Wykład 12 Testowanie hipotez dla współczynnika korelacji

Podobne dokumenty
Wykład 12 Testowanie hipotez dla współczynnika korelacji

Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich

Problem dwóch prób: porównywanie średnich i wariancji z populacji o rozkładach normalnych. Wrocław, 23 marca 2015

Wykład 9 Testy rangowe w problemie dwóch prób

Wykład 10 Testy jednorodności rozkładów

Wykład 11 Testowanie jednorodności

Wykład 7 Testowanie zgodności z rozkładem normalnym

Testy dla dwóch prób w rodzinie rozkładów normalnych

Wykład 12 ( ): Testy dla dwóch prób w rodzinie rozkładów normalnych

Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym. Wrocław, r

Wykład 3 Testowanie hipotez statystycznych o wartości średniej. średniej i wariancji z populacji o rozkładzie normalnym

Testowanie hipotez dla frakcji. Wrocław, 29 marca 2017

Testowanie hipotez dla proporcji. Wrocław, 13 kwietnia 2015

Testy post-hoc. Wrocław, 6 czerwca 2016

Wykład 8 Dane kategoryczne

Testowanie hipotez statystycznych.

Wykład 5 Estymatory nieobciążone z jednostajnie minimalną war

Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 4

Wykład 1 Zmienne losowe, statystyki próbkowe - powtórzenie materiału

Testowanie hipotez statystycznych.

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Wykład 10 ( ). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Idea. θ = θ 0, Hipoteza statystyczna Obszary krytyczne Błąd pierwszego i drugiego rodzaju p-wartość

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

Modele i wnioskowanie statystyczne (MWS), sprawozdanie z laboratorium 3

Wykład 3 Momenty zmiennych losowych.

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych

Wykład 3 Momenty zmiennych losowych.

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Wykład 6 Estymatory efektywne. Własności asymptotyczne estym. estymatorów

Prawdopodobieństwo i statystyka

WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ

Statystyka matematyczna dla leśników

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych

ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI

Testowanie hipotez statystycznych cd.

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

Metody probabilistyczne

Statystyka matematyczna. Wykład VI. Zesty zgodności

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona

Testowanie hipotez statystycznych

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipotezą statystyczną nazywamy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.

Korelacja krzywoliniowa i współzależność cech niemierzalnych

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

Uwaga. Decyzje brzmią różnie! Testy parametryczne dotyczące nieznanej wartości

ρ siła związku korelacyjnego brak słaba średnia silna bardzo silna

VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15

TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.

STATYSTYKA MATEMATYCZNA WYKŁAD 5. 2 listopada 2009

Statystyka matematyczna. Wykład V. Parametryczne testy istotności

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Wykład 2 Zmienne losowe i ich rozkłady

Testowanie hipotez statystycznych.

Statystyka w analizie i planowaniu eksperymentu

Kilka uwag o testowaniu istotności współczynnika korelacji

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

Statystyczna analiza danych

ĆWICZENIE 11 NIEPARAMETRYCZNE TESTY ISTOTNOŚCI

BADANIE POWTARZALNOŚCI PRZYRZĄDU POMIAROWEGO

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

S t a t y s t y k a, część 3. Michał Żmihorski

ZJAZD 4. gdzie E(x) jest wartością oczekiwaną x

Analiza autokorelacji

Weryfikacja hipotez statystycznych testy dla dwóch zbiorowości

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas

STATYSTYKA

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

Testowanie hipotez statystycznych

Statystyka matematyczna

Badanie zgodności dwóch rozkładów - test serii, test mediany, test Wilcoxona, test Kruskala-Wallisa

... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).

Testowanie hipotez statystycznych.

BADANIE POWTARZALNOŚCI PRZYRZĄDU POMIAROWEGO

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25

STATYSTYKA MATEMATYCZNA WYKŁAD 4. WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH X - cecha populacji, θ parametr rozkładu cechy X.

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

Statystyka matematyczna. Wykład III. Estymacja przedziałowa

X WYKŁAD STATYSTYKA. 14/05/2014 B8 sala 0.10B Godz. 15:15

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

Test t-studenta dla jednej średniej

Badanie zgodności z określonym rozkładem. F jest dowolnym rozkładem prawdopodobieństwa. Test chi kwadrat zgodności. F jest rozkładem ciągłym

Hipotezy statystyczne

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012

WSTĘP. Tematy: Regresja liniowa: model regresji liniowej, estymacja nieznanych parametrów. Wykład:30godz., ćwiczenia:15godz., laboratorium:30godz.

Statystyka i opracowanie danych - W 4: Wnioskowanie statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407

Statystyka Matematyczna Anna Janicka

1 Estymacja przedziałowa

Transkrypt:

Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018

Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem korelacji z próby nazywamy statystykę: R = ni=1 (X i X )(Y i Ȳ ) ni=1 (X i X ) 2 n i=1 (Y i Ȳ ) 2 gdzie X = 1 n ni=1 X i oraz Ȳ = 1 n ni=1 Y i oznaczają odpowiednio średnie z próby X i Y.

Test istotności dla współczynnika korelacji Niech ((X 1, Y 1 ), (X 2, Y 2 )..., (X n, Y n )) oznacza próbę rozmiaru n z dwuwymiarowego rozkładu normalnego N(µ, Σ), gdzie przez µ oznaczamy wektor wartości oczekiwanych, natomiast przez Σ macierz kowariancji. Interesuje nas sprawdzenie czy zmienne losowe X i Y są niezależne, a zatem należy sprawdzić czy współczynnik korelacji jest równy zero.

Test istotności dla współczynnika korelacji Niech ((X 1, Y 1 ), (X 2, Y 2 )..., (X n, Y n )) oznacza próbę rozmiaru n z dwuwymiarowego rozkładu normalnego N(µ, Σ), gdzie przez µ oznaczamy wektor wartości oczekiwanych, natomiast przez Σ macierz kowariancji. Interesuje nas sprawdzenie czy zmienne losowe X i Y są niezależne, a zatem należy sprawdzić czy współczynnik korelacji jest równy zero. Testujemy hipotezę: H 0 : r = 0 H 1 : r 0

Test istotności dla współczynnika korelacji Statystyka testowa jest postaci: T = R 1 R 2 n 2

Test istotności dla współczynnika korelacji Statystyka testowa jest postaci: T = R 1 R 2 n 2 Przy prawdziwości hipotezy H 0 statystyka testowa ma rozkład t Studenta z n 2 stopniami swobody.

Test istotności dla współczynnika korelacji Statystyka testowa jest postaci: T = R 1 R 2 n 2 Przy prawdziwości hipotezy H 0 statystyka testowa ma rozkład t Studenta z n 2 stopniami swobody. Obszarem odrzucenia H 0 jest zbiór C : (, t 1 α/2 (n 2)] [t 1 α/2 (n 2), ).

Test istotności dla współczynnika korelacji Uwaga: Możemy również testować hipotezę H 0 przy alternatywach: r 0 lub r 0. Wówczas zbiór krytyczny jest odpowiednio lewo- lub prawostronny.

Przykład 12.1 Z partii towaru wylosowano 10 egzemplarzy i przebadano je ze względu na cechy X i Y otrzymując: x i 3.5 3.4 2.1 5.4 1.1 5.1 6.9 4.0 4.5 2.5 y i 1.6 2.9 1.5 3.5 0.6 2.5 7.1 3.5 2.1 2.6 Na poziomie istotności 0.05 zweryfikować hipotezę o braku korelacji między tymi cechami. Testujemy hipotezę: H 0 : r = 0 H 1 : r 0

Przykład 12.1 - c.d. Wyznaczmy wartość współczynnika korelacji: ni=1 (x i x)(y i ȳ) r = ni=1 (x i x) 2 = 22.445 = 0.82 n i=1 (y i ȳ) 2 743.4075

Przykład 12.1 - c.d. Wyznaczmy wartość współczynnika korelacji: ni=1 (x i x)(y i ȳ) r = ni=1 (x i x) 2 = 22.445 = 0.82 n i=1 (y i ȳ) 2 743.4075 Statystyka testowa jest postaci: T = r 0.82 n 2 = 8 = 4.101 1 r 2 0.56

Przykład 12.1 - c.d. Wyznaczmy wartość współczynnika korelacji: ni=1 (x i x)(y i ȳ) r = ni=1 (x i x) 2 = 22.445 = 0.82 n i=1 (y i ȳ) 2 743.4075 Statystyka testowa jest postaci: T = r 0.82 n 2 = 8 = 4.101 1 r 2 0.56 Zbiór krytyczny jest postaci: C : (, t 0.975 (8)] [t 0.975 (8), ) (, 2.3] [2.3, ), a zatem rozważane cechy są skorelowane.

Przykład 12.1 - Pakiet R x <-c (3.5, 3.4, 2.1, 5.4, 1.1, 5.1, 6.9, 4.0, 4.5, 2.5) y <-c (1.6, 2.9, 1.5, 3.5, 0.6, 2.5, 7.1, 3.5, 2.1, 2.6) cor. test (x,y) Pearson s product-moment correlation data: x and y t = 4.101, df = 8, p-value = 0.003433 alternative hypothesis: true correlation is not equal to 0 95 percent confidence interval: 0.4018662 0.9568721 sample estimates: cor 0.8232015

Test istotności dla współczynnika korelacji Niech ((X 1, Y 1 ), (X 2, Y 2 )..., (X n, Y n )) oznacza próbę rozmiaru n z dwuwymiarowego rozkładu normalnego N(µ, Σ), gdzie przez µ oznaczamy wektor wartości oczekiwanych, natomist przez Σ macierz kowariancji. Interesuje nas zweryfikowanie hipotezy o równości współczynnika korelacji wartości innej niż zero.

Test istotności dla współczynnika korelacji Niech ((X 1, Y 1 ), (X 2, Y 2 )..., (X n, Y n )) oznacza próbę rozmiaru n z dwuwymiarowego rozkładu normalnego N(µ, Σ), gdzie przez µ oznaczamy wektor wartości oczekiwanych, natomist przez Σ macierz kowariancji. Interesuje nas zweryfikowanie hipotezy o równości współczynnika korelacji wartości innej niż zero. Testujemy hipotezę: H 0 : r = r 0, i 0 < r 0 < 1 H 1 : r r 0

Test istotności dla współczynnika korelacji Statystyka testowa jest postaci: U = [ Z 1 2 ln 1 + r ] 0 r 0 n 3, 1 r 0 2(n 1) gdzie Z, nazywana statystyką Fishera jest postaci: Z = 1 2 ln 1 + R 1 R

Test istotności dla współczynnika korelacji Statystyka testowa jest postaci: U = [ Z 1 2 ln 1 + r ] 0 r 0 n 3, 1 r 0 2(n 1) gdzie Z, nazywana statystyką Fishera jest postaci: Z = 1 2 ln 1 + R 1 R Przy prawdziwości hipotezy H 0 statystyka testowa ma standardowy rozkład normalny.

Test istotności dla współczynnika korelacji Statystyka testowa jest postaci: U = [ Z 1 2 ln 1 + r ] 0 r 0 n 3, 1 r 0 2(n 1) gdzie Z, nazywana statystyką Fishera jest postaci: Z = 1 2 ln 1 + R 1 R Przy prawdziwości hipotezy H 0 statystyka testowa ma standardowy rozkład normalny. Obszarem odrzucenia H 0, w zależności od alternatywy, jest zbiór C : (, u 1 α/2 ] [u 1 α/2, ), dla H 1 : r r 0 C : (, u 1 α ], dla H 1 : r < r 0 C : [u 1 α, ), dla H 1 : r > r 0

Test jednorodności dla współczynników korelacji Niech będą dane populacje, w których badane cechy mają dwuwymiarowe rozkłady normalne o nieznanych współczynnikach korelacji r 1 i r 2. Interesuje nas zweryfikowanie hipotezy o równości współczynników korelacji.

Test jednorodności dla współczynników korelacji Niech będą dane populacje, w których badane cechy mają dwuwymiarowe rozkłady normalne o nieznanych współczynnikach korelacji r 1 i r 2. Interesuje nas zweryfikowanie hipotezy o równości współczynników korelacji. Testujemy hipotezę: H 0 : r 1 = r 2, H 1 : r 1 r 2

Test istotności dla współczynnika korelacji Statystyka testowa jest postaci: U = (Z 1 Z 2 ) gdzie Z i, i = 1, 2 są postaci: (n 3)(m 3), n + m 6 Z i = 1 2 ln 1 + R i 1 R i, natomiast n i m > 10 oznaczają odpowiednio rozmiar pierwszej i drugiej próby.

Test istotności dla współczynnika korelacji Statystyka testowa jest postaci: U = (Z 1 Z 2 ) gdzie Z i, i = 1, 2 są postaci: (n 3)(m 3), n + m 6 Z i = 1 2 ln 1 + R i 1 R i, natomiast n i m > 10 oznaczają odpowiednio rozmiar pierwszej i drugiej próby. Przy prawdziwości hipotezy H 0 statystyka testowa ma standardowy rozkład normalny N(0, 1).

Test istotności dla współczynnika korelacji Obszarem odrzucenia H 0, w zależności od alternatywy, jest zbiór C : (, u 1 α/2 ] [u 1 α/2, ), dla H 1 : r 1 r 2 C : (, u 1 α ], dla H 1 : r 1 < r 2 C : [u 1 α, ), dla H 1 : r 1 > r 2

Współczynnik korelacji rang Spearmana Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem korelacji z próby nazywamy statystykę: R S = 1 6 n i=1 D 2 i n(n 2 1) gdzie D i jest wektorem różnicy rang wektorów X, Y.

Test dla współczynnika korelacji rang Spearmana Niech ((X 1, Y 1 ), (X 2, Y 2 )..., (X n, Y n )) oznacza próbę rozmiaru n z rozkładu dwuwymiarowego.

Test dla współczynnika korelacji rang Spearmana Niech ((X 1, Y 1 ), (X 2, Y 2 )..., (X n, Y n )) oznacza próbę rozmiaru n z rozkładu dwuwymiarowego. Testujemy hipotezę: H 0 : ρ = 0, H 1 : ρ 0 Co jest równoważne testowaniu hipotezy, że cechy X i Y są niezależne.

Test dla współczynnika korelacji rang spearmana Statystyka testowa jest postaci: R S = 1 6 n i=1 Di 2 n(n 2 1) = 1 6 ni=1 (R i S i ) 2 n(n 2, 1) gdzie R i, S i oznaczają rangi zmiennych X i, Y i

Test dla współczynnika korelacji rang spearmana Statystyka testowa jest postaci: R S = 1 6 n i=1 Di 2 n(n 2 1) = 1 6 ni=1 (R i S i ) 2 n(n 2, 1) gdzie R i, S i oznaczają rangi zmiennych X i, Y i Odrzucamy hipotezę zerową gdy moduł wartości ρ statystyki testowej R S jest większy od wartości krytycznej współczynnika korelacji Spearmana r S (α, n), tzn gdy: ρ > r S (α, n).

Test dla współczynnika korelacji rang Spearmana W przypadku dużego rozmiaru próby korzystamy ze statystki testowej T = R S n 2, 1 RS 2 która przy prawdziwości H 0 już przy n > 10 ma rozkład t-studenta z n 2 stopniami swobody.

Test dla współczynnika korelacji rang Spearmana W przypadku dużego rozmiaru próby korzystamy ze statystki testowej T = R S n 2, 1 RS 2 która przy prawdziwości H 0 już przy n > 10 ma rozkład t-studenta z n 2 stopniami swobody. Asymptotycznie (n > 200) możemy użyć statystyki testowej Z = R S n 1, która przy prawdziwości H 0 ma rozkład normalny N(0, 1).

Literatura: Bartoszewicz J.,Wykłady ze statystyki matematycznej, PWN, Warszawa 1989. Koronacki J. i Mielniczuk J., Statystyka, dla studentów kierunków technicznych i przyrodniczych, WNT, 2001 Krysicki W., Bartos J., Dyczka W., Krówlikowska K., Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, część II, PWN, 2012 Magiera M, Modele i metody statystyki matematycznej, część II, wnioskowanie statystyczne, Wrocław, 2007