WYKŁAD 1. Wprowadzenie w tematykę kursu



Podobne dokumenty
SPOTKANIE 2: Wprowadzenie cz. I

SPOTKANIE 1: Wprowadzenie do uczenia maszynowego

Wrocław University of Technology. Wprowadzenie cz. I. Adam Gonczarek. Rozpoznawanie Obrazów, Lato 2015/2016

WYKŁAD 6. Reguły decyzyjne

WYKŁAD 3. Klasyfikacja: modele probabilistyczne

WYKŁAD 2. Problem regresji - modele liniowe

WYKŁAD 4. Podejmowanie decyzji dla modeli probabilistycznych Modelowanie Gaussowskie. autor: Maciej Zięba. Politechnika Wrocławska

Widzenie komputerowe (computer vision)

Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego

Algorytmy decyzyjne będące alternatywą dla sieci neuronowych

Analiza skupień. Analiza Skupień W sztucznej inteligencji istotną rolę ogrywają algorytmy grupowania


Eksploracja Danych. wykład 4. Sebastian Zając. 10 maja 2017 WMP.SNŚ UKSW. Sebastian Zając (WMP.SNŚ UKSW) Eksploracja Danych 10 maja / 18

ALGORYTM RANDOM FOREST

Klasyfikacja obiektów Drzewa decyzyjne (drzewa klasyfikacyjne)

Systemy agentowe. Uwagi organizacyjne i wprowadzenie. Jędrzej Potoniec

Metody systemowe i decyzyjne w informatyce

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu

Pattern Classification

CLUSTERING. Metody grupowania danych

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016

SPOTKANIE 9: Metody redukcji wymiarów

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

Wprowadzenie do technologii informacyjnej.

Systemy uczące się Lab 4

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV

Wprowadzenie do uczenia maszynowego

SZTUCZNA INTELIGENCJA

WSTĘP I TAKSONOMIA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza

Metody tworzenia efektywnych komitetów klasyfikatorów jednoklasowych Bartosz Krawczyk Katedra Systemów i Sieci Komputerowych Politechnika Wrocławska

data mining machine learning data science

Indukowane Reguły Decyzyjne I. Wykład 3

Wybrane zagadnienia uczenia maszynowego. Zastosowania Informatyki w Informatyce W2 Krzysztof Krawiec

SYSTEMY UCZĄCE SIĘ WYKŁAD 4. DRZEWA REGRESYJNE, INDUKCJA REGUŁ. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska

Instytut Automatyki i Inżynierii Informatycznej Politechniki Poznańskiej. Adam Meissner. Elementy uczenia maszynowego

Systemy uczące się wykład 1

Analiza danych. TEMATYKA PRZEDMIOTU

Techniki uczenia maszynowego nazwa przedmiotu SYLABUS

2. Empiryczna wersja klasyfikatora bayesowskiego

KARTA PRZEDMIOTU. 1. Informacje ogólne. 2. Ogólna charakterystyka przedmiotu. Metody drążenia danych D1.3

Algorytmy rozpoznawania obrazów. 11. Analiza skupień. dr inż. Urszula Libal. Politechnika Wrocławska

Automatyczna predykcja. Materiały/konsultacje. Co to jest uczenie maszynowe? Przykład 6/10/2013. Google Prediction API, maj 2010

WYKŁAD 11 Uczenie maszynowe drzewa decyzyjne

TEORETYCZNE PODSTAWY INFORMATYKI

Wstęp do Metod Systemowych i Decyzyjnych Opracowanie: Jakub Tomczak

SYSTEMY UCZĄCE SIĘ WYKŁAD 1. INFORMACJE WSTĘPNE. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu

Algorytmy klasyfikacji

TADEUSZ KWATER 1, ROBERT PĘKALA 2, ALEKSANDRA SALAMON 3

Elementy modelowania matematycznego

Agnieszka Nowak Brzezińska Wykład III

Text mining w programie RapidMiner Michał Bereta

Zastosowania sieci neuronowych

Analiza danych i data mining.

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Eksploracja danych. Grupowanie. Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne. Grupowanie wykład 1

SAS wybrane elementy. DATA MINING Część III. Seweryn Kowalski 2006

Eksploracja danych. KLASYFIKACJA I REGRESJA cz. 2. Wojciech Waloszek. Teresa Zawadzka.

Wprowadzenie. Data Science Uczenie się pod nadzorem

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,

Algorytmy zachłanne. dr inż. Urszula Gałązka

INDUKOWANE REGUŁY DECYZYJNE ALORYTM APRIORI JAROSŁAW FIBICH

Algorytmy, które estymują wprost rozkłady czy też mapowania z nazywamy algorytmami dyskryminacyjnymi.

Archipelag Sztucznej Inteligencji

Systemy uczące się wykład 2

Drzewa klasyfikacyjne Lasy losowe. Wprowadzenie

AUTOMATYKA INFORMATYKA

Agnieszka Nowak Brzezińska Wykład III

Mail: Pokój 214, II piętro

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2012/2013

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

Metody probabilistyczne klasyfikatory bayesowskie

Metody systemowe i decyzyjne w informatyce

Rozpoznawanie obrazów

Agnieszka Nowak Brzezińska

Hurtownie danych i business intelligence. Plan na dziś : Wprowadzenie do przedmiotu

Metody klasyfikacji danych - część 1 p.1/24

Uniwersytet Zielonogórski Wydział Elektrotechniki, Informatyki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych

4.1. Wprowadzenie Podstawowe definicje Algorytm określania wartości parametrów w regresji logistycznej...74

Diagramy ERD. Model struktury danych jest najczęściej tworzony z wykorzystaniem diagramów pojęciowych (konceptualnych). Najpopularniejszym

Wstęp do sieci neuronowych, wykład 02 Perceptrony c.d. Maszyna liniowa.

Indukowane Reguły Decyzyjne I. Wykład 8

Inżynieria danych I stopień Praktyczny Studia stacjonarne Wszystkie specjalności Katedra Inżynierii Produkcji Dr Małgorzata Lucińska

LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów

Scoring kredytowy w pigułce

Literatura. Sztuczne sieci neuronowe. Przepływ informacji w systemie nerwowym. Budowa i działanie mózgu

Rozpoznawanie obrazów

Zagadnienia optymalizacji i aproksymacji. Sieci neuronowe.

Systemy ekspertowe i ich zastosowania. Katarzyna Karp Marek Grabowski

Lektura obowiązkowa dla każdego, kto poważnie myśli o wykorzystaniu okazji, jakie niosą ze sobą wielkie zbiory danych.

SZTUCZNA INTELIGENCJA

Uczenie się maszyn. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki

Rozpoznawanie obrazów

Lekcja 5: Sieć Kohonena i sieć ART

Inteligentne Multimedialne Systemy Uczące

Wybrane zagadnienia uczenia maszynowego

w ekonomii, finansach i towaroznawstwie

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA REALIZACJA W ROKU AKADEMICKIM 2016/2017

Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel

Transkrypt:

Wrocław University of Technology WYKŁAD 1 Wprowadzenie w tematykę kursu autor: Maciej Zięba Politechnika Wrocławska

Informacje dotyczące zajęć Cykl 8 wykładów. Konsultacje odbywają się w sali 121 w budynku C3 w terminach (proszę o wcześniejsze potwierdzenie mailem): PN, 8.00-9.00. CZ, 11.00-13.00. ND, 12.00-13.00. Kontakt do prowadzącego: maciej.zieba@pwr.wroc.pl. Strona prowadzącego: http://www.ii.pwr.wroc.pl/~zieba/. Na ostatnim wykładzie kolokwium zaliczeniowe. 2/34

Zawartość merytoryczna (1) 1. Zagadnienia podstawowe: metody pozyskiwania, wykorzystywania i integracji wiedzy; wprowadzenie niezbędnych pojęć związanych z prawdopodobieństwem; typowe rozkłady dyskretne i ciągłe. 2. Modele probabilistyczne: reprezentacja wiedzy w postaci modelu probabilistycznego; wnioskowanie na podstawie modeli probabilistycznych; ekstrakcja wiedzy z modeli probabilistycznych; integracja modeli probabilistycznych; złożone modele probabilistyczne. 3/34

Zawartość merytoryczna (2) 3. Modele funkcyjne, reguły i drzewa decyzyjne: metody ekstrakcji wiedzy dla modeli funkcyjnych; metody konstrukcji drzew i reguł decyzyjnych; metody konstrukcji zespołów modeli; metody integracji modeli o różnych reprezentacjach wiedzy. 4. Inne rodzaje reprezentacji wiedzy: zbiory rozmyte; ontologie; 5. Przykłady integracji wiedzy. 4/34

Pojęcie wiedzy Pojęcie wiedzy po raz pierwszy wprowadził Platon. Uważał on, że wiedza to prawdziwe i uzasadnione przekonanie. Arystoteles z kolei wyodrębnia wiedzę teoretyczną i praktyczną. Podział wiedzy ze względu na kryterium doświadczenia: Wiedza a priori jest niezależna od zmysłów i dotyczy prawd absolutnych lub uniwersalnych jakimi są prawa logiki, prawa matematyki. Wiedza a posteriori jest wiedzą nabytą poprzez zmysły i jej prawdziwość może być obalona poprzez następne obserwacje. 5/34

Pojęcie wiedzy w sztucznej inteligencji Pojęcie wiedzy w sztucznej inteligencji odnosi się do struktur modeli reprezentujących pewne procesy podejmowania decyzji. W zależności od procesu podejmowania decyzji wiedza może być reprezentowana w postaci rozmaitych struktur, takich jak funkcje, drzewa, grafy, reguły, bądź zbiory. Wiedza może mieć charakter: zrozumiały (interpretowalny); niejawny (nieinterpretowalny). Źródła wiedzy: wiedza eksperta; wiedza pozyskana z danych. 6/34

Pojęcie wiedzy w sztucznej inteligencji Pojęcie wiedzy w sztucznej inteligencji odnosi się do struktur modeli reprezentujących pewne procesy podejmowania decyzji. W zależności od procesu podejmowania decyzji wiedza może być reprezentowana w postaci rozmaitych struktur, takich jak funkcje, drzewa, grafy, reguły, bądź zbiory. Wiedza może mieć charakter: zrozumiały (interpretowalny); niejawny (nieinterpretowalny). Źródła wiedzy: wiedza eksperta; wiedza pozyskana z danych. 6/34

Uczenie maszynowe i eksploracja danych (1) Uczenie maszynowe (ang. machine learning) to proces pozyskiwania wiedzy do rozwiązania pewnego zadania w oparciu o doświadczenie i z wykorzystaniem pewnej miary jakości. Wraz ze wzrostem doświadczenia, następuje przyrost wiedzy potrzebnej do realizacji zadania mierzony z wykorzystaniem miary jakości. Eksploracja (ekstrakcja) danych (ang. data mining) to proces pozyskiwania wiedzy z danych reprezentowanej przez pewne wzorce. ZADANIE Jaka to litera? DOŚWIADCZENIE MIARA JAKOŚCI 7/34

Uczenie maszynowe i eksploracja danych (2) Metody uczenia maszynowego: są wykorzystywane jako narzędzia w procesach eksploracji danych. mają wymiar teoretyczny; modelują zjawiska wspomagając się danymi; modelują rzeczywistość w sposób probabilistyczny; zorientowane głownie na modele nieinterpretowalne; Metody eksploracji danych: jako narzędzia wykorzystują metody uczenia maszynowego. mają wymiar praktyczny; koncentrują się na analizie danych; modelują rzeczywistość w sposób deterministyczny; zorientowane głownie na modele interpretowalne. 8/34

Dane w uczeniu maszynowym Jeżeli rozważamy problem uczenia nadzorowanego (predykcji), to interesuje nas znalezienie mapowania wartości wejściowych x na wartości wyjściowe y. Mapowanie to odbywa się na podstawie tzn. zbioru uczącego (treningowego), który zawiera pary wejście-wyjście nazywane przykładami: D = {(x n, y n )} N n=1. Każdy element wejściowy x i zawiera zestaw wartości nominalnych i liczbowych, które nazywane są cechami, bądź atrybutami. Każdy element wyjściowy y i reprezentowany jest przez wartość liczbową (regresja), bądź też nominalną (klasyfikacja). Jeżeli rozważamy problem uczenia nienadzorowanego (deskrypcji) to interesuje nas znalezienie ciekawych wzorców w danych: D = {x n } N n=1. 9/34

Źródła danych DANE BANKOWE DANE MEDYCZNE DANE DŹWIĘKOWE OBRAZY DANE MAILOWE PORTALE SPOŁECZNOŚCIOWE DANE O KLIENTACH DANE Z CZUJNIKÓW DANE GIEŁDOWE 10/34

Problemy uczenia maszynowego Uczenie z nadzorem (ang. supervised learning): klasyfikacja (ang. classification); regresja (ang. regression); Uczenie bez nadzoru (ang. unsupervised learning): grupowanie (klasteryzacja, analiza skupień) (ang. clustering); redukcja wymiarów (ang. dimensionality reduction); uzupełnianie wartości (ang. matrix completion). Uczenie ze wzmocnieniem (ang. reinforcement learning). 11/34

Uczenie z nadzorem: Regresja Regresja (ang. Regression): Dysponujemy obserwacjami z odpowiadającymi im wartościami ciągłymi. Celem uczenia jest skonstruowanie modelu regresji na podstawie danych. Model konstruowany jest tak, aby możliwe było przewidywanie nowych obserwacji. 12/34

Uczenie z nadzorem: Regresja Regresja (ang. Regression): Dysponujemy obserwacjami z odpowiadającymi im wartościami ciągłymi. Celem uczenia jest skonstruowanie modelu regresji na podstawie danych. Model konstruowany jest tak, aby możliwe było przewidywanie nowych obserwacji. 12/34

Uczenie z nadzorem: Regresja Regresja (ang. Regression): Dysponujemy obserwacjami z odpowiadającymi im wartościami ciągłymi. Celem uczenia jest skonstruowanie modelu regresji na podstawie danych. Model konstruowany jest tak, aby możliwe było przewidywanie nowych obserwacji. 12/34

Uczenie z nadzorem: Regresja Regresja (ang. Regression): Dysponujemy obserwacjami z odpowiadającymi im wartościami ciągłymi. Celem uczenia jest skonstruowanie modelu regresji na podstawie danych. Model konstruowany jest tak, aby możliwe było przewidywanie nowych obserwacji. 12/34

Regresja: Śledzenie ruchu Cel: Dane: Wyznaczenie następnego położenia obiektu. Sekwencja obrazów z poruszającymi się obiektami. Na podstawie dotychczas zarejestrowanej sekwencji obrazów wyznaczane jest położenie obiektu. 13/34

Regresja: Predykcja notowań giełdowych Cel: Dane: Wycena akcji. Notowania akcji z poprzednich okresów oraz inne czynniki wpływające na cenę akcji. Na podstawie notowań historycznych i innych czynników mających wpływ na cenę akcji budowany jest model predykcyjny. Model aktualizowany jest z wykorzystaniem bieżących notowań. 14/34

Regresja: Predykcja przeżywalności pooperacyjnej Cel: Dane: Określenie jaki okres czasu pacjent przeżyje po operacji. Wyniki badań pacjenta przeprowadzonych przed i po operacji, ogólna charakterystyka zdrowia pacjenta. Na podstawie danych o pacjencie należy określić jaki okres czasu przeżyje on po operacji. 15/34

Uczenie z nadzorem: Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami (klasami), które przyjmują wartości nominalne. Celem uczenia jest skonstruowanie klasyfikatora separującego obiekty należące do różnych klas. Klasyfikator konstruowany jest tak, aby możliwe było przewidywanie klas nowych, niesklasyfikowanych obserwacji. 16/34

Uczenie z nadzorem: Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami (klasami), które przyjmują wartości nominalne. Celem uczenia jest skonstruowanie klasyfikatora separującego obiekty należące do różnych klas. Klasyfikator konstruowany jest tak, aby możliwe było przewidywanie klas nowych, niesklasyfikowanych obserwacji. 16/34

Uczenie z nadzorem: Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami (klasami), które przyjmują wartości nominalne. Celem uczenia jest skonstruowanie klasyfikatora separującego obiekty należące do różnych klas. Klasyfikator konstruowany jest tak, aby możliwe było przewidywanie klas nowych, niesklasyfikowanych obserwacji. 16/34

Uczenie z nadzorem: Klasyfikacja Klasyfikacja (ang. Classification): Dysponujemy obserwacjami z etykietami (klasami), które przyjmują wartości nominalne. Celem uczenia jest skonstruowanie klasyfikatora separującego obiekty należące do różnych klas. Klasyfikator konstruowany jest tak, aby możliwe było przewidywanie klas nowych, niesklasyfikowanych obserwacji. 16/34

Klasyfikacja: Rozpoznawanie znaków Cel: Dane: Określenie, jaki znak (cyfra, litera) znajduje się na obrazku. Zestaw obrazków treningowych reprezentujących różne znaki wraz z korespondującymi etykietami. Wydobywane są cechy obrazka różnicujące reprezentowane znaki. Na podstawie cech i wykorzystując dane treningowe wykonywana jest klasyfikacja obrazka do najbardziej prawdopodobnego znaku. 17/34

Klasyfikacja: Detekcja obiektów Cel: Dane: Wykrycie obiektu na obrazie. Obraz na którym bada się wystąpienie obiektu, oraz zestaw obrazów treningowych przedstawiających dany obiekt. Do analizy obrazu wykorzystuje się okno przesuwne. W każdym kroku obraz z okna przesuwnego klasyfikowany jest jako obiekt poszukiwany lub nie. 18/34

Klasyfikacja: Detekcja SPAMU Cel: Dane: Zbadać, czy dana wiadomość jest SPAMEM. Zestaw zawierający zaetykietowane wiadomości mailowe. Wydobywane są cechy (występowanie słów) różnicujące SPAM od zwykłej poczty. Klasyfikacja nowej wiadomości odbywa się z wykorzystaniem wydobytych cech. 19/34

Klasyfikacja: Credit Scoring Cel: Dane: Zbadać zdolność kredytową klienta bankowego. Charakterystyki klientów bankowych pochodzące z systemów informatycznych i kwestionariuszy. Wydobywane są cechy mające wpływ na decyzje kredytowe. Klasyfikatory do oceny zdolności kredytowej są powszechnie stosowanym narzędziem. 20/34

Uczenie bez nadzoru: Klasteryzacja Klasteryzacja (ang. Clustering): Dysponujemy obserwacjami bez etykiet. Celem uczenia jest znalezienie grup (klastrów), w których skupione są dane. Obserwacje z danej grupy charakteryzują się podobieństwem. Inne nazwy: grupowanie, analiza skupień. 21/34

Uczenie bez nadzoru: Klasteryzacja Klasteryzacja (ang. Clustering): Dysponujemy obserwacjami bez etykiet. Celem uczenia jest znalezienie grup (klastrów), w których skupione są dane. Obserwacje z danej grupy charakteryzują się podobieństwem. Inne nazwy: grupowanie, analiza skupień. 21/34

Klateryzacja: Grupowanie osób w sieci społecznej Cel: Dane: Wyodrębnienie grup znajomych w sieci społecznej. Dane o interakcji między osobami. Wyodrębnione grupy znajomych przy pomocy TouchGraph dla Facebook a. Znajomi w tych samych klastrach charakteryzują się wewnętrzną interakcją między sobą. 22/34

Uczenie bez nadzoru: Redukcja wymiarów Redukcja wymiarów (ang. Dimensionality reduction): Dysponujemy obserwacjami bez etykiet. Celem uczenia jest znalezienie niskowymiarowej podprzestrzeni (rozmaitości), na której leżą dane. Obserwacje mogą zostać zakodowane przy pomocy układu współrzędnych związanego z niskowymiarową podprzestrzenią. 23/34

Uczenie bez nadzoru: Redukcja wymiarów Redukcja wymiarów (ang. Dimensionality reduction): Dysponujemy obserwacjami bez etykiet. Celem uczenia jest znalezienie niskowymiarowej podprzestrzeni (rozmaitości), na której leżą dane. Obserwacje mogą zostać zakodowane przy pomocy układu współrzędnych związanego z niskowymiarową podprzestrzenią. 23/34

Redukcja wymiarów: Kodowanie i kompresja zdjęć Cel: Znalezienie twarzy bazowych rozpinających niskowymiarową przestrzeń. Dane: Zdjęcia twarzy. Wyróżnione M twarzy bazowych rozpina M-wymiarową podprzestrzeń w przestrzeni twarzy. Twarze mogą być kodowane poprzez położenie na niskowymiarowej przestrzeni. Metoda może służyć, jako automatyczna ekstrakcja cech ze zdjęć. 24/34

Uczenie bez nadzoru: Uzupełnianie wartości Uzupełnianie wartości (ang. Matrix completion): Dysponujemy obserwacjami bez etykiet. Celem uczenia jest znalezienie brakujących wartości dla niekompletnych obserwacji. Obserwacje uzupełniane są poprzez wstawienie najbardziej prawdopodobnych wartości. 25/34

Uczenie bez nadzoru: Uzupełnianie wartości Uzupełnianie wartości (ang. Matrix completion): Dysponujemy obserwacjami bez etykiet. Celem uczenia jest znalezienie brakujących wartości dla niekompletnych obserwacji. Obserwacje uzupełniane są poprzez wstawienie najbardziej prawdopodobnych wartości. 25/34

Uczenie bez nadzoru: Uzupełnianie wartości Uzupełnianie wartości (ang. Matrix completion): Dysponujemy obserwacjami bez etykiet. Celem uczenia jest znalezienie brakujących wartości dla niekompletnych obserwacji. Obserwacje uzupełniane są poprzez wstawienie najbardziej prawdopodobnych wartości. 25/34

Uzupełnianie wartości: Rekonstrukcja obrazu Cel: Dane: Odtworzyć zakłócony obraz. Zestaw niezakłóconych zdjęć, oraz zakłócony obraz do rekonstrukcji. W oparciu o niezakłócone zdjęcia i analizowany obraz konstruowany jest rozkład prawdopodobieństwa na brakujące piksele. Na podstawie rozkładu uzupełniane są brakujące wartości pikseli poprzez wstawianie wartości najbardziej prawdopodobnych. 26/34

Uzupełnianie wartości: Rekomendacja produktów Cel: Dane: Zaproponować klientowi produkty, które skłonny jest kupić. Produkty do tej pory kupione przez klienta i transakcje zrealizowane przez innych klientów. W oparciu o zakupiony koszyk produktów nabytych przez klienta i zestaw transakcji konstruowany jest rozkład prawdopodobieństwa na produkty. Na podstawie rozkładu wybierane do rekomendacji są produkty charakteryzujące się najwyższym prawdopodobieństwem. 27/34

Reprezentacje wiedzy Wiedza w postaci funkcyjnej Wiedza reprezentowania jest w postaci funkcji i jej parametrów. Proces podejmowania decyzji odbywa się poprzez wyznaczenie wartości funkcji dla zadanych wartości argumentów. Uczenie najczęściej odbywa się poprzez estymację parametrów w procesie optymalizacji pewnego kryterium. Przykład: f(w ZROST, W AGA) = 2 W AGA + W ZROST 320. f(176, 85) = 26 > 0; Wniosek: osoba, która ma 176 cm wzrostu i waży 85 kg jest rugbistą. 28/34

Reprezentacje wiedzy Wiedza w postaci funkcyjnej Wiedza reprezentowania jest w postaci funkcji i jej parametrów. Proces podejmowania decyzji odbywa się poprzez wyznaczenie wartości funkcji dla zadanych wartości argumentów. Uczenie najczęściej odbywa się poprzez estymację parametrów w procesie optymalizacji pewnego kryterium. Przykład: f(w ZROST, W AGA) = 2 W AGA + W ZROST 320. f(176, 85) = 26 > 0; Wniosek: osoba, która ma 176 cm wzrostu i waży 85 kg jest rugbistą. 28/34

Reprezentacje wiedzy Wiedza w postaci funkcyjnej Wiedza reprezentowania jest w postaci funkcji i jej parametrów. Proces podejmowania decyzji odbywa się poprzez wyznaczenie wartości funkcji dla zadanych wartości argumentów. Uczenie najczęściej odbywa się poprzez estymację parametrów w procesie optymalizacji pewnego kryterium. Przykład: f(w ZROST, W AGA) = 2 W AGA + W ZROST 320. f(176, 85) = 26 > 0; Wniosek: osoba, która ma 176 cm wzrostu i waży 85 kg jest rugbistą. 28/34

Reprezentacje wiedzy Wiedza w postaci probabilistycznej Wiedza reprezentowania jest w postaci rozkładów prawdopodobieństwa. Proces podejmowania decyzji odbywa się poprzez wybór najbardziej prawdopodobnego wariantu. Uczenie realizowane jest poprzez estymację rozkładów prawdopodobieństwa. Przykład: p(176, 85 rugbista) = 0.17; p(176, 85 skoczek) = 0.01. Wniosek: bardziej prawdopodobne jest, że jeśli osoba jest rugbistą, to ma 176 cm wzrostu i waży 85 kg. 29/34

Reprezentacje wiedzy Wiedza w postaci probabilistycznej Wiedza reprezentowania jest w postaci rozkładów prawdopodobieństwa. Proces podejmowania decyzji odbywa się poprzez wybór najbardziej prawdopodobnego wariantu. Uczenie realizowane jest poprzez estymację rozkładów prawdopodobieństwa. Przykład: p(176, 85 rugbista) = 0.17; p(176, 85 skoczek) = 0.01. Wniosek: bardziej prawdopodobne jest, że jeśli osoba jest rugbistą, to ma 176 cm wzrostu i waży 85 kg. 29/34

Reprezentacje wiedzy Wiedza w postaci reguł decyzyjnych Wiedza reprezentowania jest w postaci reguł decyzyjnych. Każda reguła opisana jest w formie implikacji, na którą składa się koniunkcja wartości atrybutów (lewa strona implikacji), oraz jeden z możliwych wariantów decyzyjnych (prawa strona implikacji). Proces podejmowania decyzji odbywa się poprzez wybór odpowiedniej reguły (bądź reguł) decyzyjnych, która dotyczy (pokrywa) danego zagadnienia i na jej podstawie przeprowadzenie procesu wnioskowania. Uczenie polega na znalezieniu zestawu reguł najlepiej opisujących rzeczywistość. Interpretowalna reprezentacja wiedzy. Przykładowa reguła: (Kwota kredytu > 700) (Dochod < 1100) (status = odmowa)) 30/34

Reprezentacje wiedzy Wiedza w postaci drzew decyzyjnych Wiedza reprezentowania jest w strukturze drzewa. Drzewo decyzyjne w wierzchołkach przechowuje atrybuty, krawędzie reprezentują podział wartości dla danego atrybutu, natomiast w liściach przechowywane są możliwe warianty decyzyjne. Proces podejmowania decyzji odbywa się poprzez przejście jedną z możliwych ścieżek w drzewie i odczytaniu wariantu decyzyjnego z liścia. Uczenie odbywa się poprzez wybór najbardziej informacyjnej cechy, umieszczenie jej w danym wierzchołku i wprowadzenie najbardziej informacyjnego podziału jej wartości. Interpretowalna reprezentacja wiedzy. Każda ścieżka reprezentuje odrębną regułę decyzyjną. Zbiór wszystkich ścieżek reprezentuje kompletny i niesprzeczny zestaw reguł. 31/34

Reprezentacje wiedzy Przykład drzewa decyzyjnego <0 $ Checking account status >= 0 $ Credit amount Employment status <13 000 $ > =13 000 $ full-time unemployment Employment status bad good part-time bad full-time unemployment part-time Credit amount good bad <13 000 $ > =13 000 $ good good Duration of credit <18 months > =18 months good divorced or widowed Personal status married single good good bad 32/34

Integracja wiedzy Integracja wiedzy (bądź danych na potrzeby pozyskania wiedzy) odbywa się głównie celem: podejmowania decyzji na podstawie wielu modeli; wydobywanie interpretowalnej wiedzy na podstawie wielu modeli; integracja danych rozłożonych danych w różnych obszarach przestrzeni. 33/34

Literatura Należy zapoznać się z treścią książki (Rozdział 1 i 2): Murphy, Kevin P. Machine learning: a probabilistic perspective. MIT Press, 2012. 34/34