Bioinformatyka II Modelowanie struktury białek



Podobne dokumenty
Bioinformatyka II Modelowanie struktury białek

Przewidywanie struktury białek: od modelowania opartego o szablony. do rekombinacji fragmentów metodą dr Frankensteina

Spis treści. Przedmowa... XI. Wprowadzenie i biologiczne bazy danych. 1 Wprowadzenie Wprowadzenie do biologicznych baz danych...

Bioinformatyka wykład 9

Modelowanie homologiczne

Bioinformatyka wykład 10

Bioinformatyka wykład 8, 27.XI.2012

PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI

na podstawie artykułu: Modeling Complex RNA Tertiary Folds with Rosetta Clarence Yu Cheng, Fang-Chieh Chou, Rhiju Das

PODSTAWY BIOINFORMATYKI WYKŁAD 4 DOPASOWANIE SEKWENCJI

Modelowanie białek ab initio / de novo

Modelowanie białek ab initio / de novo

Modelowanie białek ab initio / de novo

Generator testów bioinformatyka wer / Strona: 1

Badanie długości czynników sieciujących metodami symulacji komputerowych

Komputerowe wspomaganie projektowanie leków

Bioinformatyka wykład 3.I.2008

4.1 Hierarchiczna budowa białek

Bioinformatyka wykład 10.I.2008

Bioinformatyka wykład 12, 18.I.2011 Białkowa bioinformatyka strukturalna c.d.

Komputerowe wspomaganie projektowania leków

Przyrównanie sekwencji. Magda Mielczarek Katedra Genetyki Uniwersytet Przyrodniczy we Wrocławiu

BIOINFORMATYKA. edycja 2016 / wykład 11 RNA. dr Jacek Śmietański

PRZYRÓWNANIE SEKWENCJI

Statystyczna analiza danych

Dopasowanie sekwencji (sequence alignment)

Bioinformatyka wykład 8

Porównywanie i dopasowywanie sekwencji

Struktura i funkcja białek (I mgr)

P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H

Przyrównywanie sekwencji

Porównywanie i dopasowywanie sekwencji

Oddziaływanie leków z celami molekularnymi i projektowanie leków

Żwirki i Wigury 93, Warszawa TEL.: , FAX: , E- MAIL: Dr hab. Joanna T

Wykorzystanie bazy Cambridge Structural Database w poszukiwaniu substancji hamujących aktywność enzymatyczną

Przegląd budowy i funkcji białek

Wybrane techniki badania białek -proteomika funkcjonalna

Dokowanie molekularne. Karol Kamel Uniwersytet Warszawski

TATA box. Enhancery. CGCG ekson intron ekson intron ekson CZĘŚĆ KODUJĄCA GENU TERMINATOR. Elementy regulatorowe

Wprowadzenie do bioinformatyki

Bioinformatyka. Program UGENE

Translacja i proteom komórki

Structure and Charge Density Studies of Pharmaceutical Substances in the Solid State

Warszawa, 25 sierpnia 2016

RMSD - Ocena jakości wybranych molekularnych struktur przestrzennych

października 2013: Elementarz biologii molekularnej. Wykład nr 2 BIOINFORMATYKA rok II

Metoda pomiaru site-centric

Zastosowanie banku asferycznych pseudoatomów w badaniach oddziaływań elektrostatycznych palców cynkowych z DNA

SCENARIUSZ LEKCJI BIOLOGII Z WYKORZYSTANIEM FILMU KSZTAŁT BIAŁEK.

TRANSKRYPCJA - I etap ekspresji genów

Materiały pochodzą z Platformy Edukacyjnej Portalu

Instrukcja. Elektronicznej Skrzynki Podawczej

SIEĆ NEURONOWA DO OCENY KOŃCOWEJ PRZEDSIĘWZIĘCIA (PROJEKTU)

Instrukcja do Gry Fold it

Dopasowanie sekwencji Sequence alignment. Bioinformatyka, wykłady 3 i 4 (19, 26.X.2010)

Bioinformatyka. z sylabusu... (wykład monograficzny) wykład 1. E. Banachowicz. Wykład monograficzny Bioinformatyka.

Kombinatoryczna analiza widm 2D-NOESY w spektroskopii Magnetycznego Rezonansu Jądrowego cząsteczek RNA. Marta Szachniuk

Profil pracy wariant konfiguracji programu obejmujący m.in język, walutę, konto allegro, szablon aukcji, zdefiniowane koszty wysyłki itp.

7. Formularze master-detail

Ocena jakości modeli strukturalnych białek w oparciu o podobieństwo strukturalne i semantyczny opis funkcji w ontologii GO

Aby uruchomić program RasMol, wystarczy dwukrotnie kliknąć lewym klawiszem myszy na ikonie:

Przewidywanie struktury kanału białkowego z wykorzystaniem probabilistycznych gramatyk formalnych oraz modelu ciągłego przepływu jonów

Przybliżone algorytmy analizy ekspresji genów.

MultiSETTER: web server for multiple RNA structure comparison. Sandra Sobierajska Uniwersytet Jagielloński

Komputerowe wspomaganie projektowanie leków

Sponsorem wydruku schematu odpowiedzi jest wydawnictwo

6. Z pięciowęglowego cukru prostego, zasady azotowej i reszty kwasu fosforowego, jest zbudowany A. nukleotyd. B. aminokwas. C. enzym. D. wielocukier.

Do zapisu danych w pliku PDB używa się znaków ASCII o graficznej reprezentacji czyli:

Informacje. W sprawach organizacyjnych Slajdy z wykładów

Generator testów Biochemia wer / Strona: 1

PODSTAWY BIOINFORMATYKI 8 DOPASOWYWANIE SEKWENCJI AMINOKWASÓW

Bioinformatyka wykład 11, 11.I.2011 Białkowa bioinformatyka strukturalna c.d.

SCENARIUSZ LEKCJI CHEMII LUB BIOLOGII Z WYKORZYSTANIEM FILMU SPOSÓB NA IDEALNĄ PIANĘ

Pomoc dla systemu WordPress

Przewidywanie struktur białek

FTP przesył plików w sieci

Moduł Media backup oraz konfiguracja serwera zapasowego

Modelowanie części w kontekście złożenia

Dopasowanie sekwencji Sequence alignment. Bioinformatyka, wykłady 3 i 4 (16, 23.X.2012)

Przygotowanie plików do druku

MATEMATYKA EGZAMIN STANDARDOWY Wymagania konkursowe 1. Założenia ogólne

SolidWorks 2017 : projektowanie maszyn i konstrukcji : praktyczne przykłady / Jerzy Domański. Gliwice, cop Spis treści

Księgarnia PWN: A.D. Baxevanis, B.F.F. Ouellette Bioinformatyka

Wybrane techniki badania białek -proteomika funkcjonalna

JANUSZ M. BUJNICKI. Tom Numer 2 3 ( ) Strony

Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r=

Jak obracać trójkąt, by otrzymać bryłę o największej. objętości?

Uwaga! Poniższy dokument jest dokumentem pomocniczym do wypełniania wniosku. Należy go stosować łącznie z Instrukcją wypełniania wniosku.

Naszym zadaniem jest rozpatrzenie związków między wierszami macierzy reprezentującej poziomy ekspresji poszczególnych genów.

etyloamina Aminy mają właściwości zasadowe i w roztworach kwaśnych tworzą jon alkinowy

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

Instrukcja obsługi modułu MPlatform.

Bioinformatyka Laboratorium, 30h. Michał Bereta

Praca z systemem POL-on. Zaznaczanie toków do eksportu.

Projektowanie Nowych Chemoterapeutyków

Aminokwasy, peptydy i białka. Związki wielofunkcyjne

Wydział Chemiczny Wybrzeże Wyspiańskiego 27, Wrocław. Prof. dr hab. Ilona Turowska-Tyrk Wrocław, r.

Opis ćwiczeń zrealizowanych podczas szkolenia

Białka - liniowe kopolimery. złożone z aminokwasów. Liczba rodzajów białek - nieznana

Dokonane w latach sześćdziesiątych odkrycie, w

Transkrypt:

Bioinformatyka II Modelowanie struktury białek 1. Który spośród wymienionych szablonów wybierzesz do modelowania dla każdego z podanych przypadków? Dlaczego? Struktura krystaliczną czy NMR (to samo białko, ta sama rozdzielczość)? Strukturę o rozdzielczości 3.2 Å czy 1.8Å? Forma z ligandem czy bez? Białko w kompleksie z DNA czy bez DNA? 2. Jakie błędy popełniono w modelach przedstawionych na rysunkach? Które (2) z nich są najpoważniejsze? (na czerwono przedstawiono model, na niebiesko szablon) (najczęstsze błędy podczas modelowania to: wybór złego szablonu, złe przyrównanie, błędny wybór pętli, źle wybrany rotamer, drobne różnice wynikające z przebiegu modelowania)

3. Otwórz plik T0276.html (wynik metaservera dostępnego na https://www.genesilico.pl/meta2/) i odpowiedz na pytania: Z jakich domen zbudowane jest białko? Podaj ich granice Jaka jest struktura drugorzędowa tego białka? Czy posiada ono regiony nieuporządkowane? Jeśli tak, to podaj ich zasięg Czy metody do identyfikacji zwoju są zgodne w identyfikacji najlepszego szablonu do modelowania tego białka? Który szablon wybierze do modelowania tego białka? Dlaczego? 4. Odpowiedz na pytania dotyczące wybranego przez Ciebie szablonu: Jaki jest procent identyczności między jego sekwencją a sekwencją celu? Jakie będzie to modelowanie: homologiczne, porównawcze, de Novo? Jaka jest rozdzielczość tej struktury? Jaką techniką rozwiązano tą strukturę? Jaki jest zwój tego białka wg bazy scop? Jaki to typ enzymu wg klasyfikacji EC? (http://www.chem.qmul.ac.uk/iubmb/enzyme/) Co oznacza id tego enzymu? 5. Jak bez użycia metod do oceny jakości modeli sprawdzić czy model jest prawidłowy? 6. Prawda czy fałsz? Podczas przygotowywania przyrównania sekwencji celu i szablonu nie należy wstawiać przerw do struktur drugorzędowych Jeśli białko jest zbudowane z kilku domen, to do modelowania najlepiej użyć szablon również zbudowany z kilku domen, a jeśli taki nie istnieje, to modelowanie należy przeprowadzać dla każdej domeny oddzielnie Pętle w modelu powinny układać się do środka białka Jakość modelu homologicznego silnie zależy od podobieństwa sekwencji celu i szablonu Jeśli potencjalny szablon do modelowania wykazuje bardzo niskie podobieństwo sekwencyjne do celu, to nie nadaje się do budowy modelu Aminokwasy hydrofilowe powinny znajdować się w środku białka, zagrzebane w strukturze

Wybór szablonu jest kluczowym etapem podczas modelowania białek tj. w oparciu o błędny szablon nigdy nie powstanie dobry model Meta serwer to narzędzie, które wysyła zapytanie do różnych metod i gromadzi ich wyniki w postaci rankingu Najbardziej konserwowane w toku ewolucji struktur są elementy drugorzędowe i miejsca katalityczne Modele wysokiej jakości (porównywalne ze strukturami NMR) można zbudować gdy podobieństwo sekwencji celu i szablonu jest bardzo wysokie (>50%) Model homologiczny nigdy nie będzie bliższy strukturze natywnej niż szablon użyty do modelowania Można zbudować całkowicie błędny model wykazujący idealną stereochemię (długości wiązań, wartości kątów) Znanych jest wiele przykładów białek homologicznych, które zachowały uderzające podobieństwo strukturalne mimo całkowitej utraty podobieństwa sekwencji (porównaj struktury i sekwencje RNazy4 i RNazyA pobierz te struktury i postępuj jak w punkcie 10.) 7. Przyporządkuj narzędzie, do wykonywanej czynności: Modelowanie de Novo Rosetta Program ustala odległości i kąty pomiędzy atomami szablonu i następnie przenosi je jako więzy przestrzenne na odpowiadające im atomy homologicznych aminokwasów celu. Model budowany jest tak, aby zminimalizować naruszenie wszystkich więzów. W końcowym etapie budowy modelu przeprowadzana jest minimalizacja energii w polu siłowym CHARMM22 aby zapewnić poprawną stereochemię i korzystne oddziaływania pomiędzy grupami funkcyjnymi. Program dobrze sprawdza się w modelowaniu odległych homologów oraz gdy konieczne jest równoczesne zastosowanie wielu szablonów strukturalnych. Przeglądarka do struktur psipred, sam, sable, jnet W oparciu o przyrównanie sekwencyjne program ustala regiony konserwowane, w których konformacja łańcucha głównego nie zmieni się lub zmieni niewiele i po prostu kopiuje ich koordynaty. Taki niepełny model używany jest jako rusztowanie do wymodelowania insercji i delecji poprzez wstawienie z bazy danych takich fragmentów struktury, których końce mają podobną odległość, co końce rusztowania i których sekwencja najbardziej przypomina sekwencję modelowanego odcinka. Program nadaje się do modelowania białek o wysokim podobieństwie sekwencji, zwłaszcza w oparciu o jeden szablon i gdy liczba insercji i delecji w sekwencji celu jest niewielka. Metody threadingowe tmpred Metody identyfikujące odsetek reszt aminokwasowych znajdujących się na powierzchni dostępnej dla rozpuszczalnika. Dany aminokwas może przyjmować jeden z dwóch stanów: B- zagrzebany

oraz - na powierzchni. Program do modelowania homologicznego 3dpssm, fugue, genthreader Narzędzie do wizualizacji struktur, umożliwia także wygenerowanie projektu służącego jako dane wejściowe dla programu do modelowania (zawiera strukturę szablonu oraz przyrównanie sekwencji celu i szablonu). Program do modelowania homologicznego w oparciu o więzy przestrzenne Modeller Program do modelowania białek bez korzystania z szablonu, budujący modele z krótkich fragmentów znanych struktur tworzących bibliotekę możliwych konformacji. Identyfikacja helis transbłonowych ffas, sam, pdbblast Metody do weryfikacji modeli teoretycznych. Oceniają takie cechy jak geometria, stereochemia czy kompatybilność charakteru fizykochemicznego danego aminokwasu z kontekstem strukturalnym, w jakim został on umieszczony. Identyfikacja domen InterPro, CDD Metody zbierające wyniki z innych metod; oceniające wygenerowane przez nie wyniki i tworzące własny ranking z dostępnych danych! Przewidywanie struktury drugorzędowej Metamqap, Verify3D, Proq Metody rozpoznawania zwoju opierające się jedynie na podobieństwie sekwencyjnym celu i szablonu, nie uwzględniając informacji o strukturze szablonu. Często jako dodatkowe elementy oceny wykorzystuje się metaprofile zawierające przewidywaną strukturę 2D, przewidywaną solwatację itp. Metody do badania solwatacji Deep View Metody rozpoznawania zwoju, które w swojej funkcji oceniającej prawdopodobieństwo, że dana struktura jest szablonem zawierają oszacowanie kompatybilności sekwencji celu z doświadczalnie określoną strukturą. Do oceny kompatybilności korzystają z potencjałów fizykochemicznych aby obliczyć energię oddziaływania aminokwasów celu gdy badana sekwencja jest optymalnie dopasowana do rusztowania jakie stanowi potencjalny szablon. Metody rankingowe pcons Programy przeszukujące bazy danych w celu identyfikacji domen w sekwencji. Przewidywanie nieuporządkowania Sable, jnet, profseq Identyfikacja regionów, które nie tworzą zdefiniowanej struktury i występują jako populacja różniących się od siebie konformacji. Przewidywanie lokalizacji tych regionów może dać cenne wskazówki do przewidywania struktury 3D białka oraz identyfikacji miejsc oddziaływania z innymi cząsteczkami. Ocena modelu disembl, Identyfikacja białek o charakterystycznej budowie tj.

disopred, coils, pondr segmenty hydrofobowe są przeplatane naprzemiennie zewnętrznymi elementami hydrofilowymi. Metody do rozpoznawania zwoju (sekwencyjne) Swiss-model Metody do identyfikacji alfa helis, beta wstęg i pętli w zadanej sekwencji. 8. Otwórz plik p1.pdb i odpowiedz na pytania: Czy sekwencja celu i szablonu zostały do siebie przyrównane zgodnie z przewidywaniem meta serwera? Czy w przyrównaniu popełniono jakieś błędy? Jeśli tak, to jak je poprawić? 9. Jakie sytuacje przedstawiono na rysunkach?

10. Porównaj modele wygenerowane w oparciu o to samo przyrównanie (p1.pdb) przez Modeler (seq1_openmodeller ) i Swiss-Model (model_swiss.pdb) (W deep view załaduj obie struktury i skorzystaj z opcji Fit Magic Fit; następnie Ctrl+G, Color by Lyer): Czym się różnią? Porównaj model ze strukturą 1WKC. Czy model jest podobny do rzeczywistej struktury białka? Jakie widać różnice? 11. Uzupełnij schemat: Sekwencja celu Rozpoznawanie zwoju metody rozpoznawania zwoju (FR) Modelowanie de novo (np. Rosetta) Wybór szablonu Ocena jakości modelu (np. Verify3D, MetaMQAP) Model Przyrównanie cel-szablon (np. Deep View) Budowa modelu (np. Modeller, Swiss-Model) 12. Modelowanie białek na przykładzie gry foldit! Odpowiedz na pytania. Powodzenia!!! Jakie są etapy modelowania? Dlaczego ważna jest analiza łańcuchów bocznych?

W czym może pomóc uwidocznienie wiązań wodorowych podczas budowy modelu? A mostków siarczkowych? Na jakie rzeczy/cechy zwracają uwagę autorzy gry podczas kolejnych etapów modelowania?