Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji



Podobne dokumenty
Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

Testowanie hipotez statystycznych

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna dla leśników

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

Wykład 3 Hipotezy statystyczne

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )

TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.

VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15

Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości

Hipotezy statystyczne

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

Hipotezy statystyczne

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

Testy zgodności. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 11

Wstęp do probabilistyki i statystyki. Wykład 4. Statystyki i estymacja parametrów

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych

Testowanie hipotez statystycznych.

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

166 Wstęp do statystyki matematycznej

Statystyka matematyczna

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

1. szereg wyliczający (szczegółowy) - wyniki są uporządkowane wyłącznie według wartości badanej cechy, np. od najmniejszej do największej

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu

Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

Kolokwium ze statystyki matematycznej

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

STATYSTYKA wykład 8. Wnioskowanie. Weryfikacja hipotez. Wanda Olech

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

Wnioskowanie statystyczne Weryfikacja hipotez. Statystyka

Weryfikacja hipotez statystycznych

WNIOSKOWANIE STATYSTYCZNE

Korelacja krzywoliniowa i współzależność cech niemierzalnych

Wykład 3 Testowanie hipotez statystycznych o wartości średniej. średniej i wariancji z populacji o rozkładzie normalnym

STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

Weryfikacja hipotez statystycznych

W2. Zmienne losowe i ich rozkłady. Wnioskowanie statystyczne.

Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407

Wydział Matematyki. Testy zgodności. Wykład 03

... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).

Statystyka Matematyczna Anna Janicka

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Testowanie hipotez statystycznych

1 Estymacja przedziałowa

Wykorzystanie testu t dla pojedynczej próby we wnioskowaniu statystycznym

STATYSTYKA MATEMATYCZNA

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.

TESTOWANIE HIPOTEZ STATYSTYCZNYCH

Statystyka matematyczna i ekonometria

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)

Testowanie hipotez statystycznych.

Statystyka matematyczna i ekonometria

Wyniki badań reprezentatywnych są zawsze stwierdzeniami hipotetycznymi, o określonych granicach niepewności

Pobieranie prób i rozkład z próby

Spis treści 3 SPIS TREŚCI

Prawdopodobieństwo i rozkład normalny cd.

WERYFIKACJA HIPOTEZ STATYSTYCZNYCH

Statystyka i opracowanie danych - W 4: Wnioskowanie statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407

STATYSTYKA INDUKCYJNA. O sondażach i nie tylko

Testy nieparametryczne

Testowanie hipotez statystycznych cd.

Zadanie 1 Odp. Zadanie 2 Odp. Zadanie 3 Odp. Zadanie 4 Odp. Zadanie 5 Odp.

Testowanie hipotez statystycznych

LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji

LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.

12/30/2018. Biostatystyka, 2018/2019 dla Fizyki Medycznej, studia magisterskie. Estymacja Testowanie hipotez

Estymacja punktowa i przedziałowa

STATYSTYKA

Statystyka matematyczna. Wykład V. Parametryczne testy istotności

Statystyka matematyczna. Wykład III. Estymacja przedziałowa

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1

Teoria Estymacji. Do Powyżej

Test lewostronny dla hipotezy zerowej:

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH

Własności statystyczne regresji liniowej. Wykład 4

Dr Anna ADRIAN Paw B5, pok 407

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:

LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej

Zadania ze statystyki, cz.6

Transkrypt:

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki Szczecińskiej

3. Weryfikacja hipotez statystycznych Cel weryfikacji hipotez statystycznych ustalenie, czy estymacja parametrów populacji (lub jej rozkładu) uzyskana na podstawie próbki jest do przyjęcia Działanie porównanie wyników otrzymanych z próbki z założeniami teoretycznymi porównanie wyników otrzymanych z dwóch próbek Określamy przy tym, czy porównywane wyniki różnią się w sposób istotny, czy przypadkowy Podstawowe pojęcia hipoteza statystyczna test statystyczny

Podstawowe pojęcia Hipoteza statystyczna dowolne przypuszczenie o nieznanym rozkładzie badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się w oparciu o pobraną próbkę Hipoteza nieparametryczna przypuszczenie dotyczy postaci rozkładu cechy populacji Hipoteza parametryczna przypuszczenie dotyczy wartości parametrów rozkładu cechy populacji Test statystyczny reguła postępowania, która każdej możliwej realizacji próby (x 1,, x n ) przyporządkowuje (z ustalonym prawdopodobieństwem) decyzję przyjęcia albo odrzucenia sprawdzanej hipotezy Test parametryczny dotyczy hipotezy parametrycznej Test nieparametryczny (test zgodności) dotyczy hipotezy nieparametrycznej

Elementy testu statystycznego X badana cecha populacji H pewna hipoteza statystyczna, dotycząca rozkładu cechy X, zwana hipotezą zerową H 1 hipoteza alternatywna, którą będziemy skłonni przyjąć, gdyby H okazała się fałszywa Statystyka testowa albo sprawdzian statystyka U n = U n (X 1,, X n ), dobrana jako miernik rozbieżności między wynikami próby a postacią hipotetyczną Obszar krytyczny przedział liczbowy K, do którego prawie na pewno nie powinna należećżadna realizacja statystyki U n, jeśli H jest prawdziwa

Błędy przy podejmowaniu decyzji Dla próbki (x 1,, x n ) wartości cechy X obliczamy u n = U n (X 1,, X n ) i podejmujemy jedną z decyzji: odrzucamy H i przyjmujemy H 1, jeśli u n K przyjmujemy H i odrzucamy H 1, jeśli u n K Przy weryfikacji hipotezy w oparciu o wyniki próbki można popełnić dwa rodzaje błędów: błąd pierwszego rodzaju odrzucenie hipotezy H, gdy jest ona prawdziwa (prawdopodobieństwo popełnienia tego błędu nazywamy poziomem istotności i oznaczamy przez ) (3.1) = P (U n K / H ) błąd drugiego rodzaju przyjęcie hipotezy H, gdy jest ona fałszywa (prawdopodobieństwo popełnienia oznaczamy przez β) (3.) β = P (U n K / H 1 ) = 1 P (U n K / H 1 )

Błędy przy podejmowaniu decyzji Tablica 3.1. Decyzje słuszne i błędy przy podejmowaniu decyzji Decyzja Sytuacja H prawdziwa H fałszywa Przyjęcie H Odrzucenie H decyzja słuszna 1 błąd 1-go rodzaju decyzja słuszna 1 β Dla ustalonego (,1) bliskiego zera, obszar krytyczny K dobiera się tak, aby β było możliwie najmniejsze (wówczas test jest najmocniejszy) Ponieważ najczęściej β jest dość duże, albo nie jest znane, zamiast wysoce ryzykownej decyzji przyjmujemy H podejmujemy ostrożniejszą: nie ma podstaw do odrzucenia H Testy istotności testy, w których nie uwzględnia się błędu -go rodzaju błąd -go rodzaju β

4. Parametryczne testy istotności w populacji (4.1) Wartość oczekiwana (średnia) Model 1 (rozkład normalny, znana wariancja) X zmienna losowa o rozkładzie normalnym N(m,σ), wartość oczekiwana m = EX nie jest znana, wariancja σ = D X jest znana Statystyka X m U = n σ ma rozkład N(,1) przy założeniu prawdziwości hipotezy zerowej H : m = m Dla przykładu pokażemy konstrukcję obszaru krytycznego dla hipotezy alternatywnej H 1 : m > m

wartości średniej model 1 Dla ustalonego (,1) mamy = P (U K / m = m ) Obszar krytyczny K dobiera się tak, aby β było możliwie najmniejsze, tzn. P (U K / H 1 ) było największe Ponieważ H 1 : m > m, więc = P (U k) = 1 P (U < k) = 1 Φ(k) dla pewnego k Stąd Φ(k) = 1 Oznacza to, że k jest kwantylem rzędu 1 i będziemy go oznaczać przez u(1 ) W rezultacie 1.1 K = u(1 ); ) Dla pozostałych hipotez obszary krytyczne buduje się analogicznie f ( x) N(,1) Rys.4.1. Gęstość rozkładu N(,1) k

wartości średniej model 1 Tablica 4.1. Tablica testu dla średniej model 1 Hipoteza zerowa alternatywna Statystyka testowa U Obszar krytyczny K Uwagi H 1 : m m ( ; u(1 ) u(1 ); ) u(1 ) 1.1 N(,1) u(1 ) H : m = m H 1 : m < m X m n σ ( ; u(1 ).1 u(1 ) = u( ) 1 N(,1) H 1 : m > m u(1 ); ) 1.1 N(,1) u(1 )

wartości średniej model 1 Przykład (do modelu 1) Norma przewiduje, że waga produkowanego wyrobu powinna wynosić 5 dag Wysunięto przypuszczenie, że producent zawyża wagę wyrobów Aby potwierdzić przypuszczenie wylosowano 16 wyrobów, dla których średnia waga wynosiła 51 dag Wiadomo, że odchylenie standardowe wynosi 1.1 dag Waga wyrobów ma rozkład normalny Na poziomie istotności.5 zweryfikować hipotezę, że waga wyrobów według normy i waga rzeczywista są równe wobec hipotezy alternatywnej, że są różne

wartości średniej model Model (rozkład normalny, parametry nieznane) X zmienna losowa o rozkładzie normalnym N(m,σ), parametry m i σ nie są znane Statystyka X m t = n 1 S ma rozkład Studenta z n 1 stopniami swobody przy założeniu, że prawdziwa jest hipoteza zerowa H : m = m Ponieważ funkcja gęstości rozkładu Studenta ma podobne własności jak krzywa Gaussa, obszary krytyczne dla hipotez alternatywnych H 1 : m m, H 1 : m < m oraz H 1 : m > m buduje się podobnie jak w modelu 1

wartości średniej model Tablica 4.. Tablica testu dla średniej model Hipoteza zerowa alternatywna Statystyka testowa t Obszar krytyczny K Uwagi H 1 : m m ( ; t(1, n 1) t(1, n 1); ) 1.1 t(1, n 1) t(1, n 1) t H : m = m H 1 : m < m X m n S 1 ( ; t(1, n 1).1 t(1, n 1) 1 t H 1 : m > m t(1, n 1); ) 1.1 t t(1, n 1)

wartości średniej model Przykład (do modelu ) Norma przewiduje, że średni czas potrzebny na wykonanie pewnego detalu wynosi 1.5 h Robotnicy skarżą się, że czas ten jest zbyt krótki Aby sprawdzić zasadność skargi, zmierzono faktyczny czas produkcji 17 losowo wybranych detali i otrzymano wartość średniej z próbki 1.6 h, a odchylenia standardowego. h Zakładamy, że czas potrzebny do wykonania detalu jest zmienną losową o rozkładzie normalnym Na poziomie istotności.5 stwierdzić, czy uzyskane wyniki stanowią podstawę do zwiększenia normy

wartości średniej model 3 Model 3 (rozkład nieznany, duża próba n 1 ) X zmienna losowa o nieznanym rozkładzie, istnieją wartość oczekiwana EX = m i wariancja σ = D X > Jeśli próba jest duża ( n 1 ), to statystyka X m U = n σ ma w przybliżeniu rozkład normalny N(,1), a nieznaną wartość parametru σ możemy oszacować za pomocą estymatora S, gdzie n ( ) 1 S = n X 1 i X i= W rezultacie do weryfikacji hipotez stosujemy statystykę X m U = n S przy założeniu, że prawdziwa jest hipoteza zerowa H : m = m Obszary krytyczne dla hipotez alternatywnych H 1 : m m, H 1 : m < m oraz H 1 : m > m wyznaczamy tak samo jak w modelu 1

wariancji model 1 (4.) Wariancja (lub odchylenie standardowe) Model 1 (rozkład normalny, parametry nieznane) X zmienna losowa o rozkładzie normalnym N(m,σ), parametry m i σ nie są znane Statystyka ns χ = σ ma rozkład χ z n 1 stopniami swobody przy założeniu, że prawdziwa jest hipoteza zerowa H : σ = σ ( lub H : σ = σ )

wariancji model 1 Tablica 4.3. Tablica testu dla wariancji model 1 Hipoteza zerowa alternatywna Statystyka testowa χ Obszar krytyczny K Uwagi H : σ = σ H 1 : σ σ H 1 : σ < σ ns σ χ ; (, n 1) χ n (1, 1); ) ; χ (, n 1) f ( x) 1 χ χ (, n 1) χ (1, n 1) x f ( x) χ 1 χ (, n 1) x f ( x) χ H 1 : σ > σ χ (1, n 1); ) 1 χ (1, n 1) x

wariancji model 1 Przykład (do modelu 1) Dokonano 1 pomiarów pewnej wielkości Otrzymano odchylenie standardowe z próbki 1.5 W teorii pomiarów zakładamy, że wynik pomiaru jest zmienną losową o rozkładzie normalnym N(m,σ), zaś odchylenie standardowe jest miarą dokładności pomiarów Zweryfikować hipotezę H : σ = 1. wobec hipotezy alternatywnej H 1 : σ > 1. na poziomie istotności.5

wariancji model Model (rozkład normalny, duża próba n 5 ) X zmienna losowa o rozkładzie normalnym N(m,σ), parametry m i σ nie są znane Jeśli próba jest duża ( n 5 ), to statystyka U = χ n 3 ma w przybliżeniu rozkład normalny N(,1), przy założeniu, że prawdziwa jest hipoteza zerowa H : σ = σ ( lub H : σ = σ ) Obszary krytyczne dla hipotez alternatywnych H 1 : σ σ, H 1 : σ < σ oraz H 1 : σ > σ wyznaczamy tak samo jak w modelu 1 dla średniej

wariancji model 3 Model 3 (rozkład nieznany, duża próba n 1 ) X zmienna losowa o rozkładzie normalnym N(m,σ), parametry m i σ nie są znane Jeśli próba jest duża ( n 1 ), to statystyka U Sˆ = σ σ ma w przybliżeniu rozkład normalny N(,1), przy założeniu, że prawdziwa jest hipoteza zerowa H : σ = σ ( lub H : σ = σ ) Obszary krytyczne dla hipotez alternatywnych H 1 : σ σ, H 1 : σ < σ oraz H 1 : σ > σ wyznaczamy tak samo jak w modelu 1 dla średniej n

wariancji Przykład Wylosowano robotników pewnego zakładu Zbadano stopień wykonania normy [%] Wyniki przedstawiono w szeregu rozdzielczym Stopień wykonania normy [%] 7 8 9 1 11 1 13 14 15 Liczba pracowników 3 15 9 7 5 17 1 3 1 Na poziomie istotności.5 zweryfikować hipotezę, że odchylenie standardowe stopnia wykonania normy jest równe 1 % wobec hipotezy alternatywnej, że jest mniejsze od 1 %

Weryfikacja hipotezy o wskaźniku struktury (4.3) Wskaźnik struktury Model (rozkład -1, parametr p nieznany, duża próba n 1 ) X zmienna losowa o rozkładzie -1, parametr p nie jest znany Jeśli próba jest duża ( n 1 ), to statystyka U = p M n p gdzie M jest zmienną losową, której wartości są liczbami wyróżnionych elementów w n-elementowej próbce, ma rozkład w przybliżeniu normalny N(,1), przy założeniu, że prawdziwa jest hipoteza zerowa H : p = p Obszary krytyczne dla hipotez alternatywnych (1 p ) n H 1 : p p, H 1 : p < p oraz H 1 : p > p wyznaczamy tak samo jak w modelu 1 dla średniej

Weryfikacja hipotezy o wskaźniku struktury Przykład Zbadano pacjentów pewnego szpitala 8 % miało grupę krwi AB 5 % pacjentów z grupą krwi AB miało czynnik RH Na poziomie istotności.1 zweryfikować hipotezę, ze odsetek osób o grupie krwi AB RH wynosi 3 % wobec alternatywnej, że jest mniejszy niż 3 %

Dziękuję za uwagę