3. Mechanika punktu materialnego, kinematyka (opis ruchu), dynamika (przyczyny ruchu).

Podobne dokumenty
ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2017/18

ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2015/16

ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE LETNIM 2010/11

Zagadnienia na egzamin ustny:

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki

Treści nauczania (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne

Plan Zajęć. Ćwiczenia rachunkowe

Rok akademicki: 2013/2014 Kod: EIT s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11

TEORIA DRGAŃ Program wykładu 2016

Pole elektrostatyczne

Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13

Spis treści. Tom 1 Przedmowa do wydania polskiego 13. Przedmowa 15. Wstęp 19

Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej

1. Kinematyka 8 godzin

WYMAGANIA EDUKACYJNE FIZYKA STOSOWANA II Liceum Ogólnokształcące im. Adama Asnyka w Bielsku-Białej

podać przykład wielkości fizycznej, która jest iloczynem wektorowym dwóch wektorów.

cz. 2. dr inż. Zbigniew Szklarski

SPIS TREŚCI ««*» ( # * *»»

Wykład 14: Indukcja cz.2.

Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

ZAKRES MATERIAŁU DO MATURY PRÓBNEJ KL III

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Jan Awrejcewicz- Mechanika Techniczna i Teoretyczna. Statyka. Kinematyka

Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 2015/2016

Zakres materiału do testu przyrostu kompetencji z fizyki w kl. II

Treści dopełniające Uczeń potrafi:

Spis treści. Wstęp Część I STATYKA

Feynmana wykłady z fizyki. [T.] 1.1, Mechanika, szczególna teoria względności / R. P. Feynman, R. B. Leighton, M. Sands. wyd. 7.

FIZYKA Podręcznik: Fizyka i astronomia dla każdego pod red. Barbary Sagnowskiej, wyd. ZamKor.

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Rok akademicki: 2015/2016 Kod: EAR s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

4. Ruch w dwóch wymiarach. Ruch po okręgu. Przyspieszenie w ruchu krzywoliniowym Rzut poziomy Rzut ukośny

Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Pole elektromagnetyczne

PROGRAM INDYWIDUALNEGO TOKU NAUCZANIA DLA UCZNIÓW KLASY II

Pole elektromagnetyczne. Równania Maxwella

Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Warunki uzyskania oceny wyższej niż przewidywana ocena końcowa.

Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla szkoły ponadgimnazjalnej, tom 1

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Wykład FIZYKA II. 3. Magnetostatyka. Dr hab. inż. Władysław Artur Woźniak

VI. CELE OPERACYJNE, CZYLI PLAN WYNIKOWY (CZ. 1)

II prawo Kirchhoffa Obwód RC Obwód RC Obwód RC

Wymagania edukacyjne z przedmiotu fizyka w zakresie rozszerzonym RF-II

Kurs przygotowawczy NOWA MATURA FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY

Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak

FIZYKA klasa 1 Liceum Ogólnokształcącego (4 letniego)

Program zajęć wyrównawczych z fizyki dla studentów Kierunku Biotechnologia w ramach projektu "Era inżyniera - pewna lokata na przyszłość"

SYLABUS/KARTA PRZEDMIOTU

I. KARTA PRZEDMIOTU FIZYKA

DYNAMIKA dr Mikolaj Szopa

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Karta (sylabus) modułu/przedmiotu INŻYNIERIA MATERIAŁOWA Studia pierwszego stopnia

Szczegółowy rozkład materiału z fizyki dla klasy II gimnazjum zgodny z nową podstawą programową.

FIZYKA IV etap edukacyjny zakres rozszerzony

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

I N S T Y T U T F I Z Y K I U N I W E R S Y T E T U G D AŃSKIEGO I N S T Y T U T K S Z T A Ł C E N I A N A U C Z Y C I E L I

2. Dany jest dipol elektryczny. Obliczyć potencjał V dla dowolnego punktu znajdującego się w odległości r znacznie większej od rozmiarów dipola.

Wykład FIZYKA I. 5. Energia, praca, moc. Dr hab. inż. Władysław Artur Woźniak

Program nauczania dla szkół ponadgimnazjalnych z fizyki z astronomią o zakresie rozszerzonym K. Kadowski Operon 593/1/2012, 593/2/2013, 593/3/2013,

Prawa ruchu: dynamika

Materiał jest podany zwięźle, konsekwentnie stosuje się w całej książce rachunek wektorowy.

6. Podaj definicję wektora prędkości i wektora przyspieszenia dla ruchu prostoliniowego. Narysuj odpowiedni rysunek.

Fale elektromagnetyczne

Wykład FIZYKA I. Dr hab. inż. Władysław Artur Woźniak. Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska

Zbigniew Osiak ZADA IA PROBLEMOWE Z FIZYKI

Podstawy fizyki wykład 8

Plan wynikowy fizyka rozszerzona klasa 3a

P Y T A N I A. 8. Lepkość

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO. Wykład 9 lato 2016/17 1

Academic year: 2014/2015 Code: EEL s ECTS credits: 7. Electrical Engineering, Automatics, Computer Science and Engineering in Biomedicine

Z-ID-106. Inżynieria Danych I stopień Praktyczny Studia stacjonarne Wszystkie Katedra Matematyki i Fizyki Prof. dr hab.

Rok akademicki: 2016/2017 Kod: RIA s Punkty ECTS: 9. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

Fizyka - opis przedmiotu

Wymagania edukacyjne FIZYKA. zakres rozszerzony

Indukcja elektromagnetyczna

MECHANIKA II. Praca i energia punktu materialnego

ROZKŁAD MATERIAŁU Z FIZYKI - ZAKRES ROZSZERZONY

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych

Fizyka Program nauczania dla szkół ponadgimnazjalnych Zakres rozszerzony Ewa Przysiecka

Elektrodynamika #

Indukcja elektromagnetyczna

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO

Opis poszczególnych przedmiotów (Sylabus)

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

Zapoznanie studentów z pojęciem fali,rodzajami fal i wielkosciami opisującymi ruch falowy. Nauczenie studentów rozwiązywania zadań z ruchu falowego

Transkrypt:

ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2016/17 1. Czym zajmuje się fizyka? Podstawowe składniki materii. Charakterystyka czterech fundamentalnych oddziaływań w przyrodzie. Prawo Coulomba i prawo powszechnego ciążenia. Rola teorii i eksperymentu w fizyce. Podać i omówić przykład prostego pomiaru w fizyce. Międzynarodowy układ jednostek SI podstawowe wielkości fizyczne i ich jednostki. Praktyczna umiejętność tworzenia definicji jednostek pochodnych (1N, 1J, 1W, 1Wb). Znajomość przedrostków (np. giga, mega, nano, piko) i przykłady. Praktyczna umiejętność zamiany jednostek. 2. Rachunek wektorowy w fizyce. Cechy wektora definicja kierunku, zwrotu i wartości wektora. Wersor wektor jednostkowy. Podstawowe działania na wektorach. Praktyczna umiejętność dodawania i odejmowania wektorów (graficznie). Wektor przeciwny. Reguła równoległoboku. Praktyczna umiejętność znajdowania wypadkowego przemieszczenia i wypadkowej siły (później przyspieszenia). Rozkład wektora. Iloczyn wektora przez liczbę (definicja, konsekwencje, zastosowanie), iloczyn skalarny (definicja, konsekwencje, własności działania, zastosowanie), iloczyn wektorowy (definicja, konsekwencje, własności działania, zastosowanie). Przykłady tzw. algebry wektorów. Przykłady dowodzenia twierdzeń geometrycznych przy użyciu rachunku wektorowego. Wektor w kartezjańskim układzie współrzędnych. Praktyczna umiejętność znajdowania długości i kierunku wektora w układzie kartezjańskim, obliczania iloczynu skalarnego i wektorowego. Kiedy dwa wektory są równe? Zastosowanie rachunku wektorowego w fizyce. Podział wielkości fizycznych na wektorowe i skalarne. Definicje wielkości fizycznych jako przykładowych dla działań mnożenia: pędu (iloczyn wektora przez liczbę), pracy (iloczyn skalarny), momentu siły, momentu pędu, siły Lorentza (iloczyn wektorowy). 3. Mechanika punktu materialnego, kinematyka (opis ruchu), dynamika (przyczyny ruchu). Ruch prostoliniowy. Definicje: położenia i przemieszczenia, prędkości średniej i chwilowej, przyspieszenia średniego i chwilowego. Praktyczna umiejętność obliczania prędkości chwilowej i średniej, przyspieszenia chwilowego i średniego. Praktyczna umiejętność wykonywania wykresów. Konieczna jest podstawowa umiejętność obliczania pochodnych funkcji i całkowania. Graficzna interpretacja prędkości chwilowej i średniej. Graficzne wyznaczanie prędkości chwilowej i przyspieszenia chwilowego. Ruch ze stałym przyspieszeniem równania ruchu. Całkowanie równań ruchu. Spadek swobodny i rzut pionowy. Ruch krzywoliniowy. Wektor położenia, przemieszczenia, prędkość chwilowa i średnia jako wektory. Podstawowe wielkości opisujące ruch punktu materialnego (ich definicje, znaczenie, jednostki, czy są to wielkości skalarne czy wektorowe, rysunki). Różnice pomiędzy torem, położeniem, przemieszczeniem, drogą. Wyjaśnienie dlaczego w ruchu krzywoliniowym zawsze 1

występuje przyspieszenie. Definicja i znaczenie przyspieszenia normalnego i stycznego. Definicja promienia krzywizny. Przykłady ruchów krzywoliniowych: szczegółowa analiza ruchu po okręgu i rzutu ukośnego (rzut poziomy jako przypadek rzutu ukośnego). Graficzne znajdowanie przyspieszenia w ruchu jednostajnym po okręgu. Wykazać, że w ruchu niejednostajnym oprócz przyspieszenia normalnego występuje również przyspieszenie styczne. Definicje prędkości kątowej i przyspieszenia kątowego. Związek pomiędzy prędkością liniową i kątową. Przyspieszenie dośrodkowe. Praktyczna umiejętność znajdowania równań ruchu i toru punktu materialnego. Praktyczna umiejętność znajdowania prędkości i przyspieszenia oraz jego składowych. 4. Mechanika - zasady dynamiki dla punktu materialnego. Zasady dynamiki Newtona, zasada bezwładności, inercjalny i nieinercjalny układ odniesienia, równanie ruchu jego konstrukcja, przykłady i rozwiązanie, uogólniona zasada dynamiki, zasady dynamiki w nieinercjalnych układach odniesienia, siły pozorne (siły bezwładności), przykłady: ciężar pozorny w windzie, rotor, czy Ziemia jest układem inercjalnym i dlaczego, siła odśrodkowa, siła Coriolisa. 5. Ruch i siła. Siła naprężenia, siły oporu przy przepływie turbulentnym i laminarnym, prędkość graniczna, lepkość, siła Stokesa, siła wyporu (prawo Archimedesa). Właściwości siły tarcia, tarcie statyczne i kinetyczne. Siła ciężkości, pole grawitacyjne (przypadki: pola jednorodnego i pola o symetrii sferycznej), definicja wektora natężenia pola grawitacyjnego, od czego zależy natężenie pola grawitacyjnego, porównanie pomiędzy wektorem przyspieszenia grawitacyjnego i wektorem natężenia pola grawitacyjnego, ruch ciała w polu grawitacyjnym, rzut ukośny (rzut poziomy). Praktyczna umiejętność znajdowania równań ruchu, formułowania warunków początkowych, znajdowania równań toru; zasięg rzutu, maksymalna wysokość na jaką wznosi się ciało, zastosowanie zasady zachowania energii mechanicznej; wpływ oporu na tor rzutu ukośnego. 6. Siła i energia. Energia kinetyczna, związek energii kinetycznej z pracą. Definicja pracy praca siły zależnej od położenia. Definicja mocy chwilowej i średniej. Obliczanie pracy wykonanej nad cząstką swobodną, praca siły harmonicznej. Siła zachowawcza, przykłady sił i pól zachowawczych, definicja energii potencjalnej. Siła centralna definicja i konsekwencje. Jak obliczać energię potencjalną? Praktyczna umiejętność obliczania pracy po dowolnej drodze (całka krzywoliniowa). Praktyczna umiejętność sprawdzania czy dane pole jest polem zachowawczym. Związek pomiędzy siłą a energią potencjalną. Operator nabla, gradient w kartezjańskim układzie odniesienia. Praktyczna umiejętność znajdowania siły (obliczania gradientu) przy danej energii potencjalnej. Równowaga: trwała, nietrwała i obojętna. Praktyczna umiejętność znajdowania położenia równowagi. Związek pracy i energii mechanicznej. Zasada zachowania energii mechanicznej. Znajdowanie równania ruchu oscylatora harmonicznego z zasady zachowania energii mechanicznej. 2

Praktyczna umiejętność korzystania z zasady zachowania energii. 7. Kinematyka i dynamika ruchu obrotowego bryły sztywnej. Moment pędu dla ruchu pod wpływem siły centralnej. Moment pędu bryły sztywnej definicja. Związek pomiędzy momentem pędu i wektorem prędkości kątowej. Tensor momentu bezwładności definicja i interpretacja. Praktyczna umiejętność znajdowania tensora momentu bezwładności dla dyskretnych i ciągłych rozkładów masy. Przykłady: powłoka kulista, kula, pręt, dysk, prostokąt, walec (dla ambitnych). Twierdzenie Steinera wraz z założeniami. Energia kinetyczna bryły sztywnej. Toczenie bez poślizgu opis ruchu i przyczyny. Praktyczna umiejętności obliczania całkowitej energii kinetycznej i zasad dynamiki z zastosowaniu do toczenia bez poślizgu. Równania Eulera. Precesja swobodna na przykładzie kuli. Zasada zachowania momentu pędu. 8. Oscylator harmoniczny. Własności sprężyste ciał stałych. Odkształcenie i naprężenie. Rodzaje odkształceń. Prawo Hooke a. Definicja siły harmonicznej. Ogólne, różniczkowe równanie oscylatora harmonicznego wyprowadzenie z zasad dynamiki, częstość drgań. Od czego zależy częstość drgań? Rozwiązanie równania prostego oscylatora harmonicznego. Wielkości charakterystyczne występujące w rozwiązaniu oscylatora harmonicznego i związki między nimi: amplituda, częstość, częstotliwość, okres drgań, faza, faza początkowa. Prędkość i przyspieszenie w ruchu harmonicznym. Energia w ruchu harmonicznym. Praktyczna umiejętność analizy zależności wielkości opisujących oscylator harmoniczny od czasu i położenia. Przykłady oscylatorów harmonicznych i konstrukcja równań ruchu (od czego zależy częstość, do czego służy wahadło?): wahadło torsyjne, wahadło matematyczne i wahadło fizyczne (zredukowana długość wahadła, środek wahań). Oscylator harmoniczny tłumiony (równanie ogólne, rozwiązanie periodyczne i parametry charakteryzujące tłumienie: współczynnik tłumienia, czas relaksacji). Od czego zależy amplituda i częstość oscylatora tłumionego? Logarytmiczny dekrement tłumienia. Przypadek krytyczny i przypadek dużego tłumienia (drgania aperiodyczne). Straty mocy a współczynnik dobroci. Ogólne równanie różniczkowe oscylatora tłumionego z wymuszeniem. Analiza częstości, amplitudy i fazy dla oscylatora z wymuszeniem. Dwa rodzaje rezonansu praktyczna umiejętność znajdowania maksimum amplitudy wychylenia z położenia równowagi i maksimum amplitudy prędkości. Dwa rodzaje warunków rezonansowych. Umiejętność rysowania i analizy krzywych rezonansowych. Analogia do obwodów RLC. Składanie drgań harmonicznych: w tym samym kierunku (interferencja, dudnienia) i we wzajemnie prostopadłych kierunkach (krzywe Lissajous). Praktyczna umiejętność znajdowania wyniku złożenia dowolnych drgań harmonicznych. 9. Elektrostatyka. Miejsce elektrostatyki w schemacie fundamentalnych oddziaływań w przyrodzie. Kwantowa natura ładunku elektrycznego; zasada zachowania ładunku elektrycznego przykłady. Prawo Coulomba. 3

Definicja wektora natężenia pola elektrycznego. Zasada superpozycji. Praktyczna umiejętność wyznaczania: siły wypadkowej działającej na ładunek w obecności innych ładunków punktowych, wektora natężenia pola elektrycznego pochodzącego od rozkładu dyskretnego ładunku (w tym dipol elektryczny). Ciągły rozkład ładunku (definicje gęstości liniowej, powierzchniowej i objętościowej, praktyczna umiejętność znajdowania wektora natężenia pola elektrycznego od danego, ciągłego rozkładu ładunku, zwłaszcza liniowego, w oparciu o prawo Coulomba i zasadę superpozycji). Strumień wielkości wektorowej (definicja i interpretacja, strumień pola elektrycznego i magnetycznego; wskazać, które z równań Maxwella są związane ze strumieniami pól, jakich?). Praktyczna umiejętność obliczania strumienia pola elektrycznego. Definicja operatora dywergencji - związek dywergencji ze strumieniem. Praktyczna umiejętność znajdowania dywergencji w układzie kartezjańskim. Twierdzenia matematyczne dotyczące dywergencji i ich zastosowanie w fizyce (twierdzenie Gaussa-Ostrogradskiego, obliczanie: div(grad V), div (rot w) Prawo Gaussa w postaci całkowej. Prawo Gaussa a prawo Coulomba. Praktyczna umiejętność korzystania z tego prawa dla rozkładów ładunku o symetrii cylindrycznej i sferycznej. Pole elektryczne wytworzone przez naładowany przewodnik lub izolator. Potencjał pola (definicja i dla jakich pól istnieje). Jakie korzyści wnosi wprowadzenie pojęcia potencjału? Związek potencjału z wektorem natężenia pola elektrycznego. Różnica potencjałów (napięcie) jako całka krzywoliniowa z pola elektrycznego. Związek z pracą. Co to jest elektronowolt? Powierzchnie ekwipotencjalne Potencjał jednorodnego pola elektrycznego. Wyprowadzenie wzoru na potencjał pola wytworzonego przez ładunek punktowy. Praktyczna umiejętność obliczania potencjału pola wytworzonego przez układ ładunków punktowych ( w tym dipol). Moment dipolowy. Zachowanie dipoli w polu elektrycznym: moment siły działającej na dipol, energia potencjalna dipola w polu. Praktyczna umiejętność znajdowania potencjału pola elektrycznego od danego, ciągłego rozkładu ładunku (symetria cylindryczna, sferyczna) na podstawie znajomości natężenia pola elektrycznego. Pojemność (definicja, jednostki, analogia do objętości zbiornika). Kondensator i jego znaczenie w obwodzie elektrycznym. Połączenia równoległe i szeregowe kondensatorów. Praktyczna umiejętność rozwiązywania zadań z obwodów elektrycznych zawierających kondensator. Od czego zależy pojemność kondensatora? Od jakich wielkości fizycznych nie zależy (czy na pojemność ma wpływ zwiększanie napięcia lub ładunku na kondensatorze?) Wyprowadzenie wzoru na pojemność kondensatora dla kondensatora płaskiego (kondensatora cylindrycznego, sferycznego zadania). Energia zmagazynowana w polu elektrycznym i gęstość energii (wyprowadzenie wzorów) Podobieństwa i różnice pomiędzy polem elektrostatycznym i polem grawitacyjnym stałym w czasie (np. polem wytworzonym przez Ziemię) 10. Prąd elektryczny Kiedy pole elektryczne wywołuje przepływ ładunku? Jakie warunki muszą być spełnione aby wystąpił prąd elektryczny? 4

Natężenie prądu (jednostka, definicja, czy amper jest jednostką podstawową układu SI, jaka jest definicja ampera?) Gęstość prądu (definicja, czy jest wektorem czy skalarem, związek z natężeniem prądu, prawo ciągłości przepływu i jego konsekwencje). Praktyczna umiejętność obliczania natężenia prądu w przypadku gdy gęstość prądu nie jest stała w przestrzeni. 11. Pole magnetyczne Definicja wektora indukcji pola magnetycznego (przypomnienie) i interpretacja wzoru. Dlaczego definicja ta nie jest podobna do definicji wektora natężenia pola elektrycznego? Ruch ładunku w polu magnetycznym. Czy pole magnetyczne może zmienić energię kinetyczną cząstki naładowanej? Dowód. Podać przykłady torów cząstki naładowanej w polu magnetycznym. Ruch ładunku w obszarze, w którym współistnieją pola: elektryczne i magnetyczne. Wzór na siłę Lorentza. Szczególny przypadek skrzyżowanych pól E i B. Gdzie i po co stosuje się skrzyżowane pola E i B (doświadczenie Thomsona, zjawisko Halla, cyklotron, synchrotron). Siła elektrodynamiczna i jej zastosowania (wyjaśnić jak działa silnik i czym różni się od prądnicy). Moment magnetyczny obwodu z prądem (definicja, pojęcie dipola magnetycznego, moment siły działającej na dipol magnetyczny w zewnętrznym polu, energia potencjalna dipola magnetycznego w zewnętrznym polu, analogia do dipola elektrycznego). Prąd elektryczny jako źródło pola magnetycznego omówić dowody doświadczalne. Prąd elektryczny jako źródło pola magnetycznego opis teoretyczny (prawo Biota-Savarta, prawo Ampere a). W jakich sytuacjach stosujemy prawo Biota-Savarta a w jakich prawo Ampere a. Do jakich praw w elektrostatyce te prawa można porównać pod względem sposobu stosowania? Praktyczna umiejętność obliczania wartości indukcji pola magnetycznego dla danego przewodnika z prądem (przewodnik kołowy, nieskończenie długi przewodnik prostoliniowy) korzystając z prawa Biota-Savarta. Praktyczna umiejętność obliczania wartości indukcji pola magnetycznego dla danego przewodnika z prądem (nieskończenie długi przewodnik prostoliniowy wewnątrz i na zewnątrz przewodnika, wewnątrz idealnego solenoidu, wewnątrz toroidu) korzystając z prawa Ampere a. Pojęcie krążenie dla pola wektorowego a rotacja pola. Definicja rotacji. Twierdzenie Stokes a. Postać różniczkowa prawa Ampere a. Operator rotacji w układzie kartezjańskim. Praktyczna umiejętność obliczania rotacji. Twierdzenia matematyczne dotyczące rotacji np. rot (grad V). Pole zachowawcze a rotacja. Porównanie własności pól elektrostatycznego i magnetycznego (wskazać podobieństwa i różnice, wyjaśnić ich przyczyny). Prawo Gaussa dla magnetyzmu. Co to jest monopol magnetyczny i czy istnieje? 12. Równania Maxwella Czy pole magnetyczne może stać się źródłem pola elektrycznego? Jaki to efekt? Czy pole elektryczne może stać się źródłem pola magnetycznego? Jaki to efekt? Doświadczenia, w których ujawnia się zjawisko indukcji elektromagnetycznej. Co jest cechą wspólną wszystkich tych zjawisk. Jaka wielkość fizyczna zmienia się we wszystkich tych doświadczeniach. Prawo Faraday a. Zapis i interpretacja. 5

Reguła Lenza. Praktyczna umiejętność posługiwania się regułą Lenza. Trzy zasadnicze sposoby uzyskania indukowanej siły elektromotorycznej. Który z tych sposobów znalazł najpowszechniejsze zastosowanie. Gdzie? Szczegółowy opis zjawiska. Indukowane pole elektryczne a indukowana siła elektromotoryczna. Kiedy wystąpi prąd indukowany? Jaki jest charakter indukowanego pola elektrycznego? Czy pole to jest zachowawcze? Uzasadnij. Własności indukowanej siły elektromotorycznej. Postać różniczkowa prawa Faraday a. Interpretacja. Obliczanie wartości indukowanego pola elektrycznego w przypadku gdy jednorodne pole magnetyczne, ograniczone do obszaru kołowego o promieniu R, zmienia się w czasie z szybkością db/dt. Rozważyć również całkowicie symetryczną sytuację, w której należy obliczyć wartość indukowanego pola magnetycznego w wyniku zmian w czasie pola elektrycznego z szybkością de/dt (jaki to jest efekt?) Samoindukcja jako szczególny przykład zjawiska Faraday a. Wyprowadzenie liniowej zależności strumienia pola magnetycznego od natężenia prądu płynącego przez cewkę indukcyjną. Wyprowadzenie wzoru na siłę elektromotoryczną samoindukcji. Różne sposoby definiowania indukcyjności (jednostki, analogia do pojemności elektrycznej). Od czego zależy indukcyjność a od czego nie zależy (zastosować ten sam schemat myślowy co w przypadku pojemności). Znaczenie indukcyjności w obwodzie LC. Wyprowadzenie równania obwodu LC z prawa Kirchhoffa. Energia zmagazynowana w polu magnetycznym i gęstość energii pola magnetycznego (analogia do energii pola elektrycznego, wykorzystanie wzorów na energię do wyprowadzenia równania obwodu LC oscylator harmoniczny). Argumentacja za wprowadzeniem poprawki Maxwella do prawa Ampere a. Prawo Ampere a Maxwella (postać całkowa i różniczkowa). Sens fizyczny poprawki Maxwella prąd przesunięcia i jego definicja. Prąd rzeczywisty a prąd przesunięcia. Znajomość równań Maxwella w postaci całkowej i różniczkowej (obowiązkowa i będzie sprawdzana w pierwszej kolejności) Zapis matematyczny ale też (a raczej przede wszystkim) interpretacja (czytamy prawa Maxwella od prawej do lewej, przyczyny i skutki). Przejście matematyczne od postaci całkowej do różniczkowej (odpowiedź na pytanie: co wnosi postać różniczkowa, a co całkowa, czy te postaci niosą tę samą informację?) Uwaga: Proszę nie zapomnieć o zadanych w ramach wykładu zadaniach i pytaniach!!!! Materiał w nich zawarty obowiązuje również przy egzaminie. 6