Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Badanie wentylatora - 1 -



Podobne dokumenty
Badania wentylatora. Politechnika Lubelska. Katedra Termodynamiki, Mechaniki Płynów. i Napędów Lotniczych. Instrukcja laboratoryjna

Wydajne wentylatory promieniowe Fulltech o wysokim ciśnieniu statycznym

SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie

MECHANIKA PŁYNÓW LABORATORIUM

Zasada działania maszyny przepływowej.

Pomiar pompy wirowej

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ

WYKŁAD 11 POMPY I UKŁADY POMPOWE

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH. Opracował. Dr inż. Robert Jakubowski

OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH

OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH

Ćw. 4. BADANIE I OCENA WPŁYWU ODDZIAŁYWANIA WYBRANYCH CZYNNIKÓW NA ROZKŁAD CIŚNIEŃ W ŁOśYSKU HYDRODYNAMICZNYMM

LABORATORIUM TERMODYNAMIKI I TECHNIKI CIEPLNEJ. Badanie charakterystyki wentylatorów połączenie równoległe i szeregowe. dr inż.

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 7 BADANIE POMPY II

Badania wentylatora. Politechnika Lubelska. Katedra Termodynamiki, Mechaniki Płynów. i Napędów Lotniczych. Instrukcja laboratoryjna

ĆWICZENIE WYZNACZANIE CHARAKTERYSTYK POMPY WIROWEJ

Ćwiczenie N 13 ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO

BADANIE SPRĘŻARKI TŁOKOWEJ.

Opory przepływu powietrza w instalacji wentylacyjnej

Laboratorium. Hydrostatyczne Układy Napędowe

Straty ciśnienia w systemie wentylacyjnym

LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH

WENTYLATORY PROMIENIOWE TYPOSZEREG: FK, FKD

Rys.1. Zwężki znormalizowane: a) kryza, b) dysza, c) dysza Venturiego [2].

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia III. Pomiar natężenia przepływu za pomocą sondy poboru ciśnienia

ĆWICZENIE I WYZNACZENIE ROZKŁADU PRĘDKOŚCI STRUGI W KANALE

OZNACZENIE UKŁADU WYLOTU WENTYLATORÓW (wg PN-92/M-43011) ( W NAWIASACH OZNACZENIA wg PN-78/M-43012).

POLITECHNIKA WROCŁAWSKA, INSTYTUT INŻYNIERII BIOMEDYCZNEJ I POMIAROWEJ LABORATORIUM POMIARÓW WIELKOŚCI NIEELEKTRYCZNYCH I-21

Akademia Górniczo- Hutnicza Im. Stanisława Staszica w Krakowie

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH

J. Szantyr Wykład nr 26 Przepływy w przewodach zamkniętych II

CHARAKTERYSTYKA POMPY WIROWEJ I SIECI

Badania efektywności pracy wywietrzników systemowych Zefir w układach na pustaku wentylacyjnym w czterorzędowym wariancie montażowym

Laboratorium z Konwersji Energii. Silnik Wiatrowy

Podstawowe narzędzia do pomiaru prędkości przepływu metodami ciśnieniowymi

[1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy.

WYZNACZENIE WSPÓŁCZYNNIKA OPORU LINIOWEGO PRZEPŁYWU LAMINARNEGO

POLITECHNIKA KRAKOWSKA Instytut Inżynierii Cieplnej i Procesowej

Mechanika płynów : laboratorium / Jerzy Sawicki. Bydgoszcz, Spis treści. Wykaz waŝniejszych oznaczeń 8 Przedmowa

POMIAR STRUMIENIA PRZEPŁYWU PŁYNÓW I OPORÓW PRZEPŁYWU

LABORATORIUM MECHANIKI PŁYNÓW

Parametry pracy pompy i zjawisko kawitacji

Pomiar natężenia przepływu płynów ściśliwych metodą zwężki pomiarowej

STRATY ENERGII. (1) 1. Wprowadzenie.

Aerodynamika i mechanika lotu

Wentylatory promieniowe typu WPO-10/25 WPO-18/25 PRZEZNACZENIE

ciąg podciśnienie wywołane róŝnicą ciśnień hydrostatycznych zamkniętego słupa gazu oraz otaczającego powietrza atmosferycznego

Straty energii podczas przepływu wody przez rurociąg

Zastosowania Równania Bernoullego - zadania

POMIAR STRUMIENIA PŁYNU ZA POMOCĄ ZWĘŻEK.

Wywietrzniki grawitacyjne i ich właściwy dobór dla poprawnej wentylacji naturalnej w budynkach

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych

TEMAT: PARAMETRY PRACY I CHARAKTERYSTYKI SILNIKA TŁOKOWEGO

Ćwiczenie laboratoryjne Parcie wody na stopę fundamentu

WENTYLATORY PROMIENIOWE JEDNOSTRUMIENIOWE TYPOSZEREG: WPO- 10/25 WPO 18/25

FDS 6 - Nowe funkcje i możliwości: Modelowanie instalacji HVAC część 2 zagadnienia hydrauliczne

Porównanie strat ciśnienia w przewodach ssawnych układu chłodniczego.

K raków 26 ma rca 2011 r.

AKADEMIA GÓRNICZO HUTNICZA INSTRUKCJE DO ĆWICZEŃ LABORATORYJNYCH: TECHNIKA PROCESÓW SPALANIA

Pomiar natęŝeń przepływu gazów metodą zwęŝkową

WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ

OZNACZENIE WILGOTNOSCI POWIETRZA 1

Wyznaczanie charakterystyk statycznych dwudrogowego regulatora przepływu i elementów dławiących

WYDZIAŁ MECHANICZNY POLITECHNIKI GDAŃSKIEJ KATEDRA SILNIKÓW SPALINOWYCH I SPRĘśAREK

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

Eksperymentalnie wyznacz bilans energii oraz wydajność turbiny wiatrowej, przy obciążeniu stałą rezystancją..

Wojskowa Akademia Techniczna Katedra Pojazdów Mechanicznych i Transportu

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B

09 - Dobór siłownika i zaworu. - Opór przepływu w przewodzie - Dobór rozmiaru zaworu - Dobór rozmiaru siłownika

INSTRUKCJA LABORATORYJNA NR 4-EW ELEKTROWNIA WIATROWA

Akademia Górniczo- Hutnicza Im. Stanisława Staszica w Krakowie

WLOTY I SPRĘŻARKI SILNIKÓW TURBINOWYCH. Dr inż. Robert Jakubowski

c = 1 - właściwa praca sprężania izoentropowego [kj/kg], 1 - właściwa praca rozprężania izoentropowego

MSBN wentylator promieniowy

Metodyka szacowania niepewności w programie EMISJA z wykorzystaniem świadectw wzorcowania Emiotestu lub innych pyłomierzy automatycznych

Przepływ cieczy w pompie wirowej. Podstawy teoretyczne i kinematyka przepływu przez wirniki pomp wirowych.

MODEL DWUWYMIAROWY PRZEPŁYWU PRZEZ STOPIEŃ MODELOWEJ TURBINY WODNEJ ORAZ JEGO EKSPERYMENTALNA WERYFIKACJA

WENTYLATORY PROMIENIOWE JEDNOSTRUMIENIOWE TYPOSZEREG: WWOax

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej

ĆWICZENIE I POMIAR STRUMIENIA OBJĘTOŚCI POWIETRZA. OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH

II.B ZESTAWY MONTAŻOWE GAZOMIERZY ZWĘŻKOWYCH Z PRZYTARCZOWYM SZCZELINOWYM ODBIOREM CIŚNIENIA

WENTYLATORY PROMIENIOWE TRANSPORTOWE TYPOSZEREG: WPT 20 WPT 63

LABORATORIUM Z PROEKOLOGICZNYCH ŹRÓDEŁ ENERGII ODNAWIALNEJ

WENTYLATORY PROMIENIOWE DWUSTRUMIENIOWE TYPOSZEREG: WPWDs/1,4 WPWDs/1,8

LABORATORIUM MECHANIKI PŁYNÓW

Zajęcia laboratoryjne

Hydrostatyczne Układy Napędowe Laboratorium

BADANIA W INSTALACJACH WENTYLACYJNYCH

INSTYTUT ELEKTROENERGETYKI POLITECHNIKI ŁÓDZKIEJ BADANIE WENTYLATORA PROMIENIOWEGO

WENTYLATORY PROMIENIOWE JEDNOSTRUMIENIOWE TYPOSZEREG: WPPO

J. Szantyr Wykład 26bis Podstawy działania pomp wirnikowych. a) Układ ssący b) Układ tłoczący c) Układ ssąco-tłoczący

Laboratorium InŜynierii i Aparatury Przemysłu SpoŜywczego

Efekt Halla. Cel ćwiczenia. Wstęp. Celem ćwiczenia jest zbadanie efektu Halla. Siła Loretza

ęŝanie ęŝarka idealna ęŝanie politropowe ęŝanie wielostopniowe Przestrzeń szkodliwa Wykres indykatorowy Przepływ przez wirnik Zmiana entalpii W13 90

Grupa 1 1.1). Obliczyć średnicę zastępczą przewodu o przekroju prostokątnym o długości boków A i B=2A wypełnionego wodą w 75%. Przewód ułożony jest w

WENTYLATORY PROMIENIOWE JEDNOSTRUMIENIOWE. TYPU WWOax

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

Transkrypt:

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYAMIKI Badanie wentylatora - 1 -

Wiadomości podstawowe Wentylator jest maszyną przepływową, słuŝącą do przetłaczania i spręŝania czynników gazowych. SpręŜenie czynnika jest niezbędne dla pokonania oporów sieci przewodów, przez które czynnik jest przetłaczany. Wentylatory róŝnych typów znajdują powszechne zastosowanie w urządzeniach wentylacji mechanicznej, klimatyzacji, odpylania w urządzeniach transportu pneumatycznego oraz jako urządzenia ciągu i podmuchu sztucznego w energetyce i hutnictwie. Elementem przekazującym energię czynnikowi przetłaczanemu jest wirnik wentylatora. W zaleŝności od budowy wirnika (kierunku przepływu czynnika przez wirnik) moŝna wentylatory podzielić na dwie zasadnicze grupy: - wentylatory odśrodkowe - wentylatory osiowe Ponadto budowane są wentylatory, w których zasadniczy kierunek przepływu odbywa się pod π pewnym kątem < do osi wirnika. Są to wentylatory diagonalne. Z uwagi na wytwarzany spręŝ, moŝna wentylatory podzielić na trzy grupy: - niskopręŝne pc < 1000 /m - średniopręŝne pc < 1000 3000 /m - wysokopręŝne pc < 3000 10000 /m W grupie wentylatorów odśrodkowych moŝna rozróŝnić trzy rodzaje wentylatorów róŝniących się budową wirnika: - z wirnikiem o łopatkach prostych (promieniowych) - z wirnikiem o łopatkach zgiętych wprzód (w kierunku ruchu silnika) - z wirnikiem o łopatkach zgiętych wstecz (przeciwnie do kierunku ruchu wirnika) RóŜnice konstrukcyjne wentylatorów w decydujący sposób wpływają na ich zastosowanie. Podstawowymi wielkościami, które określają przydatność wentylatora są: wydatek oraz wytwarzany spręŝ. a rysunku 1 przedstawiono wykres określający obszar właściwego zastosowania wentylatorów osiowych i odśrodkowych. - -

Rys.1. PrzybliŜone zakresy pracy wentylatorów osiowych i odśrodkowych. W ćwiczeniu badaniom poddany jest wentylator odśrodkowy niskopręŝny, którego przekrój podłuŝny i poprzeczny przedstawiono na rys.. Rys.. Schematyczny przekrój poprzeczny i podłuŝny wentylatora odśrodkowego Z punktu widzenia eksploatacji wentylatorów najistotniejszymi wielkościami są: - wydatek V [m3/s], - spręŝ pc [/m] oraz - sprawność ogólna η 0. Wydatek wentylatora jest najczęściej wyraŝony jako objętość lub masa czynnika zassanego w jednostce czasu, odniesioną do warunków na ssaniu, lub warunków umownych. - 3 -

SpręŜ wentylatora jest to ilość energii, jaką przekazuje wirnik wentylatora przetłaczanemu czynnikowi dla pokonania oporów przepływu, oraz nadania energii kinetycznej odpowiadającej wydatkowi. Jednostkową energię przekazaną czynnikowi moŝna określić mierząc przyrost ciśnienia całkowitego uzyskanego w wentylatorze: p c = p c p c1 gdzie: - p c1 ciśnienie całkowite na wlocie wentylatora - p c ciśnienie całkowite na wylocie wentylatora Rozkład ciśnień w przewodzie ssącym i tłoczonym wentylatora w przypadku zasysania i tłoczenia czynnika do otoczenia o ciśnieniu p 0 przedstawia schemat na rys.3. Rys. 3. Rozkład ciśnień w instalacji przewodowej. Sprawności Przepływ gazu rzeczywistego przez wentylator, którego wirnik posiada skończoną ilość łopatek odbywa się ze stratami energii. Straty te wynikają z tarcia cząsteczek gazu o ścianki - 4 -

kanałów międzyłopatkowych i obudowy wentylatora, wirów powstałych w strumieniu gazu uderzeń strumienia o krawędzie łopatek na wlocie. Straty te noszą nazwę strat hydraulicznych. W wyniku tych strat krzywa naleŝności p ct =f(v) ma przebieg zmieniony. PoniewaŜ wielkość strat hydraulicznych zaleŝy od kwadratu prędkości przepływu gazu, rzeczywista zaleŝność p c =f(v) będzie zaleŝnością drugiego stopnia. Przebieg tej krzywej przedstawia rys.4. Rys. 4. Charakterystyka rzeczywistej maszyny spręŝającej. - (a) powierzchnia określająca straty wynikłe ze skończonej ilości łopatek wirnika (przepływ z wirami); - (b) straty wewnętrzne wynikające z tarcia; - (c) straty wynikające z uderzenia strumienia o krawędzie łopatek. Wpływ strat hydraulicznych na pracę wentylatora określa współczynnik sprawności hydraulicznej, który definiowany jest jako stosunek rzeczywistej wysokości tłoczenia (spręŝa) do wysokości teoretycznej (spręŝa) uzyskanej przy skończonej ilości łopatek wirnika. η h = H H u T = p p C CT (7) Sprawność hydrauliczną moŝna równieŝ zdefiniować jako stosunek mocy uŝytecznej u do mocy przekazywanej przez wirnik wentylatora w. η h = u w (8) Wpływ strat mechanicznych (tarcie w łoŝyskach) określa współczynnik sprawności mechanicznej - 5 -

η m = w ei (9) gdzie: e1 moc efektywna na wale wentylatora. Całkowitą sprawność wentylatora określa stosunek mocy uŝytecznej do mocy efektywnej. η w = u = u ei w = ηh η m (10) w ei Sprawność wentylatora w zaleŝy głównie od wielkości wentylatora określonej wydatkiem: - Wentylatory małe V 1500 m3/h η w = 0,3 0,5 - Wentylatory średnie V = 1500 0000 m3/h η w = 0,3 0,7 - Wentylatory duŝe V > 0000 m3/h η w = 0,65 0,83 Dla oceny pracy całego urządzenia (wentylator-silnik) wprowadza się pojęcie sprawności ogólnej urządzenia jako stosunku mocy uŝytecznej u do mocy pobieranej przez silnik napędzający e. η 0 = u e (11) Rzeczywista charakterystyka wentylatora Charakterystyką wentylatora nazywana jest krzywa obrazująca zaleŝność między wytwarzanym spręŝem a wydatkiem wentylatora p c = f(v& ) Krzywa ta moŝe być wyznaczona dla dowolnej prędkości obrotowej wirnika n. Krzywe charakterystyczne wyznacza się doświadczalnie przez pomiar spręŝa całkowitego p c dla róŝnych wartości wydatku V tj. dla róŝnych przesłonięć przewodu pomiarowego, przy tej samej prędkości obrotowej wirnika. W kaŝdym stanie ruchu spręŝ wentylatora równy jest sumie spadku ciśnienia wywołanego oporami przepływu gazu przez przewody połączone z wentylatorem i energii kinetycznej wyraŝonej ciśnieniem dynamicznym gazu przepływającego przez przewody - 6 -

p c = p R + c ρ (1) Całkowity spadek ciśnienia gazu w przewodach (sieci przewodów) moŝna wyrazić zaleŝnością: p R = R V&. (13) w której R jest wielkością charakteryzującą przewód (sieć przewodów). Wielkość ta nosi nazwę oporu właściwego przewodu (sieci przewodów) i jest zaleŝna od właściwości przewodu (wymiary, kształt przewodu i chropowatości jego powierzchni). Dla przewodów o określonych i niezmienionych właściwościach oraz stałej gęstości płynu w przewodzie R jest wielkością stałą. Zmiana wartości R jest równoznaczna z zmianą właściwości przewodów połączonych z wentylatorem. Zmianę taką moŝna uzyskać przez dławienie przepływu gazu stosując odpowiednie przesłony dławiące. Dla liczbowego ujęcia oporów przepływu sieci przewodów, z którą współpracuje wentylator przy pomiarach na stoisku badawczym wprowadza się pojęcie otworu równowaŝonego. Otworem równowaŝnym określonej sieci przewodów nazywa się otwór o przekroju F r [m ], przez który pod wpływem tej samej róŝnicy ciśnień p c [/m ] przepływa ta sama ilość czynnika w jednostce czasu, co przez daną sieć. Zmiana otworu równowaŝnego (przesłony) odpowiada zmianie sieci przewodu. Krzywe określające zaleŝność p R = f(v) w układzie p-v są parabolami i noszą nazwę charakterystyk przewodów (sieci przewodów). Punkt przecięcia się krzywej oporów z charakterystyką wentylatora określa stan współpracy danego wentylatora z siecią. Wyznaczanie przebiegu krzywej charakterystycznej wentylatora przy stałych obrotach wirnika sprawdza się do określenia spręŝa i wydatku dla róŝnych wartości otworów równowaŝnych. Przebieg krzywej przedstawiono na rys.5. - 7 -

Rys. 5. Charakterystyka zbiorcza wentylatora. Dla pełnego obrazu pracy wentylatora podstawowe krzywe charakterystyczne uzupełnia się krzywymi sprawności wentylatora, mocy uŝytecznej i mocy efektywnej. - η w = f 1 (V) - u = f (V) - e = f 3 (V) Przebieg krzywych obrazuje rys.6. - 8 -

Rys. 6. Pełna charakterystyka wentylatora. Zmiana prędkości obrotowej wirnika wywołuje zmianę wielkości charakterystycznych wentylatora. Zakładając, Ŝe przy zmianie obrotów n sprawność wentylatora pozostaje stała (stałe straty) zaleŝność powyŝszych wielkości od prędkości obrotowej moŝna przedstawić równaniami: V n = (14) V 1 n 1 p p c c1 e e1 = n n 1 n = n 1 3 (15) (16) Zmienność wielkości charakterystycznych w zaleŝności od prędkości obrotowej wirnika n przy stałym otworze równowaŝnym przedstawia rys.7. - 9 -

Rys. 7. Przebieg pomiarów Wyznaczanie charakterystyk badanego wentylatora wymaga pomiaru następujących wielkości: - spadku ciśnienia statycznego na zwęŝce p dla określenia strumienia objętości przepływu (wydatku) przez przewód pomiarowy - podciśnienia statycznego p stm na wlocie do wentylatora - nadciśnienia statycznego p stm na wylocie z wentylatora - liczby obrotów wirnika wentylatora n - mocy dostarczonej do silnika napędzającego el (przez pomiar napięcia U i prądu J). PowyŜsze wielkości mierzy się w róŝnych stanach ruchu określonych prędkością wirnika n (w zakresie n=1000-1400 [obr/min] oraz wielkością otworów równowaŝnych. Ilość serii pomiarów ustalamy wybierając prędkości obrotowe wirnika n (n 1 n n 3... n i ). Seria pomiarów dla stałej prędkości obrotowej n 1 obejmuje pomiary podanych wielkości o dla kolejnych przesłon od całkowicie zamkniętego przewodu (d p =0) do całkowicie odsłoniętego przewodu. Przebieg obliczeń Wielkości charakterystyczne wentylatora dla określonego stanu ruchu (d pi =idem n i =idem) wyznacza się w oparciu o wynik uzyskane z pomiarów: Określenie wydatku wentylatora V [m 3 /s] Wydatek V określamy przy uŝyciu zwęŝki pomiarowej - 10 -

V= f ε α p ρ (17) gdzie: - α współczynnik przepływu α= 0,698 - ε współczynnik przepływu ε= 1 - f powierzchnia przekroju pomiarowego π d f = z 4 - d z średnica otworu zwęŝki d z =141mm - ρ gęstość powietrza w przekroju pomiarowym - p spadek ciśnienia pomiarowego na zwęŝce. Z termicznego równania stanu dla powietrza: gdzie: pot ρ= R T x ot - R x zastępcza stała gazowa dla powietrza wilgotnego (gaz doskonały) R g + Χ R p R X = 1 + Χ - R g indywidualna stała gazowa dla powietrza suchego R g = 87 J/kgK - R p indywidualna stała gazowa pary wodnej R p =46 J/kgK - X stopień zawilŝenia powietrza Χ ϕ ot p s (t ot ) = 0,6 ϕ ot p s ( t p ϕ p ot ot ot s ) ( t ot - wilgotność względna otoczenia ) (18) - ciśnienie nasycenia pary wodnej w temperaturze pomiaru - 11 -

Prędkość powietrza na wlocie do wentylatora c 1. c 1 = V& F 1 (19) F 1 - pole przekroju przepływu w miejscu pomiaru ciśnienia statycznego p stm1 π D F 1 = 4, D = 350mm Ciśnienie dynamiczne na wlocie do wentylatora p d1 p d1 = c 1 ρ gdzie ρ - gęstość powietrza (0) Prędkość powietrza na wylocie z wentylatora c c = V& F gdzie F = a b ; a=10mmm b=350mm (1) Ciśnienie dynamiczne na wylocie z wentylatora p d c p d = ρ () SpręŜ wentylatora p c p c1 = p B p smt1 + p d1 p c = p B p smt + p d p c = p stm + p stm1 + p d p d1 p c = p stm + p d p d1 (3) gdzie: - p B ciśnienie barometryczne - p stm = p stm + p stm1 spręŝ statyczny wentylatora Moc uŝyteczna u = V& (4) u p c - 1 -

Mocą uŝyteczną wentylatora nazywana jest moc potrzebna do izotermicznego spręŝenia zassanego czynnika w ilości V od ciśnienia p c1 do p c. Moc elektryczna el (doprowadzona do silnika) el = U I (5) gdzie: - U napięcie - I prąd Sprawność elektryczna η el Odczytuje się z wykresu η el = f ( el ). Moc efektywna wentylatora e Mocą efektywną nazywamy moc doprowadzoną do wału wirnika wentylatora. e = el η el η p (6) gdzie - η p sprawność przekładni pasowej pomiędzy silnikiem a wałem wirnika wentylatora η p =0.9 Sprawność wentylatora η w η w = u e Sprawność ogólna urządzenia η o η o = u = ηw η p η el (8) el Powierzchnia otworu równowaŝnego Fr - 13 -

Fr= V& p ρ µ c (9) Gdzie: - µ współczynnik przepływu; dla otworu wykonanego w cienkiej blaszce wynosi µ = 0,6-0,7 Rys. 8. Schemat stanowiska pomiarowego. 1) badany wentylator ) silnik prądu stałego 3) pulpit sterowniczy 4) zwęŝka pomiarowa 5) przesłony 6) miejsce odbioru nadciśnienia statycznego p stm 7) miejsce odbioru podciśnienia statycznego p stm1 8) miejsce określenia parametrów powietrza 9) mikromanometr 10) mikromanometr - 14 -