAGTTGTACAGGTTATTTTATCATCCAGGCATAAAGCCCAGTACCCAGTAGTTATCTTTT CTGCTCCTCTCCCTCCTGTCACCCTCCACTCTCAAGTAGACCCCAGTTTCTGTTGTTCTCTTCTTTGCATTAATGACTTCTCATCATTTAGATTGCA CTTGTAAGTGAGAACAGGACGTATGTGGTTTTCTACTCCTGTGTTAGTTTGCTAAGGATAACCACCTCCATCTCCATCCATGTTCCCACAAAAGAC ATGATCTCCTTTTTTATGGCTGCATATTATTCCATGGTATATATGTACCACATTTTCTTTATCCAATCTGTCATTGATGGACATTTAGGTTGTTTCCACAT CATTGCCGTTGTAAATACTGCTGCAGTGAATATTCGTGTGTATGTCTTTATGGTAGAATGATTTATATTCCTCTGGGTATATTTCCAAGTAATGGGATG GTTGGGTCAAATGGTAATTCTGCTTTTAGCTTTTTGAGGAATTGCCATATTGCCTTTCACAACGGTTGAACTAATTTATACTCCCAAGAGTGTATAAG TTGTTCCTTTTTCTCTGCAACCTCGACATCACCTGTTATTTATGACTTTTATATAATAGCCATTCTGCTGGTCTGAGATGGTATCTCATTATGATTTTGA TTTGCATTTCTCTAATGCTCAGTGATATTGAGCTTGGCTGCATATATGTCTTCTTTTAAAAATATCTGTTCATGTCCTTTGCCTAATTTATAACGGGGTT GTTTGTTTTTCTCTTGTAAATTTGTTTAAGTTCCTTATAGATTCTAGGTATTAAACCTTTTTTCAGAGGCGTGGCTTGCAAATATTTTCTCCCATTCTATA GGTTGTCTGTTTATTCTGTTGATAGTTTCCCTTGCTGTGCAGAAGCTCTTAACTTTAATTAGATCCGACTTGTCAATTTTTGCTTTGGTCGCAATTGC TTTTGATGTTATTGTCGTGAAATCTTTGCTAGTTCTTAGGTCCAGGATGATATTGCCCAAGTTGTCTTCCAGGGCTTTTATAATTTTGGATTTTACATTT AAGTCTTAATATATTTATTAAATTTGTTAGGGTTTCAGGATACAAGGACAATATAGCAGCAAACAATGTAAAAGTAAAATCTGAAAAATAATAGAAAAC AGTTTAATTGAACACTTTACCATTATGTAATGCCCTTCTTTGTCTTTCCTGATCTTTGTTGGTTTGAAGTTCAAAAAAGACAAACTTAATGGTACAATA GGTATTGTAGATTTCAGGACTTTCTGTATAAAATATTTTGTATATATGAATAGATCATTTTTTATTTCCAGTCTTTAAACATTTTCTTAACATTTTCTTCTATT GCTTCACTTCACTCGCTAGGACCATCAGGACAGTGTTGAACAGAAATTGTCAGACTGATCATCACAACTTTTTCTAGATTTTAGAAGGAAATTTTT CTTTATTTCAACATAAAGCAGCATGTTAATGCCAAGTTTTAATATGTGTTATCAGATTGAAATTTTTTTGTATATTTCTACATTACCAAGAATTTTTAGCAA GAGTTTTTGTTGAGTTTTAATTTAAAAATCATTTGTTAATTTCATCTGATTTTTTTATTTCTCTTTTTACCTTAAGAGATTAAACTGACTACAGATTGAATAT AAACAAACAAACAAACAAACAAAAACTCTAAAATGCTGTGGATCAACACCACTTAGTAATTTGTATACTTGGATTCAATTTGCTGAAATTTTGTTAG ACATTTTTGCGTCGATATTTATGAGGGATGTTGATCTGTAAAAGTATTAAAATGCCTTTGACAGATAGTGTCACCATATAAAAAACTTTGAACAAAATC AGATTATATCACTGTGGATATTTCTATTTTGAACTAACTTAGATGATAATTTTAATCTATATCCTAGATGAACT Mały fragment chromosomu 21

Odwrotna genetyka od genu do funkcji Genetyka tradycyjna Genetyka odwrotna Funkcja (mutacja, fenotyp) Gen (z sekwencji całego genomu) Klonowanie genu Inaktywacja genu Analiza sklonowanego genu Analiza uzyskanego fenotypu

Odwrotna genetyka inaktywacja przez rekombinację

Inaktywacja warunkowa System Cre-Lox Wprowadzenie do genomu miejsc Lox Ekspresja rekombinazy Cre powoduje wycięcie fragmentu pomiędzy miejscami Lox

Odwrotna genetyka interferencja RNA Odkrycie roku 2002 regulacyjna rola małych RNA Nagroda Nobla w dziedzinie medycyny 2006, za odkrycie mechanizmu interferencji RNA A. Fire i C. Mello

sirna - jak to działa? Efekt degradacja mrna Hannon G.J.: RNA interference, Nature 418, July 11, 2002

Zastosowania sirna Badanie funkcji genów ( odwrotna genetyka ) - szczególnie skuteczne u nicienia Caenorhabditis, ale działa też w komórkach owadów, ssaków i roślin Hamowanie wybranych genów jako metoda leczenia (np. zwalczania wirusów czy nowotworów) przykład: obniżenie poziomu receptora LDL ( zły cholesterol ) u myszy

Myszy knock-out Izolacja komórek ES (zarodkowe macierzyste) z blastocysty Dawcą jest mysz szczepu białego Modyfikacja i selekcja komórek ES z knock-out

Myszy knock-out Wprowadzenie zmodyfikowanych komórek do blastocysty myszy szczepu szarego

Myszy knock-out Blastocysty zawierające zmodyfikowane komórki ES wszczepia się myszy matce zastępczej

Myszy knock-out Selekcja chimer z transgenem w linii płciowej

Redagowanie genomu - system CRISPR/Cas9 System obronny bakterii przed fagami, zaadaptowany do edycji dowolnej sekwencji w genomie. Działa także u organizmów, dla których nie istnieją stabilne wektory. Nature 495, 50 51 (07 March 2013) doi:10.1038/495050a

Biologia systemów Postęp biologii molekularnej - genomika Ogromne zbiory danych Ujawnienie złożoności interakcji genetycznych leżących u podstaw fenotypu Narzędzia teoretyczne do systemowego opisu życia