Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018
Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem korelacji z próby nazywamy statystykę: R = ni=1 (X i X )(Y i Ȳ ) ni=1 (X i X ) 2 n i=1 (Y i Ȳ ) 2 gdzie X = 1 n ni=1 X i oraz Ȳ = 1 n ni=1 Y i oznaczają odpowiednio średnie z próby X i Y.
Test istotności dla współczynnika korelacji Niech ((X 1, Y 1 ), (X 2, Y 2 )..., (X n, Y n )) oznacza próbę rozmiaru n z dwuwymiarowego rozkładu normalnego N(µ, Σ), gdzie przez µ oznaczamy wektor wartości oczekiwanych, natomiast przez Σ macierz kowariancji. Interesuje nas sprawdzenie czy zmienne losowe X i Y są niezależne, a zatem należy sprawdzić czy współczynnik korelacji jest równy zero.
Test istotności dla współczynnika korelacji Niech ((X 1, Y 1 ), (X 2, Y 2 )..., (X n, Y n )) oznacza próbę rozmiaru n z dwuwymiarowego rozkładu normalnego N(µ, Σ), gdzie przez µ oznaczamy wektor wartości oczekiwanych, natomiast przez Σ macierz kowariancji. Interesuje nas sprawdzenie czy zmienne losowe X i Y są niezależne, a zatem należy sprawdzić czy współczynnik korelacji jest równy zero. Testujemy hipotezę: H 0 : r = 0 H 1 : r 0
Test istotności dla współczynnika korelacji Statystyka testowa jest postaci: T = R 1 R 2 n 2
Test istotności dla współczynnika korelacji Statystyka testowa jest postaci: T = R 1 R 2 n 2 Przy prawdziwości hipotezy H 0 statystyka testowa ma rozkład t Studenta z n 2 stopniami swobody.
Test istotności dla współczynnika korelacji Statystyka testowa jest postaci: T = R 1 R 2 n 2 Przy prawdziwości hipotezy H 0 statystyka testowa ma rozkład t Studenta z n 2 stopniami swobody. Obszarem odrzucenia H 0 jest zbiór C : (, t 1 α/2 (n 2)] [t 1 α/2 (n 2), ).
Test istotności dla współczynnika korelacji Uwaga: Możemy również testować hipotezę H 0 przy alternatywach: r 0 lub r 0. Wówczas zbiór krytyczny jest odpowiednio lewo- lub prawostronny.
Przykład 12.1 Z partii towaru wylosowano 10 egzemplarzy i przebadano je ze względu na cechy X i Y otrzymując: x i 3.5 3.4 2.1 5.4 1.1 5.1 6.9 4.0 4.5 2.5 y i 1.6 2.9 1.5 3.5 0.6 2.5 7.1 3.5 2.1 2.6 Na poziomie istotności 0.05 zweryfikować hipotezę o braku korelacji między tymi cechami. Testujemy hipotezę: H 0 : r = 0 H 1 : r 0
Przykład 12.1 - c.d. Wyznaczmy wartość współczynnika korelacji: ni=1 (x i x)(y i ȳ) r = ni=1 (x i x) 2 = 22.445 = 0.82 n i=1 (y i ȳ) 2 743.4075
Przykład 12.1 - c.d. Wyznaczmy wartość współczynnika korelacji: ni=1 (x i x)(y i ȳ) r = ni=1 (x i x) 2 = 22.445 = 0.82 n i=1 (y i ȳ) 2 743.4075 Statystyka testowa jest postaci: T = r 0.82 n 2 = 8 = 4.101 1 r 2 0.56
Przykład 12.1 - c.d. Wyznaczmy wartość współczynnika korelacji: ni=1 (x i x)(y i ȳ) r = ni=1 (x i x) 2 = 22.445 = 0.82 n i=1 (y i ȳ) 2 743.4075 Statystyka testowa jest postaci: T = r 0.82 n 2 = 8 = 4.101 1 r 2 0.56 Zbiór krytyczny jest postaci: C : (, t 0.975 (8)] [t 0.975 (8), ) (, 2.3] [2.3, ), a zatem rozważane cechy są skorelowane.
Przykład 12.1 - Pakiet R x <-c (3.5, 3.4, 2.1, 5.4, 1.1, 5.1, 6.9, 4.0, 4.5, 2.5) y <-c (1.6, 2.9, 1.5, 3.5, 0.6, 2.5, 7.1, 3.5, 2.1, 2.6) cor. test (x,y) Pearson s product-moment correlation data: x and y t = 4.101, df = 8, p-value = 0.003433 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.4018662 0.9568721 sample estimates: cor 0.8232015
Test istotności dla współczynnika korelacji Niech ((X 1, Y 1 ), (X 2, Y 2 )..., (X n, Y n )) oznacza próbę rozmiaru n z dwuwymiarowego rozkładu normalnego N(µ, Σ), gdzie przez µ oznaczamy wektor wartości oczekiwanych, natomist przez Σ macierz kowariancji. Interesuje nas zweryfikowanie hipotezy o równości współczynnika korelacji wartości innej niż zero.
Test istotności dla współczynnika korelacji Niech ((X 1, Y 1 ), (X 2, Y 2 )..., (X n, Y n )) oznacza próbę rozmiaru n z dwuwymiarowego rozkładu normalnego N(µ, Σ), gdzie przez µ oznaczamy wektor wartości oczekiwanych, natomist przez Σ macierz kowariancji. Interesuje nas zweryfikowanie hipotezy o równości współczynnika korelacji wartości innej niż zero. Testujemy hipotezę: H 0 : r = r 0, i 0 < r 0 < 1 H 1 : r r 0
Test istotności dla współczynnika korelacji Statystyka testowa jest postaci: U = [ Z 1 2 ln 1 + r ] 0 r 0 n 3, 1 r 0 2(n 1) gdzie Z, nazywana statystyką Fishera jest postaci: Z = 1 2 ln 1 + R 1 R
Test istotności dla współczynnika korelacji Statystyka testowa jest postaci: U = [ Z 1 2 ln 1 + r ] 0 r 0 n 3, 1 r 0 2(n 1) gdzie Z, nazywana statystyką Fishera jest postaci: Z = 1 2 ln 1 + R 1 R Przy prawdziwości hipotezy H 0 statystyka testowa ma standardowy rozkład normalny.
Test istotności dla współczynnika korelacji Statystyka testowa jest postaci: U = [ Z 1 2 ln 1 + r ] 0 r 0 n 3, 1 r 0 2(n 1) gdzie Z, nazywana statystyką Fishera jest postaci: Z = 1 2 ln 1 + R 1 R Przy prawdziwości hipotezy H 0 statystyka testowa ma standardowy rozkład normalny. Obszarem odrzucenia H 0, w zależności od alternatywy, jest zbiór C : (, u 1 α/2 ] [u 1 α/2, ), dla H 1 : r r 0 C : (, u 1 α ], dla H 1 : r < r 0 C : [u 1 α, ), dla H 1 : r > r 0
Test jednorodności dla współczynników korelacji Niech będą dane populacje, w których badane cechy mają dwuwymiarowe rozkłady normalne o nieznanych współczynnikach korelacji r 1 i r 2. Interesuje nas zweryfikowanie hipotezy o równości współczynników korelacji.
Test jednorodności dla współczynników korelacji Niech będą dane populacje, w których badane cechy mają dwuwymiarowe rozkłady normalne o nieznanych współczynnikach korelacji r 1 i r 2. Interesuje nas zweryfikowanie hipotezy o równości współczynników korelacji. Testujemy hipotezę: H 0 : r 1 = r 2, H 1 : r 1 r 2
Test istotności dla współczynnika korelacji Statystyka testowa jest postaci: U = (Z 1 Z 2 ) gdzie Z i, i = 1, 2 są postaci: (n 3)(m 3), n + m 6 Z i = 1 2 ln 1 + R i 1 R i, natomiast n i m > 10 oznaczają odpowiednio rozmiar pierwszej i drugiej próby.
Test istotności dla współczynnika korelacji Statystyka testowa jest postaci: U = (Z 1 Z 2 ) gdzie Z i, i = 1, 2 są postaci: (n 3)(m 3), n + m 6 Z i = 1 2 ln 1 + R i 1 R i, natomiast n i m > 10 oznaczają odpowiednio rozmiar pierwszej i drugiej próby. Przy prawdziwości hipotezy H 0 statystyka testowa ma standardowy rozkład normalny N(0, 1).
Test istotności dla współczynnika korelacji Obszarem odrzucenia H 0, w zależności od alternatywy, jest zbiór C : (, u 1 α/2 ] [u 1 α/2, ), dla H 1 : r 1 r 2 C : (, u 1 α ], dla H 1 : r 1 < r 2 C : [u 1 α, ), dla H 1 : r 1 > r 2
Współczynnik korelacji rang Spearmana Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem korelacji z próby nazywamy statystykę: R S = 1 6 n i=1 D 2 i n(n 2 1) gdzie D i jest wektorem różnicy rang wektorów X, Y.
Test dla współczynnika korelacji rang Spearmana Niech ((X 1, Y 1 ), (X 2, Y 2 )..., (X n, Y n )) oznacza próbę rozmiaru n z rozkładu dwuwymiarowego.
Test dla współczynnika korelacji rang Spearmana Niech ((X 1, Y 1 ), (X 2, Y 2 )..., (X n, Y n )) oznacza próbę rozmiaru n z rozkładu dwuwymiarowego. Testujemy hipotezę: H 0 : ρ = 0, H 1 : ρ 0 Co jest równoważne testowaniu hipotezy, że cechy X i Y są niezależne.
Test dla współczynnika korelacji rang spearmana Statystyka testowa jest postaci: R S = 1 6 n i=1 Di 2 n(n 2 1) = 1 6 ni=1 (R i S i ) 2 n(n 2, 1) gdzie R i, S i oznaczają rangi zmiennych X i, Y i
Test dla współczynnika korelacji rang spearmana Statystyka testowa jest postaci: R S = 1 6 n i=1 Di 2 n(n 2 1) = 1 6 ni=1 (R i S i ) 2 n(n 2, 1) gdzie R i, S i oznaczają rangi zmiennych X i, Y i Odrzucamy hipotezę zerową gdy moduł wartości ρ statystyki testowej R S jest większy od wartości krytycznej współczynnika korelacji Spearmana r S (α, n), tzn gdy: ρ > r S (α, n).
Test dla współczynnika korelacji rang Spearmana W przypadku dużego rozmiaru próby korzystamy ze statystki testowej T = R S n 2, 1 RS 2 która przy prawdziwości H 0 już przy n > 10 ma rozkład t-studenta z n 2 stopniami swobody.
Test dla współczynnika korelacji rang Spearmana W przypadku dużego rozmiaru próby korzystamy ze statystki testowej T = R S n 2, 1 RS 2 która przy prawdziwości H 0 już przy n > 10 ma rozkład t-studenta z n 2 stopniami swobody. Asymptotycznie (n > 200) możemy użyć statystyki testowej Z = R S n 1, która przy prawdziwości H 0 ma rozkład normalny N(0, 1).
Literatura: Bartoszewicz J.,Wykłady ze statystyki matematycznej, PWN, Warszawa 1989. Koronacki J. i Mielniczuk J., Statystyka, dla studentów kierunków technicznych i przyrodniczych, WNT, 2001 Krysicki W., Bartos J., Dyczka W., Krówlikowska K., Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, część II, PWN, 2012 Magiera M, Modele i metody statystyki matematycznej, część II, wnioskowanie statystyczne, Wrocław, 2007