Inżynieria Chemiczna i Bio-Procesowa --------------------------------------------- Techniki Rozdzielania Mieszanin -- wykład podsumowujący -- prof. M. Kamiński 2017-18
OPERACJE i PROCESY WYMIANY MASY ROZDZIELANIE / OCZYSZCZANIE / OTRZYMYWANIE operacja jednostkowa / proces -- procedury jedno- / wielostopniowe --
PRZEWODY RUROWE WARSTWY POROWATE \ Profil przepływu - powtórzenie Opór przepływu - powtórzenie Dyspersja masy podczas przepływu w: - rurociągach / kanałach nowy materiał - warstwach porowatych nowy materiał TRM OPERACJE WYMIANY MASY - powiązane z HYDRODYNAMICZNYMI - w przestrzeni kolumny, w której zachodzi wymiana masy - w modułach pomocniczych, w tym, w przewodach wlotowych / wylotowych, podgrzewaczach / chłodnicach / skraplaczach. strumieni płynów Zasady realizacji operacji sorpcji desorpcji : - wsadowo okresowo, w sposób półciągły, - elucyjnie w sposób okresowy, pół-ciągły, ciągły, - izotermicznie, izokratycznie, gradientowo
PROFIL PRZEPŁYWU PŁYNU / OPORY PRZEPŁYWU w PRZEWODACH (RUROCIĄGACH) / WARSTWACH POROWATYCH -- Przypomnienie z pierwszego semestru -- A ruch laminarny (uwarstwiony) B ruch burzliwy (wirowy) Re<2300 Re>3000 (10 000) W warunkach przemysłowych dąży się z zasady do utrzymywania warunków przepływu burzliwego w rurociągach / aparatach oprócz kolumn z mikro-ziarnistymi wypełnieniami. W warunkach laboratoryjnych, szczególnie podczas przepływu cieczy z powodu względnie wysokich lepkości oraz niskich wartości średnic przewodów rurowych uzyskiwanie warunków ruchu burzliwego cieczy w przewodach rurowych - nie jest najczęściej możliwe. W przypadku przepływu gazu w przewodach rurowych laboratoryjnych układów reaktorowych ruch gazu ma najczęściej charakter słabo burzliwy. W warstwach porowatych tak, w warunkach przemysłowych ( procesowych, technicznych ), jak i laboratoryjnych, ruch płynu (gazu / cieczy / płynu nadkrytycznego) w przestrzeni międzyziarnowej tych obiektów ma prawie z reguły charakter laminarny (uwarstwiony)
Opis warunków laminarnego (uwarstwionego) (Re<2300) / burzliwego (wirowego) (Re>3000) przepływu płynu lepkiego w przewodach rurowych / kanałach Profil przepływu Równania opisujące profil przepływu płynu w przewodach rurowych można wyprowadzić zrównań różniczkowych Paraboloida obrotowa Profil zmierza do równomiernego (tłokowego) w miarę wzrostu wartości liczby Reynoldsa
b a Re n H 2g,m Równanie Darcy - Weisbacha L 1 2 d 2 L u P d 2 u 2,Pa Równanie Poiseuill a 64 64 Re ud P 32u L d 2
Współczynnik oporu = f (Re)
WARSTWY POROWATE Z warstwą porowatą mamy do czynienia m.in. w następujących operacjach jednostkowych: filtracji okresowej / ciągłej w aparatach kontaktowych (absorpcja - desorpcja, adsorpcja - desorpcja, rektyfikacja, chromatografia, wymiana jonowa, reaktory ze złożem porowatym, ) podczas suszenia / zamrażania / liofilizacji Rozpatruje się operacje wymiany masy z zastosowaniem ziarnistych warstw porowatych - bez porowatości wewnętrznej (było - Inż. Ch i B-Pr) - z wewnętrzną porowatością wypełnienia (było TRM)
Wypełnienia kształtowe Wypełnienia pakietowe (strukturalne)
Opór przepływu w warstwach porowatych -- równanie Lev a 2 2 400 1 ε porowatość międzyziarnowa wypełnienia L u 2 P 3 ϕ czynnik kształtu wypełnienia stosunek Re de 2 powierzchni wypełnienia do powierzchni kuli o tej samej objętości, jak element wypełnienia lg ( ) K współczynnik oporu przepływu L d p L c d m e d z m --- wielkość ziaren (d p d e, d z ) w Re - dla przepływu płynu w warstwach porowatych (!!!) Re = u d p ρ / η u liniowa prędkość przepływu płynu w warstwie porowatej, obliczana dla pustej d e zastępcza średnica wypełnienia o określonej geometrii d p średnia średnica wypełnienia ziarnistego o ziarnach kulistych / nieregularnych d z średnica zastępcza wypełnienia ziarnistego
Opór przepływu płynu w warstwach porowatych -- równanie Blake Kozeny wyłącznie dla ziarnistych warstw porowatych i przepływu laminarnego (Re<1) Re = U o d p ρ / η gdzie : ΔP opór przepływu (spadek ciśnienia na warstwie porowatej) [Pa] U o prędkość przepływu cieczy w przestrzeni między-ziarnowej [m/s] ε porowatość między-ziarnowa wypełnienia kolumny [1] L = Lc długość warstwy porowatej [m] ρ gęstość płynu [kg/m 3 ]
Jeśli wartość porowatości (międzyziarnowej) wypełnienia nie zmienia się pod wpływem ciśnienia oddziałującego na wlocie płynu do warstwy wypełnienia, wypełnienie nazywamy nieściśliwym. W przeciwnym razie - ściśliwym Wypełnienie nieściśliwe / ściśliwe P 400 R e L d e u 2 2 1 3 2 2 Zredukowana przepuszczalność kolumn Φ = (dp) 2 /K, obliczona na podstawie przepuszczalności K ; K = u Lc η / ΔP, powinna wynosić ok. 1000 - od ok. 750 do 1500. Poniżej 750 złoże kolumny może być niestabilne (nietrwałe) kolumna zbyt luźno wypełniona; Powyżej 1500 nienaturalny opór.
Przeciwprądowy dwufazowy przepływ w kolumnach z porowatym wypełnieniem pakietowym, lub kształtowym Wymiana masy w warstwach porowatych w warunkach emulgowania warunki optymalne -
WARSTWY POROWATE o wewnątrz-ziarnowej porowatości ZIARNISTE / MONOLITYCZNE // FLUIDALNE - -- jednofazowy przepływ płynu przez warstwę porowatą - Przykłady zastosowań - Charakterystyka, wymagania - Parametry oraz sposoby opisu -- Parametrów ogólnych - ziarnistości, porowatości różnego typu, oporów przepływu, ściśliwości -- Sprawności - dyspersji masy (efektywnej dyfuzji), profilu przepływu -- Równowag sorpcyjnych, retencji, selektywności (wykluczanie steryczne, absorpcja, adsorpcja, - desorpcja w normalnych (NP) / odwróconych (RP) układach faz, wymiana jonowa, wykluczanie jonowe, wymiana ligandów, powinowactwo, oddziaływania hydrofobowe, ) w układach - płyn ciało stałe (G-S, L-S, SF - S) płyn ciecz (G-L, L-L, SF-L)
WARSTWY POROWATE (ziarniste, elementowe, pakietowe) KOLUMNY WYPEŁNIONE (wypełnieniem ziarnistym, elementowym, pakietowym) REAKTORY z WYPEŁNIENIEM (ziarnistym warstwy: stacjonarne / fluidalne) -- sorpcja desorpcja (absorpcja, adsorpcja, wymiana jonowa, powinowactwo) -- chromatografia (wykluczania GPC/SEC, układy - NP, RP, (HIC) HILIC, IExch, IExcl, LExch, -- kataliza heterogeniczna (złoże stacjonarne / fluidalne) Parametry: wielkość i kształt ziaren, rozkład granulometryczny, porowatość - między- / wewnątrz-ziarnowa, średnica porów, rozkład wielkości porów - opór przepływu; - dyspersja masy; sprawność warstwy wypełnienia / kolumny; - kinetyka / dynamika ruchu / wymiany masy, - czas przebywania w reaktorze z wypełnieniem ziarnistym / fluidalnym,
WARSTWY POROWATE ZIARNISTE / MONOLITYCZNE -- przepływ jednofazowy -- -- Przykłady zastosowań -- Charakterystyka, wymagania -- Parametry oraz sposoby opisu: -- Ziarnistości, porowatości, oporów przepływu -- Sprawności - dyspersji masy (efektywnej dyfuzji)/profilu przepływu -- Efektów sterycznych, retencji, równowag sorpcyjnych -- Selektywności rozdzielania -- Rodzaje zastosowań warstw porowatych w układach płyn ciało stałe -- sorpcja desorpcja (absorpcja, adsorpcja, wymiana jonowa w układach płyn ciało stałe (G-S, L-S, SF - S) płyn ciecz (G-L, L-L, SF-L), -- w warunkach: wykluczania sterycznego, wymiany jonowej, normalnych / odwróconych układach faz, wykluczania jonowego, wymiany ligandów, powinowactwa, oddziaływań hydrofobowych,
ZIARNISTA / MONOLITYCZNA WARSTWA POROWATA PAKOWANE / MONOLITYCZNE KOLUMNY ADSORPCYJNE / CHROMATOGRAFICZNE Pojęcia / definicje : średnica ziaren (dp [m (μm)]), średnia średnica porów wewnątrz-ziarnowych (d [nm, A]), rozkład średnic / wielkości porów f(d), średnica kolumny (dc [m (mm)]), długość warstwy wypełnienia kolumny (Lc [m (mm)]), liniowa prędkość przepływu płynu (u [m/sek (mm/sek)]), lepkość dynamiczna eluentu (η [Pa sek (cp)]), natężenie przepływu cieczy (eluentu) (w), (V) [m 3 /sek (ml/min)]), liczba Reynoldsa (Re[1]), porowatość między-ziarnowa (ε m/z ), porowatość wewnątrzziarnowa - (ε w/z ), porowatość całkowita - (ε t ), opór przepływu ( P) [Pa (bar)], przepuszczalność kolumn (K - [m 2 ]), zredukowana przepuszczalność wypełnienia kolumny (Φ [1]), Zjawiska : wykluczanie molekularne (permeacja), adsorpcja polarna (NP), hydrofobowa (RP), hydrofilowa (HILIC), wymiana jonowa anionów (AExch)/ kationów (CExch), wymiana ligandów (LExch), wykluczanie jonowe (IExch), oddziaływań hydrofobowych (HIC),
Pojęcia porowatości -- stosunek przestrzeni zajętej przez płyn do całkowitej objętości ε m/z - porowatość między-ziarnowa (odniesiona do objętości złoża (kolumny)) ε w/z - porowatość wewnątrz-ziarnowa (odniesiona do sumy objętości ziaren w warstwie porowatej (wypełnieniu kolumny)) ε t - porowatość całkowita (odniesiona do objętości złoża (kolumny)) Dość łatwo można wykazać, że: ε t = ε m/z + (1- ε m/z ) ε w/z Np. dla ε m/z = 0.42 i ε w/z = 0.6 ε t = 0.768 V o = V c ε t objętość elucji trasera niesorbowanego, wnikającego do wszystkich porów w ziarnach wypełnienia dawniej - objętość martwa kolumny
Pojęcia średniej prędkości przepływu płynu przez warstwy porowate o wewnętrznie porowatej strukturze wypełnienia - Prędkość (u) obliczana dla niewypełnionej kolumny (ε t =1) u =w / (Π (d c) 2 /4) - Prędkość (u ) obliczana z uwzględnieniem całkowitej porowatości wypełnienia kolumny (ε t ) - średnia prędkość ruchu niesorbowanego trasera (obserwowana przez przezroczystą ścianę kolumny) u = u / ε t - Prędkość (u ) obliczana z uwzględnieniem międzyziarnowej porowatości wypełnienia kolumny (ε m/z ) - średnia prędkość ruchu niesorbowanego trasera niewnikającego do jakichkolwiek porów wewnętrznych (obserwowana przez przezroczystą ścianę kolumny) u = u / ε m/z - Prędkość (u el ) elucji sorbowanego, lub częściowo wykluczanego trasera u el = L c /t el, gdzie t el czas elucji w/w trasera -- w przypadku trasera wykazującego retencję o współczynniku retencji k > 0 : t el = t o (1+k) ; k = (t el t o )/t o
Pojęcia różnych rodzajów średnich prędkości przepływu płynu przez wypełnienie porowate -- prędkość liczona na niewypełniony aparat / na pustą kolumnę - u (dotyczy absorpcji / rektyfikacji, ekstrakcji, wymienników ciepła reaktorów, ) -- prędkość międzyziarnowa u m/z (dotyczy adsorberów, kolumn chromatograficznych z wypełnieniem ziarnistym, monolitycznym, - rzadko wykorzystywana) -- prędkość całkowita u (dotyczy adsorberów, kolumn chromatograficznych z wypełnieniem ziarnistym, monolitycznym, - prędkość przepływu obserwowana przez przeźroczystą ścianę wypełnionej kolumny posiadającej ziarniste / monolityczne wypełnienie porowate wewnątrz ziaren / wewnątrz monolitycznej struktury złoża -- Należy zawsze zastanowić się jakiego rodzaju wartość prędkości przepływu płynu należy stosować w konkretnym przypadku!!!
Uwzględniając podane oznaczenia, można też napisać: gdzie : V o = V c ε t V m/z = V c ε m/z V c = S c L c = (Π (d c ) 2 /4) L c u = L c /t o V o - objętość martwa kolumny (objętość elucji trasera wnikającego do porów, niesorbowanego) V c - objętość wypełnienia kolumny V m/z objętość międzyziarnowa wypełnienia kolumny t o czas martwy (czas elucji trasera wnikającego do porów, niesorbowanego)
Wypełnienie ziarniste kolumny HPLC - warstwa porowata - kolumny HPLC / płytki TLC / adsorbera
Objętość martwa (V o ) ziarnistej / monolitycznej warstwy porowatej -- objętość elucji strefy niesorbowanego trasera, wnikającego do wszystkich porów -- V o = V c ε t Prędkość przepływu eluentu (u) w ziarnistej/ monolitycznej warstwie porowatej -- obserwowana z zewnątrz prędkość elucji strefy niesorbowanego trasera, wnikającego do wszystkich porów, przyjmowana jako średnia prędkość ruchu eluentu w kolumnie -- u = w / (F c ε t ) V c objętość kolumny (wypełnienia kolumny) [m 3 ] ε t porowatość całkowita wypełnienia (warstwy porowatej) [1]; ε t często ok.0.75 w natężenie przepływu eluentu [m 3 /sek] ([ml/min]) F c pole przekroju poprzecznego wypełnienia kolumny [m 2 ] (π d c2 /4)
Przepuszczalność kolumny ( K ) (ziarnistej / monolitycznej warstwy porowatej) K = u L c η / ΔP - [m 2 ] Zredukowana przepuszczalność kolumny (warstwy porowatej) Φ obliczana na podstawie średniej wielkości ziaren wypełnienia d p [m] oraz przepuszczalności K Φ = (d p ) 2 / K - [1] L c - długość warstwy wypełnienia kolumny [m] η - lepkość dynamiczna eluentu [Pa sek] ΔP spadek ciśnienia w kolumnie (na długości warstwy porowatej) [Pa]
Równowaga sorpcji desorpcji izoterma Langmuire a
Metody postępowania Warunki elucji czołowej (tryb wsadowy), Warunki elucji impulsowej (tryb elucyjny) Warunki pracy okresowej Warunki pracy pół-ciągłej ( pseudo-ciągłej) Warunki pracy ciągłej -- z symulacją ruchu złoża (SMB Simulated Moving Bed) -- z rzeczywistym przemieszczaniem sorbentu
Przepływ jednofazowy przez warstwy porowate Operacje adsorpcji desorpcji, wymiany jonowej, katalizy, transportu
i wymiany jonowej A. Selecki, L. Gradoń, Podstawowe procesy przemysłu chemicznego, WNT 1985. W tym, ekstrakcja do fazy stałej (SPE) elucyjna chromatografia cieczowa (LC) / Gazowa (GC) / z nadkrytycznym płynem (SFC), jako eluentem w skali laboratoryjnej, semi-preparatywnej, preparatywnej oraz procesowej Ważne także : -- oczyszczanie wodoru do procesów rafineryjnych, -- odwadnianie etanolu, -- oczyszczanie wody z zastosowaniem wymiany jonowej / adsorpcji na węglu aktywnym
Technika czołowa Wykorzystywana w praktyce w warunkach SPE / adsorpcji desorpcji wykonywanej w trybie wsadowym, np., w celu oczyszczania powietrza, rozpuszczalników, wody itp., Eluent ze składnikami rozdzielanymi wprowadza się do kolumny w roztworze ; Najsłabiej sorbowane składniki wypływają z kolumny jako pierwsze; Są jedynym składnikiem / składnikami otrzymywanym / otrzymywanymi w czystej postaci (po rozdzieleniu od eluentu)
Schemat przebiegu elucji czołowej
Chromatogram elucji czołowej
Profil adsorbatu podczas operacji adsorpcji w złożu kolumny adsorpcyjnej
Hydrorafinacja olejów katalityczna kilkustopniowa hydrorafinacja na stacjonarnym złożu katalitycznym porowatym wypełnieniu - w celu produkcji oleju bazowego Parametry procesu Ilość gazu wodorowego 5 Nm3/ m3 wsadu. Ciśnienie gazu wodorowego 3,8 MPa. Temperatura w reaktorze 220-300 C w zależności od typu wsadu.
Zasada pół-ciągłego ( pseudo-ciągłego ) użytkowania aparatury o okresowym działaniu Zasada wykorzystania układu dwóch aparatów (dwóch kolumn) o działaniu okresowym w operacjach wymiany masy o charakterze sorpcji de-sorpcji (adsorpcji, wymiany jonowej, absorpcji, chromatografii elucyjnej, ekstrakcji ługowania, ). W określonym czasie jedna z kolumn (aparatów) działa jako kolumna rozdzielcza, gdy w tym samym czasie, druga podlega regeneracji / rekondycjonowaniu; Następnie kolumna pierwsza zostaje włączona do działania, a druga podlega regeneracji rekondycjonowaniu.
Ta sama zasada ma miejsce w procesie demineralizacji wody z zastosowaniem wymieniaczy jonowych kationitu / anionitu oraz do regeneracji wymieniaczy jonowych
SPE SPE (Solide Phase Extraction) z elucją stopniową, albo wzbogacaniem i elucją
Technika elucyjna najczęściej prawie wyłącznie wykorzystywana w praktyce w chromatografii -- gazowej (Gas Chromatography GC / cieczowej Liquid Chromatography - LC) -- -- ekstrakcji do fazy stałej: SPE Solide Phase Ekstraction -- W technice tej, składniki mieszaniny rozdzielanej są wprowadzane do kolumny / na płytkę TLC - w postaci wąskiego lub pasma / punktowo i poruszają się wzdłuż kolumny, z szybkością określoną przez ich retencją oraz przez prędkość przepływu eluentu (u); Jeżeli różnice energii sorpcji składników rozdzielanych są znaczne, albo kolumna jest dostatecznie długa, możliwe jest całkowite rozdzielenie wszystkich składników mieszaniny wprowadzonej do kolumny / na płytkę TLC; Często, zwłaszcza dla rozdzielania mieszanin o złożonym składzie należy stosować tzw. elucję gradientową, tzn. programowane zmiany siły elucyjnej eluentu w f. czasu rozdzielania: Eluent, podawany w sposób ciągły do kolumny, wypływa z w mieszaninie z poszczególnymi składnikami rozdzielonymi i dla ich wydzielenia musi zostać od nich oddzielony, np. na drodze odparowania, liofilizacji, często po uprzednim wzbogaceniu frakcji eluatu w rozdzielane składniki
Klasyczna elucyjna technika kolumnowa (LC) 1) przygotowanie kolumny i wypełnienia, wypełnienie, kondycjonowanie, 2) dozowanie, elucja, detekcja, kolekcja frakcji, 3) re-kondycjonowanie, 2 ) dozowanie,,albo rozładowanie, 1 )
Chromatogram rozdzielania elucyjnego Chromatogram Wykres zależności stężenia (detektor stężeniowy), albo szybkości doprowadzania masy roztworu rozdzielonej substancji / grup substancji w eluacie wypływającym z kolumny do naczyńka detektora (instrumentu analitycznego pracującego w warunkach dynamicznych) w funkcji objętości elucji (dla stałego przepływu eluentu (w, u = const) w funkcji czasu)
ELUENT ELUAT, substancje rozdzielane
Widok pasm kilku składników ekstraktu acetonowego trawy przez szklaną ścianę kolumny HPLC typu CN, eluent heksan MTBE - THF; kolejność pasm - od dołu: feofityna - produkt rozkładu chlorofilu A i B, chlorofil A, chlorofil B, carotenoidy kierunek przepływu eluentu (od góry do dołu) Warunki rozdzielania Kolumna 150x3mm, Separon CN 5 um,eluent: heksan:mtbe:thf=55:8:6,4 (v/v/v), próbka 30 ul ekstraktu acetonowego z trawy, temperatura pokojowa Natężenie przepływu eluentu w=0.8 ml/min
Najczęściej HPLC Widok pasm rozdzielania kilku składników ekstraktu acetonowego trawy - przez szklaną ścianę kolumny HPLC typu CN (faza stacjonarna alkilonitryl związany na powierzchni porów wewnątrz ziaren żelu krzemionkowego, eluent heksan MTBE - THF; kolejność pasm - od dołu: caroteny, produkt rozkładu chlorofilu, chlorofil A, carotenoidy-i, chlorofil B, carotenoidy-ii carotenoidy II chlorofil B Tu NP HPLC warunki bezwodne! kierunek przepływu eluentu carotenoidy I chlorofil A Warunki rozdzielania Kolumna 150x3mm, Separon CN 5 um,eluent: heksan:mtbe:thf=55:8:6,4 (v/v/v), próbka 30 ul ekstraktu acetonowego z trawy, temperatura pokojowa produkt utleniania chlorofili Natężenie przepływu eluentu w=0.8 ml/min
Powiększanie skali rozdzielania techniką kolumnowej elucyjnej chromatografii cieczowej - Skala modelowa - Skala procesowa
WARUNKI MINIMALIZACJI DYSPERSJI Równomierna dystrybucja / kolekcja Równomierna promieniowa przepuszczalność - tłokowy profilu przepływu płynu w ziarnistej / monolitycznej warstwie porowatej - wypełnienia / reaktora ze złożem porowatym Poprawne użytkowanie, jednocześnie warunki konieczne dla minimalizacji dyspersji
Tłokowy profil przepływu w kolumnie sorpcji desorpcji i minimalna dyspersja - konieczne (!!!) w każdej skali rozdzielania / oczyszczania, także, w każdym reaktorze ze złożem porowatym Zapewnia : - właściwie zaprojektowany system dystrybucji / kolekcji - korzystne właściwości sorbentu, odpowiednia technologia formowania złoża (wypełniania kolumny) - poprawne użytkowanie kolumny Referat KIChiPr M. Kmaiński 24-11-2016
Ważne -- optymalna konstrukcja kolumny, zwłaszcza modułu dystrybucji / kolekcji na/z powierzchni wypełnienia -- poprawny sposób jej wypełnienia, tzn., stabilne złoże oraz poprawny profil przepływu eluentu w przekroju poprzecznym wypełnienia Zapewnienie tłokowego profilu przepływu płynu w ziarnistej / monolitycznej warstwie porowatej wypełnienia kolumny / reaktora ze złożem porowatym warunkiem koniecznym, ale nie warunkiem dostatecznym minimalizacji dyspersji
Podstawowe parametry opisu dyspersji w ziarnistych / monolitycznych warstwach porowatych i wzajemny związek między nimi W bogatej literaturze opisu dyspersji masy podczas przepływu płynu w warstwach porowatych mają miejsce dwa podejścia, prowadzące do odrębnych, wzajemnie powiązanych parametrów miary dyspersji. HETP (H) albo D eff W przypadku rejestracji przebiegu rozkładu stężenia niesorbowanego, albo sorbowanego trasera, przemieszczanego w złożu porowatym z prędkością u D eff = (µ 2 / M 12 ) u Lc stąd : H = D eff / u gdzie: u średnia prędkość ruchu trasera; w przypadku sorpcji u = u 0 / (1+k) u 0 prędkość średnia eluentu (u 0 =Lc/t 0 ); µ 2 - drugi moment centralny; M 1 -pierwszy moment zwykły krzywej rozkładu stężenia trasera
W warunkach sorpcji desorpcji oraz liniowości izotermy sorpcji można wykorzystać tzw. krzywą przebicia złoża przez niesorbowany, lub sorbowany traser i dokonać odpowiednich obliczeń na podstawie I-szej pochodnej poniższej krzywej. Korzystanie w obliczeniach HETP z pomiaru szerokości piku (w ½ wysokośści, albo przy podstawie) oraz z odległości retencji (1), jest uprawnione tylko dla pików gaussowskich; Dla pików traser o innym kształcie, niż gaussowki należy wykorzystywać momenty statystyczne. Celowe jest wyłączne korzystanie z momentów statystycznych dla obliczania HETP (!!!) H = Lc/5.54 (S 1/2 /l) 2 H = (µ 2 / M 12 ) Lc N = Lc/H
PROFIL PRZEPŁYWU PŁYNU w przestrzeni międzyziarnowej warstw porowatych w kapilarach międzyziarnowych / w przestrzeniach makro-porów / porów strukturalnych ziarnistych / monolitycznych warstw porowatych, w przestrzeniach wolnych - pakietowych wypełnień kolumn, w kapilarach. A ruch laminarny (uwarstwiony); B ruch burzliwy (wirowy) Re<2300 Re>3000 (10 000) DYSPERSJA MASY podczas przepływu płynu przez : - przewody rurowe / kapilary transportowe - warstwy porowate ziarniste / pakietowe / monolityczne dominuje dyfuzja molekularna dominują opory przenoszenia masy mikro-wiry zmniejszają dyspersję
Referat KIChiPr M. Kamiński 24-11-2016
Dyspersja masy w warstwie porowatej miary dyspersji, związek z parametrami operacyjnymi / z profilem przepływu, u L D eff efektywny współczynnik dyfuzji [m 2 /sek] H wysokość równoważna półce teoretycznej [m] τ czas [sek] σ 2 L wariancja [m2 ] μ 2 L - drugi moment centralny [m 2 ] D eff 2 L H = σ 2 L / L M 1 - pierwszy moment zwykły (mediana) [sek] L M 2 1 Dyspersja trasera obserwowana w warstwie porowatej na dystansie L (po czasie τ) od powierzchni wprowadzenia w formie impulsu Dirac a u prędkość przepływu (obserwowana(!)
Dyspersja osiowa (aksjalna) w warstwie porowatej Warunek otrzymywania oczekiwanej sprawności kolumny - poprawnie wypełniona oraz tłokowy profil przepływu 1. Badanie dyspersji na zasadzie pomiaru poprzez przeźroczystą ścianę kolumny z warstwą z warstwą porowatą 2. Badanie dyspersji na podstawie przebiegu sygnału detektora na wylocie z kolumny L HETP = μ 2 L /M 1 L D eff = HETP/u ; u=lc/tr HETP = Lc μ 2 /M 1 2 HETP = 1/5.54 Lc (S 1/2 i / l r i ) 2
W przypadku rejestracji rozkładu trasera na wylocie z warstwy porowatej za pomocą dynamicznego detektora przepływowego o znikomej objętości martwej przepływowego naczyńka detekcyjnego, podane zależności opisujące dyspersję są słuszne tylko dla wypełnień o wewnętrznie nieporowatych ziarnach, albo w przypadku ziaren porowatych wewnętrznie - gdy traser nie jest w stanie wnikać do porów wewnątrz-ziarnowych. W przeciwnych przypadkach do obliczania miary dyspersji należy zastosować następujące zależności (dla momentów statystycznych wyznaczanych w tych samych jednostkach miar) : H= Lc (μ 2 / (M 1 ) 2 ) D eff = (µ 2 / M 12 ) u Lc H = D eff / u lub D eff = H u, natomiast, u = L c /t o gdzie : u [m/sek] prędkość przemieszczania się trasera w warstwie porowatej między wlotem i wylotem z kolumny o długości L c [m], gdy tzw. czas martwy kolumny wynosi t o [sek] - czas elucji niesorbowanego trasera, wnikającego do wszystkich porów wewnątrz-ziarnowych Dla w przybliżeniu gaussowskich krzywych przebiegu rozkładu trasera ( pików ) można skorzystać z właściwości krzywej Gaussa. Otrzymujemy wówczas na podstawie szerokości kiu w ½ wysokości oraz dystansu elucji : H = Lc / 5.54 (S 1/2 /l) 2 oraz N = Lc / H
W warunkach sorpcji desorpcji oraz liniowości izotermy sorpcji można wykorzystać tzw. krzywą przebicia złoża przez niesorbowany, lub sorbowany traser i dokonać odpowiednich obliczeń na podstawie I-szej pochodnej poniższej krzywej. Korzystanie w obliczeniach HETP z pomiaru szerokości piku (w ½ wysokośści, albo przy podstawie) oraz z odległości retencji (1), jest uprawnione tylko dla pików gaussowskich; Dla pików traser o innym kształcie, niż gaussowki należy wykorzystywać momenty statystyczne. Celowe jest wyłączne korzystanie z momentów statystycznych dla obliczania HETP (!!!) H = Lc/5.54 (S 1/2 /l) 2 H = (µ 2 / M 12 ) Lc N = Lc/H
Podstawowe parametry opisu dyspersji w ziarnistych / monolitycznych warstwach porowatych i wzajemny związek między nimi W bogatej literaturze opisu dyspersji masy podczas przepływu płynu w warstwach porowatych mają miejsce dwa podejścia, prowadzące do odrębnych, wzajemnie powiązanych parametrów miary dyspersji. D eff = (µ 2 / M 12 ) u Lc HETP (H) albo D eff W przypadku rejestracji przebiegu rozkładu stężenia niesorbowanego, albo sorbowanego trasera, przemieszczanego w złożu porowatym z prędkością u stąd : H = D eff / u gdzie: u średnia prędkość ruchu trasera; w przypadku sorpcji u = u 0 / (1+k) u 0 prędkość średnia eluentu (u 0 =Lc/t 0 ); µ 2 - drugi moment centralny; M 1 -pierwszy moment zwykły krzywej rozkładu stężenia trasera Im niższa wartość HETP / Deff, a także WJPM tym wyższa sprawność wypełnienia kolumny, a także kolumny : N = Lc / H albo LJPM = Lc / WJPM
Obliczanie sprawności (H) porowatego wypełnienia kolumny, liczby półek teoretycznych (N) kolumny wypełnionej, asymetrii pików - na podstawie szerokości w ½ wysokości pików gaussowskich (S1/2) oraz retencji (l) - na podstawie momentów statystycznych : μ2 drugiego momentu centralnego oraz M1pierwszego momentu zwykłego pików nie opisywanych krzywą Gaussa LC S1 / 2 2 H ( ) 5,54 l LC l 2 N 5,54( ) H S1 / 2 As 0,1 b a Vo = Vc εt ; H= Lc (μ2 / (M1)2) N= Lc/H = (M1)2)/μ2 Obliczanie / szacowanie - prędkości przepływu eluentu (u) objętości martwej kolumny (Vo), czasu martwego (to, tm) LC u t0 εt = ok. 0.75-0.8 u = w / (Fc εt ) Vc= Fc Lc=[𝝅 (dc )2 / 4] Lc to = w / Vo = w/(vc εt) = w / (Fc Lc εt )
DYSPERSJA MASY Zjawiska powodujące dyspersję Wiele zjawisk przyczynia się do dyspersji stref rozdzielanych substancji Wzrost dyspersji = spadek sprawności kolumny wzrasta H i spada N Im niższa wartość wysokości równoważnej półce teoretycznej (HETP, H), tym wyższa wartość liczby półek teoretycznych tym wyższa sprawność rozdzielania - także - kolumny
Dyspersja stref zjawisko niekorzystne, jednak, nieuniknione u - liniowa prędkość fazy ruchomej u=lc/to Zjawiska powodujące dyspersję (najważniejsze dla uproszczenia) - Dyfuzja wirowa (A); - Dyfuzja molekularna (B); - Opory przenoszenia masy (C) 1. w fazie ruchomej (Cm), 2. w fazie stacjonarnej (Cs) Równanie Van Deemter a, H = B/u + A + Cu C = (Cm + Cs) u bardziej adekwatne dla LC równania: Knox a : h = B/v + A v 0.33 + Cv B=0.5; A=2 (1); C=0.1 (0.05) h=h/dp ν - tzw. zredukowana prędkość przepływu eluentu (Pe) [1] D M współczynnik dyfuzji molekularnej substancji rozdzielanej w eluencie [m 2 /sek] d p średnica ziaren wypełnienia kolumny; wielkość ziaren wypełnienia kolumny [m] v=udp/dm
Zależność dyspersji od warunków elucji i parametrów wypełnienia kolumny najprostsze, aktualne dla CGC w przypadku HPLC aktualne co do zasady H min A BC u opt B C H min A B C
Modification of the van Deemter Equation: the Giddings Equation Giddings realized that the eddy diffusion and resistance to mass transfer in the mobile phase must be treated dependently: H 5 i 1 1 A 1 1 C u 1 B u C u s C m u H e H = B/u + A + Cu C = (Cm + Cs) u
Particle size comparisons 300000 Test silice Si60 40-63 µm Test silice Si60 63-200 µm Test silice Si60 15-40 µm 250000 200000 150000 100000 50000 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Page 73
Informacje niesione z chromatogramem i podstawowe zależności Rs -rozdzielczość pików -zależność teoretyczna R S 1 4 1 k2 k 1 2 N 2 t R czas retencji k współczynnik retencji k t R t -współczynnik rozdzielenia k2 tr2 tm k1 tr 1 tm N-liczba półek teoretycznych t N 5,54 w Rs=(t Rn+1 t Rn ) / ½(S n+1 + S n ) - zależność obliczeniowa t M czas martwy kolumny retencja substancji niesorbowanej, wnikającej do porów wypełnienia kolumny M t M R h 2
(Rs) R-rozdzielczość pików zależność teoretyczna R S 1 4 1 k k 2 2 1 N 2 selektywność współczynnik retencji sprawność Wpływa : rodzaj fazy stacjonarnej, skład fazy ruchomej, temperatura, ph, dodatek do eluentu substancji solwatujących / tworzących pary jonowe moc / siła elucyjna zastosowanego eluentu, w RP także: ph - dodatki cofające dysocjację elektrolityczną, dodatki solwatujące, zwłaszcza, jeśli zmieniają hydrofobowość średnica ziaren wypełnienia, prędkość przepływu eluentu i w mniejszym stopniu, ale nie bez znaczenia - lepkość fazy ruchomej oraz współczynnik dyfuzji, a więc, także temperatura
F. Steiner, THERMO FISHER SCIENTIFIC, Technical Informations
k opt = 0.5 5.0 (7.0)
Najprostszy sposób obserwacji przeładowania kolumny (sorbentu)
Przeładowanie kolumny - Brak - Objętościowe - Masowe (stężeniowe) - Stężeniowo objętościowe
Izotermy sorpcji objętość (Vi) i stężenie (Ci) wsadu przeładowanie kolumny
Zasady powiększania skali rozdzielania w kolumnowej elucyjnej chromatografii (nie tylko cieczowej, ale także P-GC, P-SFC) Dobór : dp, Lc, u/w, Ci, Vi, p-ty kolekcji, czas cyklu rozdzielania // żądana czystość produktu (ów) M (A) P Produkcja M GPC/SEC RP / HIC NP/ NP-w / HILIC Przygotowane wsadu : fragmentacja / suszenie rozdrabnianie, homogenizacja, roztwarzanie / ekstrakcja / ługowanie, filtracja/ dekantacja, wirowanie, NF / UF / MF, LE / CC-LE / CCC / FFF / CC-LE i inne techniki IEC / IPC Ilustracja dwuetapowego postępowania podczas powiększania skali procesu rozdzielania w celu otrzymywania substancji metodami chromatografii w skali preparatywnej lub procesowej. M-skala modelowa rozdzielania, P skala preparatywna / procesowa rozdzielania
WARUNKI MINIMALIZACJI DYSPERSJI Równomierna dystrybucja / kolekcja + równomierna przepuszczalność warstwy porowatej + poprawne użytkowanie -- warunkiem tłokowego profilu przepływu płynu w ziarnistej / monolitycznej warstwie porowatej - wypełnienia / reaktora ze złożem porowatym, jednocześnie - warunki konieczne dla minimalizacji dyspersji
Zapewnienie tłokowego profilu przepływu (a) płynu w ziarnistej / monolitycznej warstwie porowatej wypełnienia kolumny / reaktora ze złożem porowatym warunkiem koniecznym minimalizacji dyspersji Zróżnicowanie promieniowe u Jednakowy promieniowy rozkład u Najważniejsze znaczenie ma optymalna konstrukcja kolumny + poprawny profil przepływu eluentu w przekroju kolumny poprawny sposób wypełnienia kolumny (rozkładu porowatości międzyziarnowej / promieniowego ułożenia ziaren pod względem wielkości (tzw. autosegregacja ziaren pod wpływem wibracji)
WPŁYW DYSTRYBUCJI / KOLEKCJI -- łatwy do eliminacji -- Wpływ dystrybucji/kolekcji na profil przepływu płynu w warstwie porowatej
Przykłady poprawnych (w tym własnych) rozwiązań technicznych dystrybucji kolekcji
Nierównomierny rozkład wielkości ziaren wypełnienia i/lub porowatości międzyziarnowej - główna przyczyna nie-tłokowego profilu przepływu oraz podwyższonej dyspersji Przykłady wyników badań - Rozkład ziarnistości / porowatości międzyziarnowej oraz kształt stref barwnego trasera (przebieg profilu przepływu cieczy) w zależności od warunków wypełniania kolumn PLC / P- HPLC A-C kolumny PLC dc=52 mm, wypełniane techniką udarową - na sucho; D, D, E kolumny PLC dc=52 mm, wypełniane techniką zawiesinową - na mokro dp 1 22 μm - niezabarwione; dp 2 = 33 μm zabarwione; dp1 / dp2 = 1/1 v/v; Zakreskowanie oznacza jednolitą barwę przekroju wypełnienia
Przykłady wyników dla kolumn preparatywnych HPLC wypełnianych na mokro techniką zawiesinową
The uniformity of flow profile in the large scale column and bed structure stability is very much important in preparative or process chromatography Wet packed columns dp<25 um Dry packed columns dp>25 um
Elucja izokratyczna jedna pompa, bez programowania składu eluentu po stronie niskiego ciśnienia; Elucja gradientowa jedna pompa z zaworami proporcjonującymi, albo 2-4 pompy programowanie składu eluentu w funkcji czasu Uproszczony schemat układu aparatu HPLC 1 - zbiornik z eluentem lub tzw. niskociśnieniowy system gradientowy; 2 pompa lub kilka pomp; 3 - zawór dozujący, albo dozownik repetycyjny; 4 - pre-kolumna (kolumna ochronna); 5 kolumna rozdzielcza; 6 - termostat; 7 detektor; 8 rejestrator; 9 zbiornik na eluat albo kolektor frakcji
Testowanie dyspersji w warstwie porowatej kolumny wypełnionej?
Etapy procesu technologicznego produkcji czystych substancji z zastosowaniem chromatografii kolumnowej (cieczowej)
Schema of process scale HPLC apparatus; S.C. separating column - 800x150 mm i.d.; PC sample pre-purifficaing column 1000 x 200 mm i.d.; P1 eluent pump; P2 sample (feed) pump; V 4-way valve; PD pulse damper; D- UV or RI detektor situated on the bypasse; V 1- V 6 fraction collection valves, R recorder or data system; ST control system;