EGZAMIN MATURALNY Z MATEMATYKI



Podobne dokumenty
EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 120 minut

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

Czas pracy 170 minut

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI LISTOPAD 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

LUBELSKA PRÓBA PRZED MATURĄ poziom podstawowy 1 MATEMATYKA LUTY Instrukcja dla zdającego. Czas pracy: 170 minut

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 150 minut

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 2. Czas pracy 150 minut

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

1. Sprawdź, czy arkusz egzaminacyjny zawiera 14 stron (zadania ). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

LUBELSKA PRÓBA PRZED MATURĄ klasa 2b

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 9 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

UZUPEŁNIA ZDAJĄCY miejsce na naklejkę

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 5 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

MATERIAŁ DIAGNOSTYCZNY Z MATEMATYKI

LUBELSKA PRÓBA PRZED MATURĄ 2017 klasa 2 (pp)

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Czas pracy 170 minut

EGZAMIN MATURALNY Z MATEMATYKI

Czas pracy 170 minut

EGZAMIN MATURALNY Z MATEMATYKI 9 MAJA 2016 POZIOM ROZSZERZONY. Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 25 SIERPNIA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI. dla osób niesłyszących CZERWIEC 2013 POZIOM PODSTAWOWY. Czas pracy: do 200 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut

ARKUSZ DIAGNOSTYCZNY Z MATEMATYKI

MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ NR 1. Czas pracy 150 minut

LUBELSKA PRÓBA PRZED MATURĄ 2017 poziom podstawowy M A T E M A T Y K A 28 LUTEGO Instrukcja dla zdającego Czas pracy: 170 minut

LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy M A T E M A T Y K A 09 MARCA Instrukcja dla zdającego Czas pracy: 170 minut

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 7 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

LUBELSKA PRÓBA PRZED MATURĄ 2015 poziom podstawowy. Instrukcja dla zdającego Czas pracy: 170 minut

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 2 CZERWCA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. UZUPEŁNIA UCZEŃ miejsce KOD UCZNIA PESEL na naklejkę z kodem UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

LUBELSKA PRÓBA PRZED MATURĄ 2016 poziom podstawowy M A T E M A T Y K A 09 MARCA Instrukcja dla zdającego Czas pracy: 170 minut

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI DLA KLAS DRUGICH POZIOM PODSTAWOWY

LUBELSKA PRÓBA PRZED MATURĄ poziom podstawowy MATEMATYKA LUTY Instrukcja dla zdającego. Czas pracy: 170 minut

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 9 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50

PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

Transkrypt:

Miejsce na naklejkę z kodem szkoły dysleksja MMA-P1_1P-072 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2007 Czas pracy 120 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 11). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W rozwiązaniach zadań przedstaw tok rozumowania prowadzący do ostatecznego wyniku. 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem. 5. Nie używaj korektora, a błędne zapisy przekreśl. 6. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie. 7. Obok każdego zadania podana jest maksymalna liczba punktów, którą możesz uzyskać za jego poprawne rozwiązanie. 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora. 9. Wypełnij tę część karty odpowiedzi, którą koduje zdający. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora. 10. Na karcie odpowiedzi wpisz swoją datę urodzenia i PESEL. Zamaluj pola odpowiadające cyfrom numeru PESEL. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe. Za rozwiązanie wszystkich zadań można otrzymać łącznie 50 punktów Życzymy powodzenia! Wypełnia zdający przed rozpoczęciem pracy PESEL ZDAJĄCEGO KOD ZDAJĄCEGO

2 Egzamin maturalny z matematyki Zadanie 1. (5 pkt) Znajdź wzór funkcji kwadratowej y = f ( x), której wykresem jest parabola o wierzchołku (1, 9) przechodząca przez punkt o współrzędnych (2, 8). Otrzymaną funkcję przedstaw w postaci kanonicznej. Oblicz jej miejsca zerowe i naszkicuj wykres. Wypełnia egzaminator! Nr czynności 1.1. 1.2. 1.3. 1.4. 1.5. Maks. liczba pkt 1 1 1 1 1 Uzyskana liczba pkt

Zadanie 2. (3 pkt) Egzamin maturalny z matematyki 3 Wysokość prowizji, którą klient płaci w pewnym biurze maklerskim przy każdej zawieranej transakcji kupna lub sprzedaży akcji jest uzależniona od wartości transakcji. Zależność ta została przedstawiona w tabeli: Wartość transakcji do 500 zł od 500,01 zł do 3000 zł od 3000,01 zł do 8000 zł od 8000,01 zł do 15000 zł powyżej 15000 zł Wysokość prowizji 15 zł 2% wartości transakcji + 5 zł 1,5% wartości transakcji + 20 zł 1% wartości transakcji + 60 zł 0,7% wartości transakcji + 105 zł Klient zakupił za pośrednictwem tego biura maklerskiego 530 akcji w cenie 25 zł za jedną akcję. Po roku sprzedał wszystkie kupione akcje po 45 zł za jedną sztukę. Oblicz, ile zarobił na tych transakcjach po uwzględnieniu prowizji, które zapłacił. Nr czynności 2.1. 2.2. 2.3. Wypełnia Maks. liczba pkt 1 1 1 egzaminator! Uzyskana liczba pkt

4 Egzamin maturalny z matematyki Zadanie 3. (4 pkt) Korzystając z danych przedstawionych na rysunku, oblicz wartość wyrażenia: 2 2 tg β 5sin β ctgα + 1 cos α. 8 i C 6 A α β B Nr czynności 3.1. 3.2. 3.3. 3.4. Wypełnia Maks. liczba pkt 1 1 1 1 egzaminator! Uzyskana liczba pkt

Egzamin maturalny z matematyki 5 Zadanie 4. (5 pkt) Samochód przebył w pewnym czasie 210 km. Gdyby jechał ze średnią prędkością o 10 km/h większą, to czas przejazdu skróciłby się o pół godziny. Oblicz, z jaką średnią prędkością jechał ten samochód. Nr czynności 4.1. 4.2. 4.3. 4.4. 4.5. Wypełnia Maks. liczba pkt 1 1 1 1 1 egzaminator! Uzyskana liczba pkt

6 Egzamin maturalny z matematyki Zadanie 5. (5 pkt) Dany jest ciąg arytmetyczny ( a n ), gdzie n 1. Wiadomo, że dla każdego n 1 suma n początkowych wyrazów S = a1+ a2 +... + a wyraża się wzorem: a) Wyznacz wzór na n ty wyraz ciągu ( ) n b) Oblicz a 2007. c) Wyznacz liczbę n, dla której a n = 0. n n a. 2 Sn n 13n = +. Wypełnia egzaminator! Nr czynności 5.1. 5.2. 5.3. 5.4. 5.5. Maks. liczba pkt 1 1 1 1 1 Uzyskana liczba pkt

Zadanie 6. (4 pkt) Dany jest wielomian ( ) 3 2 a) Dla a = 0 i 0 Egzamin maturalny z matematyki 7 W x = 2x + ax 14x+ b. b = otrzymamy wielomian ( ) 3 W x = 2x 14x. Rozwiąż równanie 3 2x 14x= 0. b) Dobierz wartości a i b tak, aby wielomian W(x) był podzielny jednocześnie przez x 2 oraz przez x + 3. Nr czynności 6.1. 6.2. 6.3. 6.4. Wypełnia Maks. liczba pkt 1 1 1 1 egzaminator! Uzyskana liczba pkt

8 Egzamin maturalny z matematyki Zadanie 7. (5 pkt) Dany jest punkt ( 2,3) C = i prosta o równaniu y = 2x 8 będąca symetralną odcinka BC. Wyznacz współrzędne punktu B. Wykonaj obliczenia uzasadniające odpowiedź. Wypełnia egzaminator! Nr czynności 7.1. 7.2. 7.3. 7.4. 7.5. Maks. liczba pkt 1 1 1 1 1 Uzyskana liczba pkt

Egzamin maturalny z matematyki 9 Zadanie 8. (4 pkt) Na stole leżało 14 banknotów: 2 banknoty o nominale 100 zł, 2 banknoty o nominale 50 zł i 10 banknotów o nominale 20 zł. Wiatr zdmuchnął na podłogę 5 banknotów. Oblicz prawdopodobieństwo tego, że na podłodze leży dokładnie 130 zł. Odpowiedź podaj w postaci ułamka nieskracalnego. Nr czynności 8.1. 8.2. 8.3. 8.4. Wypełnia Maks. liczba pkt 1 1 1 1 egzaminator! Uzyskana liczba pkt

10 Egzamin maturalny z matematyki Zadanie 9. (6 pkt) Oblicz pole czworokąta wypukłego ABCD, w którym kąty wewnętrzne mają odpowiednio miary: A = 90, B = 75, C = 60, D = 135, a boki AB i AD mają długość 3 cm. Sporządź rysunek pomocniczy.

Egzamin maturalny z matematyki 11 Nr czynności 9.1. 9.2. 9.3. 9.4. 9.5. 9.6. Wypełnia Maks. liczba pkt 1 1 1 1 1 1 egzaminator! Uzyskana liczba pkt

12 Egzamin maturalny z matematyki Zadanie 10. (5 pkt) Dany jest graniastosłup czworokątny prosty ABCDEFGH o podstawach ABCD i EFGH oraz krawędziach bocznych AE, BF, CG, DH. Podstawa ABCD graniastosłupa jest rombem o boku długości 8 cm i kątach ostrych A i C o mierze 60. Przekątna graniastosłupa CE jest nachylona do płaszczyzny podstawy pod kątem 60. Sporządź rysunek pomocniczy i zaznacz na nim wymienione w zadaniu kąty. Oblicz objętość tego graniastosłupa.

Egzamin maturalny z matematyki 13 Wypełnia egzaminator! Nr czynności 10.1. 10.2. 10.3. 10.4. 10.5. Maks. liczba pkt 1 1 1 1 1 Uzyskana liczba pkt

14 Egzamin maturalny z matematyki Zadanie 11. (4 pkt) Dany jest rosnący ciąg geometryczny ( a n ) dla n 1, w którym a 1 Oblicz x oraz y, jeżeli wiadomo, że x+ y = 35. = x, a 2 = 14, a3 = y. Wypełnia egzaminator! Nr czynności 11.1. 11.2. 11.3. 11.4. Maks. liczba pkt 1 1 1 1 Uzyskana liczba pkt

Egzamin maturalny z matematyki 15 BRUDNOPIS