PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony



Podobne dokumenty
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Matematyka. dla. Egzamin. Czas pracy będzie

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH )

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

Matematyka rozszerzona matura 2017

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KORESPONDENCYJNY KURS Z MATEMATYKI. PRACA KONTROLNA nr 1

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

PRÓBNY EGZAMIN MATURALNY

W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych, linijki i cyrkla oraz kalkulatora.

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

Stowarzyszenie Nauczycieli Matematyki

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

EGZAMIN MATURALNY Z MATEMATYKI

I Liceum Ogólnokształcące w Warszawie

Rozwiązaniem nierówności A. B. C. 4 D. 2

Ćwiczenia z Geometrii I, czerwiec 2006 r.

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2011 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI. dla osób niesłyszących CZERWIEC 2013 POZIOM PODSTAWOWY. Czas pracy: do 200 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

VIII. ZBIÓR PRZYKŁADOWYCH ZADAŃ MATURALNYCH

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

Czas pracy 170 minut

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

Nazwisko i imię.. PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

PRÓBNY EGZAMIN MATURALNY

PRÓBNY ARKUSZ MATURALNY Z MATEMATYKI

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

GEOMETRIA ELEMENTARNA

PRÓBNY EGZAMIN MATURALNY

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =

PRÓBNY EGZAMIN MATURALNY

KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Nazwisko i imię... PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2018 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

Próbny egzamin maturalny z matematyki Poziom rozszerzony

Próbny egzamin maturalny z matematyki Poziom rozszerzony

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MMA 2018 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony LO

PRÓBNY EGZAMIN MATURALNY

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 4 CZERWCA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

ARKUSZ VIII

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA

PRÓBNY EGZAMIN MATURALNY MATEMATYKA. MaturoBranie

EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

PRÓBNY EGZAMIN MATURALNY

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

PRÓBNY EGZAMIN MATURALNY

Transkrypt:

Próbny egzamin maturalny z matematyki. Poziom rozszerzony 1 PRÓNY EGZMIN MTURLNY Z MTEMTYKI poziom rozszerzony ZNI ZMKNIĘTE W każdym z zadań 1.. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0 1) ane są proste l 1 : y = 2x 28, l 2 : y = 1 2 x 1, l 3 : y = 1 3 x + 2 i l : 9x 13y 58 = 0. Wszystkie one przechodzą przez punkt (18, 8).. Prosta l 3 jest obrazem prostej l w symetrii względem prostej l 2.. Prosta l jest obrazem prostej l 2 w symetrii względem prostej l 3.. Prosta l 2 jest obrazem prostej l 1 w symetrii względem prostej l.. Prosta l 1 jest obrazem prostej l 3 w symetrii względem prostej l. Zadanie 2. (0 1) Niech a = log 2 3 i b = log 5 3. Wtedy. log 3 100 = 1 + 1 a b. log 3 100 = 2a + 2b ab. log 3 = a + b. log 3 = ab Zadanie 3. (0 1) Wyrażenie sin a + 3cos a nie może osiągnąć większej wartości niż wtedy, gdy. α = 1 6 π. α = 1 3 π. α = 1 2 π. α = 5 3 π Zadanie. (0 1) Rzucamy 8 razy kostką. Spośród poniższych zdarzeń wybierz najbardziej prawdopodobne.. Pierwsza szóstka wypadła w pierwszym rzucie, a druga szóstka w ósmym rzucie.. Pierwsza szóstka została wyrzucona za drugim razem, a druga szóstka w siódmym rzucie.. Pierwsza szóstka wypadła przy trzecim rzucie, a druga szóstka w szóstym rzucie.. Pierwsza szóstka wypadła w czwartym rzucie, a druga szóstka w piątym. ZNI Z KOOWNĄ OPOWIEZIĄ W zadaniach 5. i 6. zakoduj we wskazanym miejscu wynik zgodnie z poleceniem. Zadanie 5. (0 2) Kod składa się z czterech znaków, wśród których musi być przynajmniej jedna cyfra i przynajmniej jedna duża i jedna mała litera. Na klawiaturze jest 26 liter i 10 cyfr. Ile kodów można w ten sposób utworzyć? Wpisz w kratki trzy pierwsze (od lewej strony) cyfry odpowiedzi.

2 Próbny egzamin maturalny z matematyki. Poziom rozszerzony Zadanie 6. (0 2) wa różne rozwiązania równania x 2 11x + 1 = 0 to x 1 i x 2. ez rozwiązywania tego równania oblicz wartość (x 1 ) 5 + (x 2 ) 5. Zakoduj występujące w obliczonej liczbie różne cyfry od najmniejszej do największej. Zadanie 7. (0 2) Rozwiąż nierówność ZNI OTWRTE 2xx ( + 3) x + 3 dla x 2 i x 5. ( x + 2)( x 5) ( x + 2)( x 5) Zadanie 8. (0 2) W niewypukłym czworokącie dane są długości boków: =, = 3, = 5, = 6 oraz kąt wklęsły = 300. Na rysunku kąt oznaczony został jako x. a) Oblicz cos x. b) Oblicz pole czworokąta. 6 x 300 5 3 Zadanie 9. (0 3) Udowodnij, że wyrażenie W(n) = (n 2 10n + 2)(n 2 8n + 15) jest dla każdego n = 0, 1, 2, 3,... podzielne przez największy wspólny dzielnik W(0) i W(7). Zadanie 10. (0 3) a) Na ile sposobów można dojść z S do F zgodnie z kierunkiem strzałek? b) Na ile sposobów można dojść z S do F zgodnie z kierunkiem strzałek, a potem wrócić przeciwnie do kierunku strzałek do S inną drogą? S F E

Próbny egzamin maturalny z matematyki. Poziom rozszerzony 3 Zadanie 11. (0 3) Na pewną groźną chorobę choruje 1% całej populacji. Przygotowano tani i łatwy w użyciu test na tę chorobę. Test jest wygodny, ale nie jest w pełni dokładny. Test wykrywa chorobę u chorej osoby tylko w 99% przypadków, natomiast test może wskazać, że osoba jest chora, nawet jeśli osoba jest zdrowa, ale zdarza się to tylko w 2% przypadków. a) Jakie jest prawdopodobieństwo, że osoba jest zdrowa, mimo że test był dodatni? b) Jakie jest prawdopodobieństwo, że jeśli test był ujemny, to testowana osoba była chora? Zadanie 12. (0 3) a) Udowodnij, że prosta l: 3x + y 19 = 0 jest styczna do okręgów o 1 i o 2, gdzie o 1 : (x 2) 2 + (y 2) 2 = 1 oraz o 2 : (x 6) 2 + (y ) 2 = 9. b) Obie proste y = 1 i x = 3 są styczne do obu okręgów. Naszkicuj rysunek okręgów o 1 i o 2, prostej l, prostej y = 1 i prostej x = 3 w układzie współrzędnych. Znajdź równanie czwartej prostej stycznej do okręgów o 1 i o 2. Narysuj ją. Zadanie 13. (0 3) Udowodnij, że czworokąt mający kolejne boki o długości 21, 15, 7 i 13 może być trapezem. Oblicz jego pole. Zadanie 1. (0 3) Pierwszy odcinek koła o polu P 1 powstał z okręgu o środku O i promieniu r = OR 1 = OS 1 po odcięciu odcinkiem R 1 S 1. rugi odcinek koła powstał następująco: prosta prostopadła do półprostej OR S 1 1 S i przechodząca przez S 1 przecina półprostą 2 S 3 OR 1 w punkcie R 2. Odcinek S 2 R 2 odcina od koła o środku w O i promieniu OR 2 = OS 2 odcinek o polu P 2. Po zatoczeniu łuku o środku w O i promieniu OR 2 powstaje punkt S 3 na O R 3 R 2 R 1 półprostej OS 1 itd. powstaje nieskończony ciąg odcinków coraz mniejszych kół. Oblicz sumę nieskończonej liczby wszystkich tych odcinków kół i określ ją jako funkcję a (wyrażonego w radianach) i r.

Próbny egzamin maturalny z matematyki. Poziom rozszerzony Zadanie 15. (0 ) Od czworościanu foremnego o krawędzi odcięto płaszczyzną przechodzącą przez punkt na krawędzi, punkt na krawędzi i na krawędzi ostrosłup, przy czym = 3, = 2, = 1. a) Oblicz objętość ostrosłupa i. b) Oblicz wysokość ostrosłupa, gdy za jego podstawę przyjmiemy. Zadanie 16. (0 ) W trójkącie zaznaczono punkt na boku, tak że : = 1 : 2, i punkt na boku, tak że : = 3 : 1. Odcinki i przecinają się w punkcie. Prosta przecina odcinek w punkcie. Pole trójkąta jest równe 1. a) Oblicz pole trójkąta. b) Oblicz stosunek :. 1 Zadanie 17. (0 ) Pole powierzchni całkowitej stożka to π. a) Jaka jest możliwie największa objętość takiego stożka? b) Jakim trójkątem jest przekrój osiowy stożka o największej objętości? Zadanie 18. (0 ) W graniastosłupie prostym prostokątnym EFGH krawędzie podstawy mają długość 3 i ( =, = 3), a wysokość 10. odatkowo wyróżnione są trzy punkty: punkt na krawędzi F w odległości 3 od wierzchołka, punkt na krawędzi G w odległości 7 od wierzchołka i punkt na krawędzi H w odległości od wierzchołka. a) Udowodnij, że płaszczyzna przecina krawędź E w punkcie. b) Oblicz pole przekroju graniastosłupa EFGH płaszczyzną. c) Oblicz cosinus kąta między płaszczyzną i płaszczyzną podstawy. d) Oblicz objętość mniejszej części graniastosłupa powstałej z przecięcia płaszczyzną. E H G F 7 3 3 Zadanie 19. (0 ) a) Jeśli na trójkącie opiszemy okrąg, to z każdego łuku, na który podzieliły okrąg wierzchołki tego trójkąta, widać trójkąt pod pewnym kątem (zobacz na rysunku poniżej). Udowodnij, że a + b = g + 180 b + g = a + 180 a + g = b + 180.

Próbny egzamin maturalny z matematyki. Poziom rozszerzony 5 b) Udowodnij, że jeśli n-kąt da się wpisać w okrąg, to suma kątów, pod jakimi widać ten czworokąt z łuków, na które wierzchołki czworokąta podzieliły okrąg, jest o 180 większa niż suma wszystkich wewnętrznych kątów tego n-kąta (na rysunku poniżej po prawej stronie narysowany jest n-kąt, gdy n = ). a) b) 5 3 3 1 23 12 2