DANE WEJŚCIOWE A KALIBRACJA NUMERYCZNEGO MODELU FILTRACJI

Podobne dokumenty
Regionalne dokumentacje hydrogeologiczne

Modelowanie przepływów wód podziemnych

ZASTOSOWANIE METOD GEOELEKTRYCZNYCH W ROZPOZNAWANIU BUDOWY PODŁOŻA CZWARTORZĘDOWEGO.

XIII. ROZPOZNANIE STRUKTUR WODONOŚNYCH. Prowadzący:

Mariusz CZOP. Katedra Hydrogeologii i Geologii Inżynierskiej AGH

Numeryczne modelowanie w hydrogeologii

STUDIA MAGISTERSKIE SPECJALIZACJA HYDROGEOLOGIA. Moduł XII Dr hab. prof. Henryk Marszałek PRZEPŁYW WÓD PODZIEMNYCH I MIGRACJA ZANIECZYSZCZEŃ

ROLA WODY W ZRÓWNOWAŻONYM ZAGOSPODAROWANIU MIASTA KRAKOWA - PROPOZYCJE KOMPLEKSOWYCH ROZWIĄZAŃ

Zintegrowana strategia zrównoważonego zarządzania wodami w zlewni

10. PRÓBNE POMPOWANIA W DOKUMENTOWANIU ZASOBÓW WÓD PODZIEMNYCH

Zagadnienie parametryzacji hydrogeologicznej regionalnych modeli ustalonego przepływu wód podziemnych

ZRÓWNOWAŻONA GOSPODARKA WODNA W PRZESTRZENI MIEJSKIEJ

INSTYTUT METEOROLOGII I GOSPODARKI WODNEJ PAŃSTWOWY INSTYTUT BADAWCZY Oddział we Wrocławiu. Görlitz

ZAKŁAD PROJEKTOWO HANDLOWY DOKUMETACJA WARUNKÓW

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik geolog 311[12]

Zasoby dyspozycyjne wód podziemnych

Inżynieria Środowiska I stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)

BAZA DANYCH ORAZ SZCZEGÓŁOWY 3D MODEL GEOLOGICZNY DLA PODZIEMNEJ SEKWESTRACJI CO 2 REJONU BEŁCHATOWA NA PRZYKŁADZIE STRUKTURY BUDZISZEWIC - ZAOSIA

Data: luty 2015r. CZĘŚĆ TEKSTOWA

ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1) z dnia 23 grudnia 2011 r. w sprawie dokumentacji hydrogeologicznej i dokumentacji geologiczno-inżynierskiej

11. PROGRAMY KOMPUTEROWE DO INTERPRETACJI PRÓBNYCH POMPOWAŃ

Komentarz technik geolog 311[12]-01 Czerwiec 2009

RACOWNIA DOKUMENTACJI HYDROGEOLOGICZNYCH mgr Piotr Wołcyrz, Dąbcze, ul. Jarzębinowa 1, Rydzyna

Inżynieria Środowiska I stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny) stacjonarne (stacjonarne / niestacjonarne)

Wprowadzenie do opracowania map zagrożenia i ryzyka powodziowego

WPŁYW USKOKÓW NA PRZEPŁYW WÓD PODZIEMNYCH W GŁÓWNYM ZBIORNIKU WÓD PODZIEMNYCH GLIWICE 330

Pozyskiwanie danych do modelowania przepływu wód podziemnych na obszarze leja depresji BOT KWB Bełchatów S.A.

Obliczenia hydrauliczne, modelowanie zlewni. Opracowanie, wdrożenie i utrzymanie modeli hydrodynamicznych

WYKORZYSTANIE CIEKÓW POWIERZCHNIOWYCH W MONITOROWANIU JAKOŚCI EKSPLOATOWANYCH ZBIORNIKÓW WÓD PODZIEMNYCH

Warszawa, dnia 15 grudnia 2016 r. Poz. 2033

Projekt robót geologicznych na wykonanie otworu nr 4 gminnego ujęcia wód podziemnych z utworów czwartorzędowych w miejscowości STARY WIEC

GEO GAL USŁUGI GEOLOGICZNE mgr inż. Aleksander Gałuszka Rzeszów, ul. Malczewskiego 11/23,tel

BIULETYN PAŃSTWOWEGO INSTYTUTU GEOLOGICZNEGO 442: , 2010 R.

Operat hydrologiczny jako podstawa planowania i eksploatacji urządzeń wodnych. Kamil Mańk Zakład Ekologii Lasu Instytut Badawczy Leśnictwa

INFOBAZY 2014 VII KRAJOWA KONFERENCJA NAUKOWA INSPIRACJA - INTEGRACJA - IMPLEMENTACJA

Warszawa, dnia 9 maja 2014 r. Poz. 596 ROZPORZĄDZENIE MINISTRA ŚRODOWISKA 1) z dnia 8 maja 2014 r.

Załączniki tekstowe 1. Zestawienie wyników pomiarów zwierciadła wody w latach

Jacek Gurwin, Rafał Serafin

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI

FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS

MODELOWANIE NUMERYCZNE POLA PRZEPŁYWU WOKÓŁ BUDYNKÓW

Zadanie Cyfryzacja grida i analiza geometrii stropu pułapki w kontekście geologicznym

MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ

ZASTOSOWANIE BADAŃ MODELOWYCH W ROZPOZNANIU WARUNKÓW HYDROGEOLOGICZNYCH DLA OBSZARU LGOM

Dokumentacja geotechniczna warunków gruntowo wodnych dla potrzeb posadowienia obiektów budowlanych

NOWOCZESNE TECHNOLOGIE ENERGETYCZNE Rola modelowania fizycznego i numerycznego

1.2. Dokumenty i materiały wykorzystane w opracowaniu

Zał. 1. Mapa topograficzna w skali 1: teren badań geologiczno- Legenda: inżynierskich OPRACOWAŁ: mgr Przemysław Szuba

Ruch granulatu w rozdrabniaczu wielotarczowym

Mirosław Kamiński Państwowy Instytut Geologiczny Państwowy Instytut Badawczy

DIGITALIZACJA GEOMETRII WKŁADEK OSTRZOWYCH NA POTRZEBY SYMULACJI MES PROCESU OBRÓBKI SKRAWANIEM

Badanie klasy wymaganej odporności ogniowej wentylatora przy wykorzystaniu programu FDS

WYKRESY SPORZĄDZANE W UKŁADZIE WSPÓŁRZĘDNYCH:

OPINIA GEOTECHNICZNA

Bazy danych geologiczno-inżynierskich Państwowej Służby Geologicznej w procesie inwestycyjnym i w planowaniu przestrzennym

Spis treści. strona 1

PROGRAM MONITORINGU WÓD PODZIEMNYCH w DORZECZACH, na lata ,

Lokalizacja: Jabłowo, gmina Starogard Gdański powiat Starogardzki; Oczyszczalnia Ścieków. mgr inż. Bartosz Witkowski Nr upr.

MODELOWANIE ROZKŁADU TEMPERATUR W PRZEGRODACH ZEWNĘTRZNYCH WYKONANYCH Z UŻYCIEM LEKKICH KONSTRUKCJI SZKIELETOWYCH

Baza danych Monitoring Wód Podziemnych

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego

Pomiary wydajności studni przy próbnych pompowaniach.

Hydrogeologia z podstawami geologii

Foto. Tomasz Kowalewski. Gdańsk, 5 marca 2014 r.

Wykonawca: APIS GEO Iwona Kacprzak Ul. Turowska Kobyłka Zleceniodawca: Jacobs Polska Sp. z o. o. Al. Niepodległości Warszawa

DOKUMENTACJA GEOTECHNICZNA

Decyzja o środowiskowych uwarunkowaniach zgody na realizację przedsięwzięcia

na przykładzie Szpitala Bródnowskiego Remediation of contaminated site of Bródnowski hospital by Petroleum Hydrocarbons

WGGIOŚ Egzamin inżynierski 2014/2015 WYDZIAŁ: GEOLOGII, GEOFIZYKI I OCHRONY ŚRODOWISKA KIERUNEK STUDIÓW: GÓRNICTWO I GEOLOGIA

Przykłady wybranych fragmentów prac egzaminacyjnych z komentarzami Technik geolog 311[12]

Monitoring wód podziemnych i zarządzanie zasobami wodnymi w Aglomeracji Gdańskiej

Rok akademicki: 2017/2018 Kod: BEZ s Punkty ECTS: 2. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Dokumentacja i badania dla II kategorii geotechnicznej Dokumentacja geotechniczna warunków posadowienia.

Pomiary GPS RTK (Real Time Kinematic)

gromadzenie, przetwarzanie

Przegląd wykorzystania metod modelowania numerycznego do badań hydrogeologicznych w Polsce

ZASTOSOWANIE GIS W MODELOWANIU HYDROGEOLOGICZNYM NA PRZYKŁADZIE UJĘCIA SERBY APPLICATION OF GIS IN GROUNDWATER MODELING EXAMPLE OF WATER INTAKE SERBA

dr inż. Marek Zawilski, prof. P.Ł.

Nowoczesne rozwiązania metodyczne w zakresie wykonywania oceny ryzyka dla ujęć wód podziemnych oraz planów bezpieczeństwa wodnego

Budowa modeli przepływu z wykorzystaniem danych infrastruktury geoinformacyjnej INSPIRE

WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH

Ekspertyza geologiczna

Fig _31 Przyk ad dyskretnego modelu litologicznego

OCENIE PODLEGA SZATA GRAFICZNA PRACY, 10pkt DLA KAŻDEGO ZADANIA

Projektowanie systemów pomiarowych. 02 Dokładność pomiarów

DOKUMENTACJA SYSTEMU ZARZĄDZANIA LABORATORIUM. Procedura szacowania niepewności

D O K U M E N T A C J A G E O T E C H N I C Z N A ( O P I N I A G E O T E C H N I C Z N A )

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

ZASTOSOWANIE SYSTEMU DRASTIC DO OCENY ZAGROŻENIA WÓD PODZIEMNYCH

Monika Ciak-Ozimek. Mapy zagrożenia powodziowego i mapy ryzyka powodziowego stan obecny i wdrażanie

Do obliczeń można wykorzystywać rozmaite algorytmy wykorzystujące najprostszych należą przedstawione niżej:

WARSZTATY. Geostatystyka

Opinia geotechniczna. dla projektowanej budowy Parku Wodnego w Częstochowie przy ul. Dekabrystów. Sp. z o.o.

GEOTEKO Serwis Sp. z o.o. OPINIA GEOTECHNICZNA DLA PROJEKTU PŁYTY MROŻENIOWEJ LODOWISKA ODKRYTEGO ZLOKALIZOWANEGO PRZY UL. POTOCKIEJ 1 W WARSZAWIE

WSTĘPNE ROZPOZNANIE WARUKÓW GRUNTOWO-WODNYCH DLA POTRZEB PLANOWANEGO CMENTARZA W MIEJSCOWOŚCI STAWIN (działka nr 22/1 )

Warszawa, dnia 15 grudnia 2016 r. Poz. 2023

DOKUMENTACJA GEOTECHNICZNA

Komentarz Sesja letnia zawód: zawód: technik elektronik 311 [07] 1. Treść zadania egzaminacyjnego wraz z załącznikami.

ANALIZA KRĄŻENIA WÓD PODZIEMNYCH NA NUMERYCZNYM MODELU FILTRACJI W REJONIE UJĘCIA SERBY DLA MIASTA GŁOGOWA

Bazy danych Hydrogeologicznej

Transkrypt:

WSPÓŁCZESNE PROBLEMY HYDROGEOLOGII - Tom XI, cz. I - Gdańsk 2003 Jacek GURWIN Zakład Hydrogeologii Stosowanej. Instytut Nauk Geologicznych U. Wr. DANE WEJŚCIOWE A KALIBRACJA NUMERYCZNEGO MODELU FILTRACJI JNPUT DATA AND CALIBRATlON OF NUMERICAL FLOW MODEL Słowa kluczowe: modelowanie numeryczne, dane wejściowe, kalibracja Key words: nurnerical groundwater modeling, input data, calibration Abstract: Numerical groundwater tlow model is a basis of water bal ance calculations and hydrogeological interpretations as well in local as region al scale. Geostatistical tools and heterogeneity analysis give opportunity of proper input data identification in such a way that afterwards calibration is much more accurate with minor parameter improvernents. The use of archive HYDRO database in regional model calibration indicates that model identification and verification could be considered as twostep process: (I) for quasi-natural conditions and (2) according to present measurement series. 1. WSTĘP W zadaniach hydrogeologicznych zarówno w skali regionalnej, dotyczących dokumentacji zasobowych jak i lokalnej, związanych z ujęciami wód podziemnych lub ogniskami zanieczyszczeń, numeryczny model filtracji wód podziemnych stanowi podstawę obliczeń i interpretacji. Różnorodność i jakość oprogramowania jest obecnie tak duża, że do każdego projektu można dobrać odpowiedni pakiet, zarówno w metodzie różnic skończonych (MRS) jak też elementów skończonych (MES). Wykonywane modele powinny być zatem coraz doskonalsze, a przede wszystkim lepiej udokumentowane, niestety nie zawsze tak jest. Bardzo często problem tkwi w etapie przygotowania danych, kalibracji i walidacji modelu. Szereg wykonanych modeli oraz literatura skłaniają do przedstawienia własnych doświadczeń i uwag związanych z tym zagadnieniem. W artykule poruszony jest związek etapu przygotowania danych, w tym modelowania geostatystycznego i stochastycznego, z późniejszą kalibracją modelu. 2. MODEL HETEROGENICZNOŚCI UKŁADU HYDRO STRUKTURALNEGO Jak bardzo podstawowe znaczenie w ciągu ostatnich dziesięcioleci ma w zadaniach hydrogeologicznych problem heterogeniczności zwrócił uwagę Wood (2000) w krótkim artykule o wymownym tytule.jt 's the Heterogeneity!". Stwierdza on, że naturalny 301

system jest tak złożony, że potrwa jeszcze wiele lat nim w efektywny sposób będziemy mogli określać niejednorodność w odpowiednich skalach. Staramy się to uczynić, stosując zarówno stochastyczne jak i deterministyczne rozwiązania, osiągając jedynie częściowe sukcesy. Niedocenianie roli niejednorodności ośrodka powodowało na przykład błędną pewność, że remediacji zanieczyszczenia można dokonać prostym pompowaniem. Odpowiednie przygotowanie danych wejściowych, ich geostatystyczna analiza i prawdopodobieństwo rozkładu mają kluczowe znaczenie dla obliczeń i symulacji. Metody stochastyczne są zwłaszcza przydatne w modelach o charakterze lokalnym, kiedy odwzorowanie heterogeniczności układu hydro strukturalnego jest szczególnie istotne. Na przykład w przypadku modelu transportu zanieczyszczeń zyskujemy potencjalną możliwość odnalezienia preferencyjnych dróg migracji formowanych przez lokalny rozkład przewarstwień i soczewek utworów przepuszczalnych i izolujących. Jako wynik modelu stochastycznego otrzymuje się pewien średni zakres rozwiązań zamiast jednego ścisłego rezultatu, jak to ma miejsce w metodach deterministycznych. Modelowanie stochastyczne można przeprowadzić dwiema metodami, wykorzystując probabilistyczną analizę parametru w wydzielonych strefach lub symulację wskaźnikową, polegającą na analizie rozkładów typów utworów występujących w przestrzennym układzie stratygraficznym. W pierwszym przypadku stosowana jest na przykład tzw. metoda Monte Carlo. Jedną z nowszych możliwości oferowanych przez współczesne programy modelujące jest symulacja stochastyczna drugą z metod, nie tylko określonego parametru, lecz heterogeniczności całego układu w ujęciu przestrzennym w oparciu o dane z otworów. Przestrzenny rozkład współczynnika filtracji odgrywa pierwszoplanową rolę we właściwym odwzorowaniu przepływów i transportu masy. Niestety kompletna, przestrzenna informacja o tym parametrze jest niedostępna, dlatego posługujemy się różnymi metodami geostatystycznymi i modelami stochastycznymi, a ostatecznej identyfikacji rozkładu dokonujemy na drodze kalibracji modelu numerycznego. Ciekawą próbę takiego rozwiązania zademonstrowali Zhang & Brusseau (1998), przedstawiając trójwymiarowy rozkład współczynnika filtracji układu wielowarstwowego. Wykorzystali stochastyczną metodę obliczeń funkcji kemel (Ali & Lall, 1996) dla danych litologicznych z otworów wiertniczych. Otrzymany w wyniku symulacji trójwymiarowy rozkład przestrzenny byli w stanie porównać ze sporządzonymi tradycyjnie hydrogeologicznymi przekrojami w tych samych cięciach, uzyskując dużą zbieżność. Tak przygotowane dane wejściowe do trójwymiarowego lokalnego modelu filtracji wymagają w toku jego kalibracji stosunkowo mniejszych poprawek. Narzędzie do modelowania stochastycznego i geostatystycznego generowania prawdopodobnych rozkładów heterogeniczności ośrodka zostało również włączone do ostatniej wersji pakietu GMS (Groundwater Modelling System), jednego z najbardziej zaawansowanych programów opartych na MODFLOW. Metoda geostatystycznego przejściowego prawdopodobieństwa pozwala ustalić trendy, proporcje i średnie długości przewarstwień i te dane są następnie użyte do wykonania kilku modeli heterogeniczności rozkładu przestrzennego jako wyjście do modelowania stochastycznego. 302

2.1. Odwzorowanie heterogeniczności ośrodka w lokalnym modelu W pełni trójwymiarowe probabilistyczne badania rozkładu ośrodka skalnego są limitowane w programie T-PROGS do kilkudziesięciu otworów. Dlatego też celem przetestowania metody wybrano lokalny podobszar w rejonie Świdnicy na bloku przedsudeckim. Do symulacji przyjętych zostało 20 otworów, w których dokonano schematyzacji litologii pod kątem parametrów hydrogeologicznych do 5 klas: piaski, żwiry, piaski ze żwirami, gliny, iły. (A) II" [il++- t:1 ~~flltih 1 lu' C.._-. Rys. 1. Trójwymiarowy rzut siatki modelu heterogeniczności ośrodka (A) oraz wybrana warstwa modelu (B) Fig. J. 3-D view ofheterogeneity model grid (A) and a layer ofthe model (B) Model heterogeniczności rozkładu oparty został na prostokątnej siatce dyskretyzacyjnej zorientowanej w kierunku N-S. Do bazy danych wpisane zostały współrzędne (x,y) otworów oraz współrzędne wysokościowe (z) kolejnych wydzielonych przewarstwień litologicznych. Na rysunku 1 zaprezentowano rzut siatki dyskretyzacyjnej wraz z przyjętymi otworami oraz wybraną, przykładową warstwę modelu. Siatka została podzielona na 10 warstw. W pierwszym etapie obliczeń dane z otworów są analizowane pod kątem proporcji przewarstwień i ich średnich długości, a następnie generowane jest kilka rozkładów heterogeniczności ośrodka. 2.2. Rozkład hydrogeologicznych parametrów w rozwiązaniu regionalnym Innym ważnym zagadnieniem przygotowania danych wejściowych do numerycznego modelu filtracji jest geostatystyczna analiza przestrzennego rozkładu parametrów hydrogeologicznych, jak współczynnik filtracji i współczynnik wodoprzewodności. W przygotowaniu danych należy uwzględnić log-normalny charakter statystycznego rozkładu tych wielkości. Toteż interpolacja danych (najlepiej metodą krigingu z analizą variogramu) winna być dokonana po przeliczeniu wartości z 303

próbnych pompowań na ich logarytmy i dopiero wówczas przedstawiana na mapie wynikowej. Wydzielone na tej podstawie strefy wartości parametru zostają następnie wprowadzone do bloków siatki modelu. Przy czym nowe programy modelujące dają możliwość automatycznej interpolacji bezpośrednio do odpowiedniej warstwy siatki dyskretyzacyjnej. Przykład takiego rozwiązania stanowi analiza rozkładu współczynnika filtracji wykorzystana jako dane wejściowe do regionalnego modelu rejonu Świdnicy. Duża niejednorodność kenozoicznych osadów w strefach zapadliskowych na bloku przedsudeckim jest dodatkowo skomplikowana przez nieciągłość poziomów wodonośnych. Występują liczne wychodnie krystalicznego podłoża oraz glin i iłów rozdzielających horyzonty wodonośne. W takiej sytuacji automatyczną interpolację parametru musi poprzedzać wnikliwa analiza otworów i sporządzonych na ich podstawie przekrojów hydrogeologicznych, by poprawnie ograniczyć przestrzenny zasięg interpretowanego poziomu wodonośnego. Z technicznego punktu widzenia późniejsze ograniczenie, tzw. "maska" interpolowanego obszaru, nie stanowi problemu i jest realizowana np. przez wprowadzenie odpowiedniego zbioru ograniczającego. Ponadto, jeśli analizie poddajemy na przykład miąższość poziomu wodonośnego, wówczas wzdłuż granic występowania można dodatkowo automatycznie zadać wartość Om. Zamieszczona przykładowa mapa z rejonu Świdnicy na Przedgórzu Sudeckim (rys. 2), prezentuje użytkowy czwartorzędowy poziom wodonośny, którego występowanie jest bardzo ograniczone, a charakterystyka przestrzenna wyjątkowo trudna. Najwyższe wartości współczynnika filtracji, równe w przeliczeniu logarytmicznym przedziałowi 1,5-3,0, występują w centralnej południowo-zachodniej części obszaru i jest to związane ze stożkiem napływowym Lubiechowskiego Potoku. Na pozostałym obszarze dominują wartości od do 1,0. Jeśli rozpoznanie współczynnika filtracji można uznać za dobre, jak to jest w tym przypadku, wówczas późniejsza kalibracja modelu koncentruje się głównie na wartościach zasilaniajewapotranspiracji, warunkach brzegowych i parametrach przesączania między warstwami modelu. 304

566000o-r--L...,..----L----*------l;----...I------L-----'----r 565500 565000 564500 Legenda: : -15 ~:.5 2-3.4 3590000 3595000 3600000 3605000 3610000 3615000 3620000 Rys. 2. Rozkład współczynnika filtracji w wartościach logarytmicznych 1- skala wartości log k, 2- izolinia wartości k, 3- punkt z wartością, 4- cieki Fig. 2. Hydraulic conductivity distribution in logarithmic mode log k scale, 2- isoline ojk value, 3- measurement point, 4- rivers 3. KALIBRACJA WEDŁUG DANYCH O STANACH ZWIERCIADŁA WÓD PODZIEMNYCH Regionalne modele matematyczne systemów wodonośnych jednostek hydrogeologicznych i zlewni bilansowych zazwyczaj są budowane dla warunków filtracji ustalonej, natomiast modele filtracji nieustalonej winny być sporządzane dla symulacji pompowań hydrowęzłowych oraz dla określenia zmienności zasilania ujęć infiltracyjnych brzegowych (Dąbrowski, 1997). Na modelu o charakterze regionalnym, na którym najczęściej odtwarzamy warunki hydrostrukturalne całego systemu wodonośnego, wartości zasilania powierzchniowego są identyfikowane na drodze kalibracji. Parametry modelu przyjmuje się najczęściej jako średnie dla wielolecia i dla potrzeb ocen zasobowych jest to powszechnie przyjęta praktyka w badaniach modelowych. Poważnym problemem jest jednak niejednoznaczność rozwiązania pomiędzy parametrami filtracji i zasilania i nawet prawidłowo przeprowadzona kalibracja w oparciu o stany zwierciadła nie przesądza o wartości modelu, gdyż jakość 305

danych o współczynniku filtracji, a tym bardziej o zasilaniu jest niewystarczająca. Należy jednak stwierdzić, że prawidłowo prowadzony monitoring hydrogeologiczny zlewni lub systemu wodonośnego powinien dać podstawę do sporządzenia modelu filtracji nieustalonej. Taki model wymaga danych zmiennych w czasie i dużo większego nakładu pracy, ale uzyskuje się rozwiązanie znacznie bliższe rzeczywistemu systemowi. Kalibracja w odpowiednio dobranych krokach czasowych odtwarza wówczas wahania zwierciadła wód podziemnych rejestrowane w punktach stałego (najlepiej automatycznego) monitoringu hydrogeologicznego. Doświadczenia zebrane przy wykonywaniu regionalnych modeli wskazują, że dokładny bilans wodny (uwzględniający ewapotranspirację i stan retencji) uzyskany dla różnych okresów powinien skłaniać do podejmowania regionalnych rozwiązań dla warunków nieustalonych. Identyfikacja odnawialności systemu wodonośnego jest głównym celem modelu dla potrzeb obliczeń zasobowych. Jednowymiarowy (l-d) nieustalony model przepływów w strefie aeracji stanowi doskonałe narzędzie w określaniu zmienności zasilania infiltracyjnego w czasie, uwzględnia bowiem wszystkie czynniki wpływające na ten proces. Uzyskane wyniki można następnie aproksymować na odpowiednie obszary regionalnego trójwymiarowego modelu. Innym, często dyskutowanym problemem kalibracji modelu, jest sposób odtworzenia wartości wysokości hydraulicznej, albo w odniesieniu do punktów obserwacyjnych albo w odniesieniu do wykonanej mapy. hydroizohips. Jeśli w schematyzacji modelu uwzględniamy poziom przypowierzchniowy, co jest zalecane (Macioszczyk, 1997), gdyż decyduje on o dystrybucji zasilania w całym systemie i o kontakcie z wodami powierzchniowymi, wówczas dla poprawnej kalibracji, przy niedostatku punktów pomiarowych, powinno się przyjąć mapę hydroizohips, którą wykonując, można w obszarach pozbawionych danych dowiązać do konfiguracji powierzchni terenu. W takiej sytuacji swobodne zwierciadło wody przypowierzchniowego poziomu stanowi strop warstwy wodonośnej. Jeśli jednak zdecydujemy się na kalibrację według punktów, ale jednocześnie jako strop pierwszej warstwy modelu wprowadzimy dokładnie odwzorowaną numerycznie hipsometrię terenu (ang. DEM - Digital Elevation Model) wówczas również z wystarczającą dla celów praktycznych dokładnością będziemy w stanie kontrolować układ obliczonego swobodnego zwierciadła wody w stosunku do tej powierzchni. Większość programów generuje automatycznie przekroje wzdłuż dowolnych linii siatki dyskretyzacyjnej dzięki czemu łatwo sprawdzać obszary, w których np. obliczone zwierciadło wypada powyżej terenu. Taki tok postępowania dobrze się sprawdza w regionalnych modelach, tworzonych dla potrzeb zasobowych i bilansowych. Przy kalibracji głębszych poziomów wodonośnych, gdy brak ścisłego związku zwierciadła z topografią, identyfikacja wartości w nawiązaniu do mapy hydroizohips wydaje się zbędna, gdyż powiela jedynie błędy z wcześniejszej interpolacji. Doskonałym narzędziem w trakcie kalibracji jest wówczas automatyczna wizualizacja błędu wartości obliczonej i zmierzonej w danym punkcie. Przykład takiego rozwiązania prezentuje rysunek 3. Punkty, w których obliczona wartość wypada znacznie powyżej lub poniżej wartości zmierzonej oznaczone zostają strzałką skierowaną odpowiednio w górę lub w dół (ciemne słupki na rysunku). Punkty, w których uzyskano zgodność kalibracji na założonym poziomie, na przykład ± lm, zaznaczane są kolorem jaśniejszym i, co ważne, proporcjonalną do błędu wysokością słupka. W ten sposób łatwo jest identyfikować obszary lepiej i gorzej wytarowane w kolejnej symulacji. Jednocześnie generowany jest też aktualny, obliczony układ hydroizohips. Wytarowane 306

zwierciadła wody z modelu dla warunków ustalonych stanowią wartości początkowe wysokości hydraulicznych dla rozwiązania warunków nieustalonych. Rys. 3. Przykład kalibracji modelu według punktów pomiaru wysokości hydraulicznej Fig. 3. Example oj calibration according to measurement points Inny problem spotykany przy kalibracji regionalnych modeli to wybór okresu czasu z danymi wejściowymi o stanach zwierciadła wód podziemnych, według których przeprowadza się tarowanie. Jeśli dysponujemy odpowiednią siatką istniejących' otworów obserwacyjnych, zwłaszcza w strefach wododziałowych, wówczas sytuacja sprowadza się do przeprowadzenia serii jednoczasowych pomiarów w otworach i tarowania modelu na stan aktualnie istniejący. Najczęściej w regionalnych opracowaniach wykorzystuje się dane Banku HYDRO, w którym zebrane są informacje nie tylko z otworów hydrogeologicznych istniejących ale przede wszystkim z archiwalnych. Wiele otworów uległo likwidacji i tym samym określenie obecnego stanu zwierciadła w wielu częściach badanego obszaru jest niemożliwe. Zebrane doświadczenia wskazują, że dobre rezultaty osiąga się kalibrując model dwuetapowo. Pierwszy, zasadniczy krok kalibracji należy wykonać według stanu quasi-naturalnego, to znaczy wybierając z bazy danych pomiary sprzed włączenia do eksploatacji istniejących ujęć oraz wykorzystując pomiary archiwalne ze zlikwidowanych otworów badawczych, które były zlokalizowane w newralgicznych punktach np. na wododziałach.. 307

W drugim etapie identyfikacji modelu należy włączyć studnie z aktualnie stwierdzonymi, średnimi wydajnościami, kontrolując czy model odtwarza właściwie zarejestrowane depresje. Wynika to z faktu, że bieżące pomiary najczęściej są możliwe do przeprowadzenia właśnie w rejonach czynnych ujęć. Taki tok postępowania został pomyślnie przetestowany na kilku modelach i wydaje się optymalny i polecany dla rozwiązań regionalnych, gdy bazujemy na danych Banku HYDRO. Mimo wyraźnej przewagi, biorąc pod uwagę ilość wykonanych modeli, metody różnic skończonych (MRS), te same możliwości oferują programy bazujące na metodzie elementów skończonych (MES). Wprawdzie MODFLOW stał się pewnym standardem w regionalnych opracowaniach zasobowych, biorąc jednak pod uwagę zalety rozwiązania MES, warto sięgać po nowoczesne pakiety bazujące na tej metodzie, na co wskazują liczne przykłady (Martin & Frind, 1998; Leake i in., 1998). 4. WNIOSKI Modelowanie stochastyczne, wykorzystywane głównie dla modeli lokalnych, powinno się opierać na analizie wariantowych, o tym samym prawdopodobieństwie wystąpienia, rozkładów heterogeniczności ośrodka, uzyskiwanych w wyniku numerycznej symulacji na podstawie danych o litologii z otworów. Ze względów praktycznych, a także dla potrzeb późniejszej przestrzennej wizualizacji, zaleca się wprowadzanie numerycznego modelu powierzchni terenu (DEM) jako stropu pierwszej warstwy modelu, uzyskując możliwość poprawnej kalibracji według punktów pomiarowych nawet bez konieczności wykonywania mapy hydroizohips przypowierzchniowego poziomu wodonośnego. Dwuetapowy proces kalibracji i weryfikacji modelu należy uznać za optymalny w przygotowaniu regionalnego modelu filtracji dla ocen zasobowych, gdy podstawę danych wejściowych stanowi Bank HYDRO. Praca została zrealizowana dzięki funduszom na badania własne Uniwersytetu Wrocławskiego, numer projektu 2022/W /ING-II. 5. SPIS LITERATURY Ali A. 1., LalI U., 1996: A kernel estimator for stochastic subsurface characterization, Ground Water vol. 34, no. 4: 647-658. Dąbrowski S., 1997: Uwagi dotyczące modeli matematycznych dla potrzeb hydrogeologii, Problemy wykorzystania wód podziemnych w gospodarce komunalnej, XII Sympozjum nauk.- techn., Częstochowa: 1-8. Leake S.A., Lawson P.W., Lil1y M.R., Claar D.V., 1998: Assignment of Boundary Conditions in Embedded Ground Water Flow Models, Ground Water vol. 36, no. 4: 621-625. Macioszczyk T., 1997: Rola przypowierzchniowych poziomów wodonośnych w formowaniu i modelowaniu zasobów wielowarstwowych systemów hydrogeologicznych, Współczesne problemy hydrogeologii, t. VIII, WIND, Wrocław: 91-94. Martin PJ., Frind E.O., 1998: Modeling a Complex Multi-Aquifer System: The Waterloo Moraine, Ground Water Vol. 36, No. 4: 679-690 Wood W.W., 2000: lt 's the Heterogeneity! Ground Water vol. 38, no. 1: 1. Zhang Z.Z., Brusseau M.L., 1998: Characterizing Three-Dimensional Hydraulic Conductivity Distributions Using Qualitative and Quantitative Geologie Borehole Data: Application to a Field Site, Ground Water vo1.36, no. 4: 671-678. 308