SPIS TREŚCI 1. Spis rysunków... 1 2. Podstawa i przedmiot opracowania... 2 3. Zakres prac... 2 4. Materiały źródłowe wykorzystane w opracowaniu:... 2 5. Obliczenie przepływu średniego rocznego metodą odpływu jednostkowego... 3 6. Obliczenia hydrologiczne przepływu maksymalnego... 3 7. Światło mostu... 5 8. Analiza warunków hydraulicznych w rejonie przekroju mostowego... 5 9. Umocnienia koryta cieku w rejonie obiektu... 6 1. Spis rysunków 1) Mapa zlewni skala 1:50 000 2) Plan sytuacyjny 1:500 3) Przekrój poprzeczny 1:200 4) Profil podłuŝny cieku Czarka
2. Podstawa i przedmiot opracowania Przedmiotem opracowania jest wyznaczenie przepływu miarodajnego dla istniejącego mostu pod drogą powiatową nr 1512N Wielbark-Rozogi na odcinku od km 1+900 do km 1+950 wraz z obiektem mostowym w km 1+936, który zostanie przebudowany. Dla obiektu mostowego pod drogą klasy Z przepływ miarodajny odpowiada przepływowi maksymalnemu o określonym prawdopodobieństwie przewyŝszenia p = 0,5%. Opracowanie obejmuje wykonanie obliczeń hydraulicznych dla w/w przekroju, celem ustalenia parametrów przebudowywanego obiektu mostowego zgodnie z rozporządzeniem ministra Transportu i Gospodarki morskiej z 30 maja 2000r. w sprawie warunków technicznych, jakim powinny odpowiadać drogowe obiekty inŝynierskie i ich usytuowanie. Przekrój obliczeniowy zlokalizowany jest w km 0+420 potoku Czarka. 3. Zakres prac Wykonano: Wyznaczenie powierzchni zlewni dla profilu Czarka w km rzeki 0+420. Wyznaczenie wartości dla przekroju obliczeniowego przepływu średniego rocznego SRQ, przepływu maksymalnego o określonym prawdopodobieństwie przewyŝszenia p=0,5%, napełnienia w korycie cieku dla przepływu maksymalnego. Określenie parametrów hydraulicznych w przekroju mostowym. Dokonano analizy parametrów przyjętego obiektu mostowego. Dobrano umocnienia koryta i skarp powyŝej górnego stanowiska. Dobrano umocnienia koryta i skarp poniŝej dolnego stanowiska. 4. Materiały źródłowe wykorzystane w opracowaniu: Ustawa Prawo wodne z dn. 18 lipca 2001 {Dz. U. Nr 115, poz. 1229 z późniejszymi zmianami}. Rozporządzenie ministra Transportu i Gospodarki morskiej z 30 maja 2000r. w sprawie warunków technicznych, jakim powinny odpowiadać drogowe obiekty inŝynierskie i ich usytuowanie {Dz. U. Nr 00.63.735}. Polska norma z grudnia 1997r. PN-S-02204 Drogi samochodowe. Odwodnienie dróg. Ustawa z dnia 10 kwietnia 2003r. o szczególnych zasadach przygotowania i realizacji inwestycji w zakresie dróg krajowych {Dz. U. Nr 80, poz. 721}. Ustawa Prawo ochrony środowiska z dnia 27.04.2001r. {Dz. U. Nr 62, poz. 627 z późniejszymi zmianami}. Światła mostów i przepustów. Zasady obliczeń z komentarzem i przykładami Instytut Badawczy Dróg i Mostów, Wrocław-śmigród 2000. Hydrologia ogólna ElŜbieta Bajkiewicz-Grabowska, Zdzisław Mikulski, Wydawnictwo Naukowe PWN, Warszawa 2006. Podstawy projektowania budowli mostowych Arkadiusz Madaj, Witold Wołowicki, Wydawnictwa Komunikacji i Łączności, Warszawa 2007. Podział hydrograficzny Polski, IMGW, Warszawa 1987. 2
Mapa topograficzne w skali 1:25 000. Mapa sytuacyjno wysokościowa w skali 1:500. 5. Obliczenie przepływu średniego rocznego metodą odpływu jednostkowego SQ = 0,0317 H A A powierzchnia badanej zlewni [km 2 ]; A = 69,85 [km 2 ] H wysokość warstwy odpływu [m] H = P c s [mm] P opad [mm]; P = 550 [mm] c s współczynnik odpływu jednostkowego [-] H = 550 0,30 = 165 [mm SQ = 0,0317 0,165 69,85 = 0,37 [m 3 /s] 6. Obliczenia hydrologiczne przepływu maksymalnego Obliczenia przepływów zwyczajnej wielkiej wody wg Dębskiego Q 50% = C A 2/3 C = C o z C współczynnik właściwości hydrologicznej dorzecza C o współczynnik regionalny, C o = 0,2 z = 1,06 C = 0,2 1,06 = 0,212 Q 50% = 0,212 69,85 2/3 = 3,60 [m 3 /s] Obliczenie przepływu miarodajnego Q 0,5% Q 0,5% = Q 50% [1+c v Ø(p,s)] c v - współczynnik zmienności, dla rzek nizinnych c v = 0,323 wg Dębskiego Ø(p,s) funkcja prawdopodobieństwa i współczynnika asymetrii s = 1,25 c v =1,25 0,323 s = 0,403 stąd Ø(p,s) = 2,87 dla p = 0,5% Q 0,5% = 3,60 [1+0,323 2,87] = 6,94 [m 3 /s] Przepływ w korycie rzeki Q k = F n -1 R 2/3 i 1/2 Dla napełnienia t m = 1,73 m, przepływ w korycie rzeki wyniesie: Q k = 6,94 [m 3 /s] Obliczenie przepływu o prawdopodobieństwie p = 1%: Q 1 = α obsz 1 A 0,92 H 1 1,11 φ 1,07 J r 0,1 ψ 0,35 (1+JEZ) -2,11 (1+B) -0,47 [m 3 /s] Q 1 przepływ o prawdopodobieństwie 1% α obsz 1 współczynnik obszarowy dla obszaru nizinno-pojeziernego wschodniego α obsz 1 = 3,075 10-3 A powierzchnia zlewni [km 2 ] H 1 maksymalny opad dobowy o prawdopodobieństwie 1% [mm]: H 1 = 80 3
φ współczynnik odpływu w zaleŝności od gleby, φ = 0,25 J r spadek rzeki, J r = (h max h min )/(L+l) = (143,75 122,50)/(20,02+1,12) = 1 L długość cieku [km]: L = 20,09 l długość suchej doliny [km]: l = 1,12 h max rzędna działu wodnego na końcu suchej doliny [m n.p.m.]: h max = 143,75 h min rzędna w przekroju zamykającym zlewnię [m n.p.m.]: h min = 122,50 Ψ spadek zlewni [ ], obliczany ze wzoru: Ψ = ( h)/(a 0,5 ) = (151,25-121,99)/(69,85 0,5 ) = 3,5 JEZ współczynnik jeziorności: JEZ = A j /A = 0 brak jezior A j powierzchnia wszystkich jezior na terenie zlewni [km 2 ] B współczynnik zabagnienia obliczony ze wzoru: B = A b /A = 1,30/69,85 = 0,02 A b powierzchnia torfowisk i bagien [km 2 ] Q 1 = 3,075 10-3 69,85 0,92 80 1,11 0,25 1,07 1 0,1 3,5 0,35 (1+0) -2,11 (1+0,02) -0,47 = 6,90 [m 3 /s] Przepływ miarodajny Q m = Q 0,5% (wg Rozporządzenia MTiGM) obliczony ze wzoru: Q 0,5% = Q 1 λ p λ p kwantyl rozkładu zmiennej o prawdopodobieństwie p = 0,5%, dla pojezierzy wynosi 1,10 Q 0,5% = Q 1 λ p = 6,90 1,10 = 7,59 [m 3 /s] Przepływ miarodajny został policzony dwoma metodami. Do dalszych obliczeń, wybrano wartość mniej korzystną, Q 0,5% = 7,59 [m 3 /s]. Obliczenie napełnienia miarodajnego. Napełnienie miarodajne, zostało obliczone metodą kolejnych przybliŝeń. Zestawienie wyników przedstawiono w tabeli 1. Tabela 1. Zestawienie wyników do obliczenia napełnienia miarodajnego. n d I d b d h m m 1 m 2 B d O z F d R h v Q m 0,030 0,0015 2,2200 1,000 1,589 1,011 4,820 5,519 3,520 0,638 0,96 3,367 0,030 0,0015 2,2200 1,200 1,589 1,011 5,340 6,179 4,536 0,734 1,05 4,765 0,030 0,0015 2,2200 1,400 1,589 1,011 5,860 6,839 5,656 0,827 1,14 6,433 0,030 0,0015 2,2200 1,530 1,589 1,011 6,198 7,268 6,440 0,886 1,19 7,669 0,030 0,0015 2,2200 1,600 1,589 1,011 6,380 7,499 6,880 0,917 1,22 8,386 0,030 0,0015 2,2200 1,800 1,589 1,011 6,900 8,159 8,208 1,006 1,30 10,638 0,030 0,0015 2,2200 2,000 1,589 1,011 7,420 8,819 9,640 1,093 1,37 13,206 n d współczynnik szorstkości koryta cieku, przyjęto średni dla małych cieków wodnych n = 0,030 I d spadek podłuŝny cieku b d szerokość dna cieku, którego kształt jest zbliŝony do trapezu [m] h m rzędna miarodajna [m] m 1 pochylenie skarpy lewej cieku m 2 pochylenie skarpy prawej cieku B d szerokość przekroju, którego kształt jest zbliŝony do trapezu [m]: B d = b d +h m (m 1 +m 2 ) O z obwód zwilŝony [m], obliczony ze wzoru [m]: O z = b d +h m [(1+m 2 1 ) 0,5 +(1+m 2 1 ) 0,5 ] F d pole przekroju zwilŝonego [m 2 ]: F d = 0,5 h m (B d +b d ) 4
R h promień hydrauliczny [m]: R h =F d /O z v prędkość [m/s]: v = (1/n d ) (R h 2/3 I 1/2 d ) Q przepływ miarodajny obliczony dla danego napełnienia h m [m 3 /s]: Q = F d v Przyjęte napełnienie w korycie cieku przy przepływie miarodajnym wynosi h m = 1,53 m. 7. Światło mostu Przyjęto dla dna nierozmywalmego L = (Q m )/(µ h v) [m] h średnia głębokość w przekroju mostowym [m] b = 3,80 [m] projektowana szerokość dna w przekroju pod mostem [m] v załoŝona prędkość, nie większa niŝ v kr = (g h) 0,5 i najmniejszej prędkości dopuszczalnej v d v kr = (g h) 0,5 = (9,81 1,53) 0,5 = 3,87 [m/s] v d = 3,9 [m/s] przy umocnieniu z kamienia grubości 20 [cm] obliczono ze wzoru: v = Q m /F = 7,59/7,98 = 0,95 [m/s] F pole przekroju koryta pod mostem do rzędnej wody miarodajnej [m 2 ]: F = 7,98 µ współczynnik dla mostów jednoprzęsłowych, z korpusem wtopionym w nasyp µ = 0,91 L = (7,59)/(0,91 1,53 0,95) m = 5,74 [m] Przyjęto do celów projektowych światło L = 6,00 [m]. v = (Q m )/(µ h L) = (7,59)/(0,91 1,53 6) = 0,91 m/s 8. Analiza warunków hydraulicznych w rejonie przekroju mostowego Spiętrzenie wody przed mostem: z = K [(α v 2 )/(2 g)]+{[α 0 (v 2 o -v 2 s )]/(2 g)} K współczynnik strat α, α 0 współczynnik Saint-Venanta: przed mostem dla przekroju zwartego α o = 1,2 pod mostem α = 1+M ( α o 1) g przyśpieszenie ziemskie [m/s 2 ] F o pole przekroju koryta cieku do rzędnej wody miarodajnej [m 2 ]: F o = 8,16 F pole przekroju koryta pod mostem do rzędnej wody miarodajnej [m 2 ]: F = 7,98 B o szerokość zwierciadła wody w przekroju niezabudowanym [m]: B o = 5,96 v średnia prędkość wody pod mostem w przekroju nierozmytym [m/s]: v = Q m /F = 7,59/7,98 = 0,95 v o - średnia prędkość wody w przekroju niezabudowanym [m/s]: v o = Q m /F o = 7,59/6,27 = 1,21 v s średnia prędkość wody powyŝej mostu, po spiętrzeniu [m/s]: v s = Q m /(F o +B o z) = 7,59/(6,27+5,96 z) Q m przepływ miarodajny [m 3 /s] Q s przepływ w części koryta niezabudowanego odpowiadającej powierzchni przekroju mostowego brutto [m 3 /s] Q s = v o F = 1,21 7,98 = 9,66 m 3 /s 5
M = Q s /Q m = 9,66/7,59 = 1,27 K o = 0 Współczynnik strat K, obliczono ze wzoru: K = K o + K f + K c + K φ K o podstawowy współczynnik start zaleŝny od stopnia zwęŝenia cieku przez przyczółki i ich kształty, w zaleŝności od parametru M = Q s /Q m. Wartość K o odczytana z rys.2.7. (krzywa nr 2) zał. nr 1 do rozporządzenia MTiGM z dn.30.05.2000r., K o = 0 K f współczynnik zaleŝny od kształtu filarów, K f = 0 - most jednoprzęsłowy; K c poprawka uwzględniająca wpływ niesymetryczności zwęŝenia cieku, K e = 0 - most połoŝony symetrycznie; K φ poprawka uwzględniająca wpływ ukośnego usytuowania mostu w stosunku do osi cieku, K φ = 0 most połoŝony symetrycznie. K = 0 PoniewaŜ nie przewidujemy zawęŝenia przekroju cieku przez przyczółki, stąd spiętrzenie z = 0. Tabela 2. Podusmowanie Parametr Wielkość Jednostka Przekrój mostowy 0+420 km Powierzchnia zlewni do przekroju mostowego 69,85 m 2 Przepływ miarodajny Q m0,5% 7,59 m 3 Rzędna dna 122,05 m n.p.m. Rzędna miarodajna 123,58 m n.p.m. Rzędna wzniesienia spodu konstrukcji mostowej 124,51 m n.p.m. Szerokość zwierciadła przepływu miarodajnego B o 6,86 m Światło poziome netto (odległość pomiędzy przyczółkami) B 6 m Spiętrzenie przed rozmyciem z 0 m Kąt skrzyŝowania osi cieku z osią przeprawy 81 stopnie 9. Umocnienia koryta cieku w rejonie obiektu Dno cieku w rejonie przebudowywanego obiektu umocnione zostanie narzutem kamiennym w gabionach grubości 20 cm. Długość umocnienia 23 m. Skarpy na odcinku powyŝej obiektu na długości 8,0 [m] umocnić brukiem grubości 14 cm z wypełnieniem spoin na podsypce cementowo piaskowej grub. 5 cm. Skarpy na odcinku poniŝej obiektu na długości 5,0 [m] umocnić brukiem grubości 14 cm z wypełnieniem spoin na podsypce cementowo piaskowej grub. 5 cm. 6