ęŝanie ęŝarka idealna ęŝanie politropowe ęŝanie wielostopniowe Przestrzeń szkodliwa Wykres indykatorowy Przepływ przez wirnik Zmiana entalpii W13 90

Wielkość: px
Rozpocząć pokaz od strony:

Download "ęŝanie ęŝarka idealna ęŝanie politropowe ęŝanie wielostopniowe Przestrzeń szkodliwa Wykres indykatorowy Przepływ przez wirnik Zmiana entalpii W13 90"

Transkrypt

1 W3 90 ęŝarka idealna politropowe wielostopniowe Przestrzeń szkodliwa Wykres indykatorowy ęŝarka przepływowa Przepływ przez wirnik Zmiana entalpii

2 w3 ęŝarka jest maszyną zmieniającą ciśnienie gazu. ęŝarka nie realizuje obiegu termodynamicznego, poniewaŝ działanie anie spręŝ ęŝarki polega na przeniesieniu gazy między obszarami o róŝnych r ciśnieniach. MoŜna wyróŝni nić następuj pujące etapy pracy spręŝ ęŝarki: - pobranie gazu - zmiana ciśnienia gazu - oddanie gazu. 2

3 w3 W spręŝ ęŝarce wyporowej zmiana ciśnienia gazu odbywa się w zamkniętej przestrzeni roboczej. Kształt t przestrzeni roboczej i rodzaj ruchu wywołuj ującego zmianę ciśnienia gazu nie mają znaczenia z punktu widzenia przemian termodynamicznych. Pracę spręŝ ęŝarki wyporowej i przemiany w niej zachodzące ce analizuje się na przykładzie spręŝ ęŝarki tłokowej. t 3

4 w3 4

5 w3 5

6 w3 6

7 w3 7

8 w3 8

9 w3 9

10 w3 0

11 w3

12 w3 2

13 w3 W spręŝ ęŝarce przepływowej zmiana ciśnienia gazu następuje podczas przepływu przez ruchomy organ roboczy spręŝ ęŝarki. Przestrzeń robocza spręŝ ęŝarki przepływowej jest przestrzenią otwartą. RóŜnica ciśnie nień na wlocie i wylocie spręŝ ęŝarki przepływowej przy braku ruchu organu roboczego spręŝ ęŝarki wywołuje przepływ wsteczny gazu. 3

14 w3 p B A 2 A pobieranie czynnika 2 spr czynnika (przemiana termodynamiczna) 2 B wytłaczanie czynnika V 4

15 w3 Praca spręŝ ęŝania jest pracą techniczną. Praca techniczna jest sumą: - pracy pobrania gazu przy ciśnieniu p (praca dodatnia) - pracy spręŝ ęŝania gazu od ciśnienia p do ciśnienia p 2 (praca ujemna) - pracy wytłoczenia gazu przy ciśnieniu p 2 (praca ujemna). 5

16 w3 p B A 2 L odd - p 2 V 2 L p dv L pob p V V 6

17 w3 Odcinek B A nie stanowi zamknięcia cyklu pracy spręŝ ęŝarki 7

18 w3 Skrajnymi przypadkami przemiany 2, w której spręŝ ęŝamy gaz - przemiana izotermiczna (idealne chłodzenie podczas spręŝ ęŝania) - przemiana adiabatyczna (idealne izolowanie podczas spręŝ ęŝania) 8

19 w3 p 2 2` 2` spr adiabatyczne 2 spr izotermiczne V 9

20 w3 Praca techniczna spręŝ ęŝania adiabatycznego ma większ kszą wartość bezwzględn dną od pracy technicznej spręŝ ęŝania izotermicznego. Chłodzenie gazu podczas spręŝ ęŝania zmniejsza pracę pobierana przez spręŝ ęŝarkę. 20

21 w3 realizowane w spręŝ ęŝarce ma wykładnik politropy większy od przemiany izotermicznej (m ) i mniejszy od przemiany adiabatycznej (m κ). Przemiana politropowa o wykładniku < m < κ jest politropą techniczną. 2

22 w3 Wewnętrzne chłodzenie gazu podczas spręŝ ęŝania jest trudne do zrealizowania. z zewnętrznym chłodzeniem nazywamy spręŝ m wielostopniowym. Przy spręŝ ęŝaniu wielostopniowym chłodzenie zewnętrzne jest chłodzeniem międzystopniowym. 22

23 w3 23

24 w3 p M N P L K G D H F C E B A-B-C-D - przemiana adiabatyczna E-F-G - przemiana adiabatyczna H-K - przemiana adiabatyczna A-E-H-L - przemiana izotermiczna A- B - spr I stopnia E-F - spr II stopnia H-K - spr III stopnia B-E - chłodzenie za I stopniem H-F - chłodzenie za II stopniem R A V 24

25 w3 Gaz spręŝ ęŝony w cylindrze I stopnia (A-B)( jest wytłaczany (B-P)( ) do chłodnicy międzystopniowej I stopnia. Następnie jest pobierany do cylindra II stopnia (P-E).( Chłodzenie międzystopniowe (B-E)( ) moŝe być traktowane jako izobaryczne chłodzenie wewnętrzne ( B-E B-P - P-E ). ). 25

26 w3 Gaz spręŝ ęŝony w cylindrze II stopnia (E-F)( jest wytłaczany (F-N)( ) do chłodnicy międzystopniowej II stopnia. Następnie jest pobierany do cylindra III stopnia (N-H).( Chłodzenie międzystopniowe (H-F)( ) moŝe być traktowane jako izobaryczne chłodzenie wewnętrzne ( H-F F-N - N-H ). ). 26

27 w3 Z porównania zmniejszenia pracy pobieranej przez spręŝ ęŝarkę przy jednokrotnym i dwukrotnym chłodzeniu międzystopniowym wynika, Ŝe e kolejne chłodzenia międzystopniowe dają coraz mniejsze oszczędno dności pracy pobieranej przez spręŝ ęŝarkę. 27

28 w3 Zastosowanie kolejnych stopni i chłodzenia międzystopniowego daje następuj pujące oszczędno dności po uwzględnieniu strat przepływu w chłodnicy międzystopniowej: - spręŝ ęŝarka dwustopniowa (pojedyncze chłodzenie międzystopniowe) 3,5 [%] - spręŝ ęŝarka trzystopniowa (dwukrotne chłodzenie międzystopniowe) 3,5 [%] + 4,4 [%] - spręŝ ęŝarka czterostopniowa (trzykrotne chłodzenie międzystopniowe 3,5 [%] + 4,4 [%] +, [%] 28

29 w3 i H p FH E F p BE A B s 29

30 w3 Jakość pracy spręŝ ęŝarki i chłodzenia międzystopniowego wyraŝa a sprawność izotermiczna spręŝ ęŝarki η iz η iz l l iz t 30

31 w3 Praca spręŝ ęŝarki rzeczywistej róŝni r się od pracy spręŝ ęŝarki idealnej. NajwaŜniejsz niejszą róŝnicą jest niepełne ne wykorzystanie objęto tości cylindra. Między denkiem tłoka, t a głowicg owicą ze względów konstrukcyjnych występuje szczelina w GZP. Objęto tość cylindra W GZP nazywana jest przestrzenią szkodliwą 3

32 w3 Gaz spręŝ ęŝony w przestrzeni szkodliwej nie moŝe e być wytłoczony do częś ęści tłocznej. Strata związana zana z przestrzenią szkodliwa nazywana jest strata objęto tościową 32

33 w3 p 2 p p B A 2 A- pobieranie czynnika -2 spr czynnika (przemiana termodynamiczna) 2-B wytłoczenie czynnika B-A rozpr czynnika znajdującego się w przestrzeni szkodliwej (przemiana termodynamiczna) V B V 33

34 w3 Objęto tość skokowa V c jest to róŝnica r objęto tości w DZP (V ) i GZP (V B ) V V V c B 34

35 w3 Wpływ przestrzeni szkodliwej na pracę spręŝ ęŝarki określa współczynnik zasysania λ. Współczynnik zasysania jest stosunkiem objęto tości gazu zassanego do cylindra do objęto tości skokowej spręŝ ęŝarki V V λ V c A 35

36 w3 Stosunek objęto tości skokowej cylindra do objęto tości przestrzeni szkodliwej nazywamy względn dną objęto tością szkodliwą (stopniem spręŝ ęŝania) ε ε V V B c 36

37 w3 Stosunek ciśnienia tłoczenia t do ciśnienia ssania nazywamy spręŝ ęŝem Π Π p p 2 37

38 w3 Dla spręŝ ęŝarek stopień spręŝ ęŝania i spręŝ są wielkościami ze sobą nie związanymi. zanymi. Stopień spręŝ ęŝania jest parametrem konstrukcyjnym spręŝ ęŝarki, a spręŝ jest parametrem eksploatacyjnym spręŝ ęŝarki. 38

39 w3 RozpręŜ gazu znajdujące go się w przestrzeni szkodliwej jest rozpręŝ m politropowym p V V 2 A B m B V p p 2 p m m A V π m 39

40 40 40 w3 Spr anie m m c B B A c A c B c A c B c A V V V V V V V V V V V V V V V π ε λ ε π ε ε λ λ

41 w3 p p 5 p 4 p 3 p 2 p V B V 4

42 w3 Ze względu na małą wartość współczynnika zasysania dla duŝych stosunków w ciśnie nień,, przy którym pracuje spręŝ ęŝarka wartość spręŝ ęŝu u na jeden stopień jest ograniczona do Π < 0 42

43 w3 p B 2 A L t V 43

44 w3 Straty objęto tościowe nie zmieniają sprawności energetycznej. Pogarszają jedynie wykorzystanie objęto tości cylindra 44

45 w3 Indykator jest to urządzenie mierzące zmianę ciśnienia w przestrzeni roboczej maszyny wyporowej w funkcji połoŝenia organu roboczego maszyny. Przebieg zmian ciśnienia w funkcji ruchu tłoka spręŝ ęŝarki tłokowej t otrzymany przy pomocy indykatora przedstawiany jest w postaci wykresu indykatorowego. 45

46 w3 p V 46

47 w3 p p t p 2 p p s V 47

48 w3 Wykres indykatorowy słuŝy s do diagnozowania spręŝ ęŝarki bez konieczności ci jej demontaŝu. 48

49 w3 Pole wykresu indykatorowego reprezentuje pracę nazywaną pracą indykowaną L i. Średnie ciśnienie indykowane p i jest to stałe ciśnienie, jakie działałoby na tłok t dla pełnego suwu tłoka t przy wykonywaniu pracy indykowanej. p i L V i c 49

50 w3 Sprawność indykowaną η i jest to stosunek pracy teoretycznej do pracy indykowanej η i L L t i 50

51 w3 p L i V c p i V 5

52 w3 Praca indykowana jest to praca wprowadzona do gazu przy zmianie ciśnienia gazu. Sprawność indykowana uwzględnia straty cieplno-przep przepływowe związane zane ze spręŝ m gazu. Sprawność indykowana nie strat mechanicznych powstających w spręŝ ęŝarce. 52

53 w3 Sprawność mechaniczna spręŝ ęŝarki η m określa stosunek pracy (mocy) indykowanej na wale spręŝ ęŝarki do prac (mocy) mechanicznej η m L i L m N N i m 53

54 w3 Sprawność uŝyteczna η u jest iloczynem sprawności mechanicznej i indykowanej η u η m η i 54

55 w3 Pracę teoretyczną spręŝ ęŝarki określamy jako pracę spręŝ ęŝania politropowego dla znanego wykładnika politropy m L t m m p p V p 2 m m 55

56 w3 Znając c parametry początkowe i końcowe spręŝ ęŝania (p, V) moŝna wyznaczyć wykładnik politropy spręŝ ęŝania m lg p lgv lg p lgv

57 w3 W spręŝ ęŝarkach przepływowych proces spręŝ ęŝania związany zany jest z ruchem wirowym czynnika przepływaj ywającego przez obracający cy się wirnik. Przepływ czynnika przez wirnik określaj lają trzy wektory prędko dkości tworzących trójk jkąt prędko dkości: - prędko dkość względna w - prędko dkość bezwzględna c - prędko dkość unoszenia u 57

58 w3 58

59 w3 59

60 w3 c u w r c r u + r w 60

61 w3 Prędko dkość względna jest prędko dkością czynnika określan laną względem łopatki wirnika i jest styczna do powierzchni łopatki. Prędko dkość unoszenia jest prędko dkością liniową wirnika i jest prostopadła a do promienia w danym miejscu wirnika. Prędko dkość bezwzględna jest prędko dkością czynnika określana względem nieruchomego otoczenia (korpusu) 6

62 w3 62

63 w3 u c w u 2 c 2 w 2 63

64 w3 Podczas przepływu przez obracający cy się wirnik prędko dkość czynnika zmienia się: -prędkość bezwzględna c czynnika rośnie (c 2 > c ) -prędkość względna czynnika maleje (w > w 2 ). Wzrost prędko dkości bezwzględnej oznacza przyrost energii kinetycznej czynnika. Spadek prędko dkości względnej jako prędko dkości lokalnej zmienia lokalnie ciśnienie czynnika, czyli oznacza wzrost ciśnienia czynnika 64

65 w3 Równanie Eulera opisuje zmianę energii jednostkowej czynnika przepływaj ywające go przez obracający cy się wirnik e c u c u u u2 2 65

66 w3 Za obracającym cym się wirnikiem znajdują się nieruchome łopatki nazywane kierownicą. Dla nieruchomej kierownicy u k 0 w k c k. Na kierownicy spadek lokalnej prędko dkości (prędko dkość względna jest równa r prędko dkości bezwzględnej) oznacza wzrost ciśnienia czynnika 66

67 w3 W wyniku przepływu czynnika przez układ ruchomy wirnik nieruchoma kierownica następuje wzrost energii ciśnienia czynnika. Praca spręŝ ęŝania czynnika w spręŝ ęŝarce przepływowej od ciśnienia p do ciśnienia p 2 równa jest pracy technicznej przemiany izentropowej l t i i 2 67

68 w3 T p 2 p s 2 s 2 s 68

69 69 69 w3 Spr anie ( ) ) ( ) ( 2 2,2,2,2,2 s wykrest pole c i i i i c i c q s wykrest pole s T q p p p

70 w3 i p 2 p 2 s 70

71 7 7 w3 Spr anie Π 2 κ κ κ κ κ κ κ κ v p l p p v p l t t

72 w3 W rzeczywistej spręŝ ęŝarce przepływowej zachodzą strat. Praca spręŝ ęŝania czynnika w spręŝ ęŝarce rzeczywistej od ciśnienia p do ciśnienia p 2 równa jest zmianie entalpii gazu od wartości i do wartości i 2r l i i 2r i > 2r i 2 i l i > l t 72

73 w3 rzeczywiste jest nieodwracalna adiabatą i moŝe e być opisywane jako nieodwracalna politropa o wykładniku m > κ p v m p 2 v m 2r T 2r T p p 2 m m T 2r T Π m m 73

74 74 74 w3 Spr anie ( ) Π m m r r r p r p r v p i i T T T R T T T c T T c i i κ κ κ κ

75 w3 Stosunek pracy teoretycznej l t do pracy spręŝ ęŝania rzeczywistego l i nazywamy sprawności cią adiabatyczną η ad η ad l l t i i i 2 2r i i 75

76 76 76 w3 Spr anie Π Π Π Π m m ad m m ad v p v p κ κ κ κ η κ κ κ κ η

77 w3 JeŜeli eli spręŝ teoretyczne potraktujemy jako przemianę politropową,, a nie izentropową,, to praca teoretyczna wyniesie l tp m m p v Π m m 77

78 w3 Sprawność politropowa η pol jest stosunkiem teoretycznej pracy spręŝ ęŝania politropowego do pracy spręŝ ęŝania rzeczywistego η pol l l tp i 78

79 79 79 w3 Spr anie κ κ η κ κ η Π Π m m v p v p m m pol m m m m pol

80 w3 Sprawność adiabatyczna zaleŝy y od wartości spręŝ ęŝu Π i wykładnika politropy m. Sprawność politropowa zaleŝy y tylko od wartości wykładnika politropy m. 80

81 w3 T p 2 p A 2 2r B C D s 8

82 w3 Praca rzeczywistego spręŝ ęŝania równa r jest sumie: -pracy spręŝ ęŝania teoretycznego izentropowego przedstawionej polem B-A-2-C-B -nieodwracalnym stratom przedstawionym polem C-2-2rC 2r-D-C. 82

83 w3 Praca teoretycznego spręŝ ęŝania politropowego równa r jest róŝnicy: r -pracy spręŝ ęŝania rzeczywistego przedstawionej polem C-2-2rC 2r-D-C -ciepła a odprowadzonego w odwracalnej przemianie politropowej przedstawionego polem C--2rC 2r-D-C. l i i q tp 2r, 2r 83

84 84 84 w3 Spr anie B D r A poleb B C r A poleb B D r A poleb B C A poleb pol ad η η

85 w3 η > η pol ad RóŜnica między sprawności cią politropową,, a sprawności cią adiabatyczna maleje wraz ze spadkiem spręŝ ęŝu limη Π ad η pol 85

86 w3 Sprawność politropowa moŝe e być uwaŝana ana za równr wną sprawności adiabatycznej przy małym spręŝ ęŝu. Sprawność politropowa jest sprawności cią pojedynczego stopnia spręŝ ęŝarki przepływowej. 86

87 w3 i p 2 p 2 2r s 87

88 w3 i p 3 p 2 p l t 2 3 3r 2r l t l t2 l i l i2 l i s 88

89 89 89 w3 Spr anie t t t t t i i i i i i t i t pol ad i t ad l n l l l l l n l l l l l l l l l l + + < + + η η η

90 w3 Dla maszyn przepływowych niemoŝliwe jest określenie pracy indykowanej i sprawności indykowanej. Sprawność wewnętrzn trzną η i spręŝ ęŝarki przepływowej jest stosunkiem pracy (mocy) teoretycznej do pracy (mocy) rzeczywistej doprowadzonej do wirnika spręŝ ęŝarki Sprawność adiabatyczną równa jest sprawności wewnętrznej. Analogiczne, jak dla spręŝ ęŝarek wyporowych wprowadza się pojęcie sprawności mechanicznej i uŝytecznej 90

W Silniki spalinowe

W Silniki spalinowe W5 ermodynamika techniczna Silniki cieplne Obieg Carnota Obieg Otta Obieg Diesla Obieg Sabathego Obieg Joula Obieg Braytona Silnik strumieniowy Silnik pulsacyjny w5 ermodynamika techniczna w5 ermodynamika

Bardziej szczegółowo

BADANIE SPRĘŻARKI TŁOKOWEJ.

BADANIE SPRĘŻARKI TŁOKOWEJ. BADANIE SPRĘŻARKI TŁOKOWEJ. Definicja i podział sprężarek Sprężarkami ( lub kompresorami ) nazywamy maszyny przepływowe, służące do podwyższania ciśnienia gazu w celu zmagazynowania go w zbiorniku. Gaz

Bardziej szczegółowo

Obiegi gazowe w maszynach cieplnych

Obiegi gazowe w maszynach cieplnych OBIEGI GAZOWE Obieg cykl przemian, po przejściu których stan końcowy czynnika jest identyczny ze stanem początkowym. Obrazem geometrycznym obiegu jest linia zamknięta. Dla obiegu termodynamicznego: przyrost

Bardziej szczegółowo

[1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy.

[1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy. [1] CEL ĆWICZENIA: Identyfikacja rzeczywistej przemiany termodynamicznej poprzez wyznaczenie wykładnika politropy. [2] ZAKRES TEMATYCZNY: I. Rejestracja zmienności ciśnienia w cylindrze sprężarki (wykres

Bardziej szczegółowo

Przemiany termodynamiczne

Przemiany termodynamiczne Przemiany termodynamiczne.:: Przemiana adiabatyczna ::. Przemiana adiabatyczna (Proces adiabatyczny) - proces termodynamiczny, podczas którego wyizolowany układ nie nawiązuje wymiany ciepła, lecz całość

Bardziej szczegółowo

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak

Bardziej szczegółowo

BADANIA SPRĘŻARKI TŁOKOWEJ

BADANIA SPRĘŻARKI TŁOKOWEJ Opracował: dr inż. Zdzisław Nagórski Materiały pomocnicze do ćwiczenia laboratoryjnego pt.: A. Wiadomości podstawowe i uzupełniające: BADANIA SPRĘŻARKI TŁOKOWEJ Proces sprężania - w zastosowaniach technicznych

Bardziej szczegółowo

YCa. y 1. lx \x. Hi-2* sp = SPRĘŻARKI TŁOKOWE 7.1. PODSTAWY TEORETYCZNE

YCa. y 1. lx \x. Hi-2* sp = SPRĘŻARKI TŁOKOWE 7.1. PODSTAWY TEORETYCZNE SPRĘŻARKI TŁOKOWE 7.1. PODSTAWY TEORETYCZNE Maszyna,.która kosztem energii pobranej z obcego źródła podnosi ciśnienie gazu, nazywa się; sprężarką. Na rys.7.1 w układzie p-v przedstawiono teoretyczny przebieg

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

PORÓWNANIE WYKRESU INDYKATOROWEGO I TEORETYCZNEGO - PRZYKŁADOWY TOK OBLICZEŃ

PORÓWNANIE WYKRESU INDYKATOROWEGO I TEORETYCZNEGO - PRZYKŁADOWY TOK OBLICZEŃ 1 PORÓWNANIE WYKRESU INDYKATOROWEGO I TEORETYCZNEGO - PRZYKŁADOWY TOK OBLICZEŃ Dane silnika: Perkins 1104C-44T Stopień sprężania : ε = 19,3 ε 19,3 Średnica cylindra : D = 105 mm D [m] 0,105 Skok tłoka

Bardziej szczegółowo

TEMAT: PARAMETRY PRACY I CHARAKTERYSTYKI SILNIKA TŁOKOWEGO

TEMAT: PARAMETRY PRACY I CHARAKTERYSTYKI SILNIKA TŁOKOWEGO TEMAT: PARAMETRY PRACY I CHARAKTERYSTYKI SILNIKA TŁOKOWEGO Wielkościami liczbowymi charakteryzującymi pracę silnika są parametry pracy silnika do których zalicza się: 1. Średnie ciśnienia obiegu 2. Prędkości

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

W8 40. Para. Równanie Van der Waalsa Temperatura krytyczna ci Przemiany pary. Termodynamika techniczna

W8 40. Para. Równanie Van der Waalsa Temperatura krytyczna ci Przemiany pary. Termodynamika techniczna W8 40 Równanie Van der Waalsa Temperatura krytyczna Stopień suchości ci Przemiany pary 1 p T 1 =const T 2 =const 2 Oddziaływanie międzycz dzycząsteczkowe jest odwrotnie proporcjonalne do odległości (liczonej

Bardziej szczegółowo

Rodzaje pracy mechanicznej

Rodzaje pracy mechanicznej Rodzaje pracy mechanicznej. Praca bezwzględna Jest to praca przekazana przez czynnik termodynamiczny na wewnętrzną stronę denka tłoka. Podczas beztarciowej przemiany kwazystatycznej praca przekazana oczeniu

Bardziej szczegółowo

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje

Bardziej szczegółowo

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH. Opracował. Dr inż. Robert Jakubowski

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH. Opracował. Dr inż. Robert Jakubowski OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (rzeczywistego) PRACA W WARUNKACH STATYCZNYCH DANE WEJŚCIOWE : Opracował Dr inż. Robert Jakubowski Parametry otoczenia p H, T H Spręż sprężarki, Temperatura gazów

Bardziej szczegółowo

100 29,538 21,223 38,112 29, ,118 24,803 49,392 41,077

100 29,538 21,223 38,112 29, ,118 24,803 49,392 41,077 . Jak określa się ilość substancji? Ile kilogramów substancji zawiera mol wody?. Zbiornik zawiera 5 kmoli CO. Ile kilogramów CO znajduje się w zbiorniku? 3. Jaka jest definicja I zasady termodynamiki dla

Bardziej szczegółowo

Termodynamika ć wićzenia

Termodynamika ć wićzenia Termodynamika ć wićzenia Wstęp teoretyćzny do ćwićzeń z przedmiotu Termodynamika oraz Teoria Maszyn Cieplnych SPIS TREŚCI Spis Treści 2 Literatura do kursu 3 Podręczniki 3 Zbiory zadań 3 1. Powietrze wilgotne

Bardziej szczegółowo

Indykowanie maszyn wolnobieżnych

Indykowanie maszyn wolnobieżnych Katedra Termodynamiki, Teorii Maszyn i Urządzeń Cieplnych W9/K2 Miernictwo energetyczne laboratorium Indykowanie maszyn wolnobieżnych Instrukcja do ćwiczenia nr 11 Opracowała: dr inż. Elżbieta Wróblewska

Bardziej szczegółowo

Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji

Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji Monika Litwińska Inżynieria Mechaniczno-Medyczna GDAŃSKA 2012 1. Obieg termodynamiczny

Bardziej szczegółowo

1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej

1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 2. 1 kmol każdej substancji charakteryzuje się taką samą a) masą b) objętością

Bardziej szczegółowo

Spis treści. PRZEDMOWA. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ. 13 I. POJĘCIA PODSTAWOWE W TERMODYNAMICE. 19

Spis treści. PRZEDMOWA. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ. 13 I. POJĘCIA PODSTAWOWE W TERMODYNAMICE. 19 Spis treści PRZEDMOWA. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ. 13 I. POJĘCIA PODSTAWOWE W TERMODYNAMICE. 19 Wykład 1: WPROWADZENIE DO PRZEDMIOTU 19 1.1. Wstęp... 19 1.2. Metody badawcze termodynamiki... 21 1.3.

Bardziej szczegółowo

Zasada działania maszyny przepływowej.

Zasada działania maszyny przepływowej. Zasada działania maszyny przepływowej. Przyrost ciśnienia statycznego. Rys. 1. Izotermiczny schemat wirnika maszyny przepływowej z kanałem miedzy łopatkowym. Na rys.1. pokazano schemat wirnika maszyny

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 7 BADANIE POMPY II

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 7 BADANIE POMPY II INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI Laboratorium z mechaniki płynów ĆWICZENIE NR 7 BADANIE POMPY II 2 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową i działaniem

Bardziej szczegółowo

Silniki tłokowe. Dr inŝ. Robert JAKUBOWSKI

Silniki tłokowe. Dr inŝ. Robert JAKUBOWSKI Silniki tłokowe Dr inŝ. Robert JAKUBOWSKI Podstawowe typy silnika tłokowego ze względu na zasadę działania Silnik czterosuwowy Silnik dwusuwowy Silnik z wirującym tłokiem silnik Wankla Zasada pracy silnika

Bardziej szczegółowo

Obieg Ackeret-Kellera i lewobieżny obieg Philipsa (Stirlinga) - podstawy teoretyczne i techniczne możliwości realizacji.

Obieg Ackeret-Kellera i lewobieżny obieg Philipsa (Stirlinga) - podstawy teoretyczne i techniczne możliwości realizacji. Obieg Ackeret-Kellera i lewobieżny obieg Philipsa (Stirlinga) - podstawy teoretyczne i techniczne możliwości realizacji. Wykonała: Anna Grzeczka Kierunek: Inżynieria Mechaniczno-Medyczna sem. II mgr Przedmiot:

Bardziej szczegółowo

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach?

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach? 1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 kj nie jest jednostką a) entropii

Bardziej szczegółowo

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez

Bardziej szczegółowo

Temodynamika Roztwór N 2 i Ar (gazów doskonałych) ma wykładnik adiabaty κ = 1.5. Określić molowe udziały składników. 1.7

Temodynamika Roztwór N 2 i Ar (gazów doskonałych) ma wykładnik adiabaty κ = 1.5. Określić molowe udziały składników. 1.7 Temodynamika Zadania 2016 0 Oblicz: 1 1.1 10 cm na stopy, 60 stóp na metry, 50 ft 2 na metry. 45 m 2 na ft 2 g 40 cm na uncję na stopę sześcienną, na uncję na cal sześcienny 3 60 g cm na funt na stopę

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

Chłodnictwo. Chłodziarka spręŝ. ęŝarkowa gazowa ęŝarkowa parowa Czynniki chłodnicze Chłodziarka termoelektryczna Skraplanie gazów W14 120

Chłodnictwo. Chłodziarka spręŝ. ęŝarkowa gazowa ęŝarkowa parowa Czynniki chłodnicze Chłodziarka termoelektryczna Skraplanie gazów W14 120 W14 120 Chłodziarka spręŝ ęŝarkowa gazowa Chłodziarka spręŝ ęŝarkowa parowa Czynniki chłodnicze Chłodziarka termoelektryczna Skraplanie gazów zajmuje się obniŝaniem temperatury obiektów w poniŝej temperatury

Bardziej szczegółowo

TERMODYNAMIKA FENOMENOLOGICZNA

TERMODYNAMIKA FENOMENOLOGICZNA TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N

Bardziej szczegółowo

Obieg Ackereta-Kellera i lewobieżny obieg Philipsa(Stirlinga)

Obieg Ackereta-Kellera i lewobieżny obieg Philipsa(Stirlinga) Obieg Ackereta-Kellera i lewobieżny obieg Philipsa(Stirlinga) Opracowała: Natalia Strzęciwilk nr albumu 127633 IM-M sem.01 Gdańsk 2013 Spis treści 1. Obiegi gazowe 2. Obieg Ackereta-Kellera 2.1. Podstawy

Bardziej szczegółowo

WYKŁAD 11 POMPY I UKŁADY POMPOWE

WYKŁAD 11 POMPY I UKŁADY POMPOWE WYKŁAD 11 POMPY I UKŁADY POMPOWE Historia Czerpak do wody używany w Egipcie ok. 1500 r.p.n.e. Historia Nawadnianie pól w Chinach Historia Koło wodne używane w Rzymie Ogólna klasyfikacja pomp POMPY POMPY

Bardziej szczegółowo

Aerodynamika i mechanika lotu

Aerodynamika i mechanika lotu Prędkość określana względem najbliższej ścianki nazywana jest prędkością względną (płynu) w. Jeśli najbliższa ścianka porusza się względem ciał bardziej oddalonych, to prędkość tego ruchu nazywana jest

Bardziej szczegółowo

Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi

Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi STAN RÓWNOWAGI TERMODYNAMICZNEJ Jeżeli w całej swojej masie, we wszystkich punktach swojej objętości gaz ma jednakowe parametry:

Bardziej szczegółowo

4. 1 bar jest dokładnie równy a) Pa b) 100 Tr c) 1 at d) 1 Atm e) 1000 niutonów na metr kwadratowy f) 0,1 MPa

4. 1 bar jest dokładnie równy a) Pa b) 100 Tr c) 1 at d) 1 Atm e) 1000 niutonów na metr kwadratowy f) 0,1 MPa 1. Adiatermiczny wymiennik ciepła to wymiennik, w którym a) ciepło płynie od czynnika o niższej temperaturze do czynnika o wyższej temperaturze b) nie ma strat ciepła na rzecz otoczenia c) czynniki wymieniające

Bardziej szczegółowo

WLOTY I SPRĘŻARKI SILNIKÓW. Dr inż. Robert Jakubowski

WLOTY I SPRĘŻARKI SILNIKÓW. Dr inż. Robert Jakubowski WLOTY I SPRĘŻARKI SILNIKÓW TURBINOWYCH Dr inż. Robert Jakubowski Literatura Literatura: [] Balicki W. i in. Lotnicze siln9iki turbinowe, Konstrukcja eksploatacja diagnostyka, BNIL nr 30 n, 00 [] Dzierżanowski

Bardziej szczegółowo

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),

Bardziej szczegółowo

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Badanie wentylatora - 1 -

Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI. Badanie wentylatora - 1 - Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYAMIKI Badanie wentylatora - 1 - Wiadomości podstawowe Wentylator jest maszyną przepływową, słuŝącą do przetłaczania i spręŝania czynników gazowych.

Bardziej szczegółowo

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej. 1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada

Bardziej szczegółowo

c = 1 - właściwa praca sprężania izoentropowego [kj/kg], 1 - właściwa praca rozprężania izoentropowego

c = 1 - właściwa praca sprężania izoentropowego [kj/kg], 1 - właściwa praca rozprężania izoentropowego 13CHŁODNICTWO 13.1. PODSTAWY TEORETYCZNE 13.1.1. Teoretyczny obieg chłodniczy (obieg Carnota wstecz) Teoretyczny obieg chłodniczy, pokazany na rys.13.1, tworzy, ciąg przemian: dwóch izotermicznych 2-3

Bardziej szczegółowo

Techniki niskotemperaturowe w medycynie

Techniki niskotemperaturowe w medycynie INŻYNIERIA MECHANICZNO-MEDYCZNA WYDZIAŁ MECHANICZNY POLITECHNIKA GDAŃSKA Techniki niskotemperaturowe w medycynie Temat: Lewobieżny obieg gazowy Joule a a obieg parowy Lindego Prowadzący: dr inż. Zenon

Bardziej szczegółowo

Liderzy chłodnictwa i klimatyzacji www.forum-chlodnictwa.org.pl R E F R I G E R A T I O N A N D A I R C O N D I T I O N I N G F O O D R E T A I L 1 Chłodzenie bez ususzki Międzynarodowae Targi Poznańskie

Bardziej szczegółowo

Spis treści. Przedmowa WPROWADZENIE DO PRZEDMIOTU... 11

Spis treści. Przedmowa WPROWADZENIE DO PRZEDMIOTU... 11 Spis treści Przedmowa... 10 1. WPROWADZENIE DO PRZEDMIOTU... 11 2. PODSTAWOWE OKREŚLENIA W TERMODYNAMICE... 13 2.1. Układ termodynamiczny... 13 2.2. Wielkości fizyczne, układ jednostek miary... 14 2.3.

Bardziej szczegółowo

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,

Bardziej szczegółowo

WLOTY I SPRĘŻARKI SILNIKÓW TURBINOWYCH. Dr inż. Robert Jakubowski

WLOTY I SPRĘŻARKI SILNIKÓW TURBINOWYCH. Dr inż. Robert Jakubowski WLOTY I SPRĘŻARKI SILNIKÓW TURBINOWYCH Dr inż. Robert Jakubowski Literatura Literatura: [] Balicki W. i in. Lotnicze siln9iki turbinowe, Konstrukcja eksploatacja diagnostyka, BNIL nr 30 n, 00 [] Dzierżanowski

Bardziej szczegółowo

Wykład 7: Przekazywanie energii elementy termodynamiki

Wykład 7: Przekazywanie energii elementy termodynamiki Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne

Bardziej szczegółowo

Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi

Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi Druga zasada termodynamiki, odwracalność przemian, silniki cieplne, obiegi STAN RÓWNOWAGI TERMODYNAMICZNEJ Jeżeli w całej swojej masie, we wszystkich punktach swojej objętości gaz ma jednakowe parametry:

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwiczenia: POMIAR CIŚNIENIA SPRĘŻANIA SILNIKA SPALINOWEGO.

Bardziej szczegółowo

Podział sprężarek ( dmuchaw )

Podział sprężarek ( dmuchaw ) Podział sprężarek ( dmuchaw ) Dmuchawy Roots a Dmuchawa Roots a jest to precyzyjna pompa wyporowa, w której funkcję tłoków pełnią dwa wirniki w kształcie ósemek lub trójlistnej koniczyny. Prędkość obrotowa

Bardziej szczegółowo

SILNIK TURBINOWY ANALIZA TERMO-GAZODYNAMICZNA OBIEGU SILNIKA IDEALNEGO

SILNIK TURBINOWY ANALIZA TERMO-GAZODYNAMICZNA OBIEGU SILNIKA IDEALNEGO SILNIK TURBINOWY ANALIZA TERMO-GAZODYNAMICZNA OBIEGU SILNIKA IDEALNEGO Dr inŝ. Robert JAKUBOWSKI Wydział Budowy Maszyn i Lotnictwa PRz Pok. 5 bud L 33 E-mail robert.jakubowski@prz.edu.pl WWW www.jakubowskirobert.sd.prz.edu.pl

Bardziej szczegółowo

silniku parowym turbinie parowej dwuetapowa

silniku parowym turbinie parowej dwuetapowa Turbiny parowe Zasada działania W silniku parowym tłokowym energia pary wodnej zamieniana jest bezpośrednio na energię mechaniczną w cylindrze silnika. W turbinie parowej przemiana energii pary wodnej

Bardziej szczegółowo

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 4 Procesy izoparametryczne Entropia Druga zasada termodynamiki Janusz Brzychczyk, Instytut Fizyki UJ Pierwsza zasada termodynamiki procesy kwazistatyczne Zgodnie z pierwszą zasadą termodynamiki,

Bardziej szczegółowo

Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E

Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E Zadania domowe z termodynamiki I dla wszystkich kierunków A R C H I W A L N E ROK AKADEMICKI 2015/2016 Zad. nr 4 za 3% [2015.10.29 16:00] Ciepło właściwe przy stałym ciśnieniu gazu zależy liniowo od temperatury.

Bardziej szczegółowo

Ćwiczenie N 13 ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO

Ćwiczenie N 13 ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO . Cel ćwiczenia Doświadczalne wyznaczenie rozkładu ciśnienia piezometrycznego w zwęŝce Venturiego i porównanie go z

Bardziej szczegółowo

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem pustego zbiornika rzy metody obliczeń entalpii gazu doskonałego

Bardziej szczegółowo

Chłodnictwo i Kriogenika - Ćwiczenia Lista 7

Chłodnictwo i Kriogenika - Ćwiczenia Lista 7 Chłodnictwo i Kriogenika - Ćwiczenia Lista 7 dr hab. inż. Bartosz Zajączkowski bartosz.zajaczkowski@pwr.edu.pl Politechnika Wrocławska Wydział Mechaniczno-Energetyczny Katedra Termodynamiki, Teorii Maszyn

Bardziej szczegółowo

SEMINARIUM Z AUTOMATYKI CHLODNICZEJ

SEMINARIUM Z AUTOMATYKI CHLODNICZEJ SEMINARIUM Z AUTOMATYKI CHLODNICZEJ TEMAT: Próba uzasadnienia celowości regulacji wydajności chłodniczej w urządzeniach o wydajności zakresu 5 do 10kW. 1. Wstęp 2. Metody regulacji sprężarek 3. Regulacja

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Koninie. Janusz Walczak

Państwowa Wyższa Szkoła Zawodowa w Koninie. Janusz Walczak Państwowa Wyższa Szkoła Zawodowa w Koninie Janusz Walczak Te r m o d y n a m i k a t e c h n i c z n a Konin 2008 Tytuł Termodynamika techniczna Autor Janusz Walczak Recenzja naukowa dr hab. Janusz Wojtkowiak

Bardziej szczegółowo

J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych

J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych J. Szantyr Wykład 2 - Podstawy teorii wirnikowych maszyn przepływowych a) Wentylator lub pompa osiowa b) Wentylator lub pompa diagonalna c) Sprężarka lub pompa odśrodkowa d) Turbina wodna promieniowo-

Bardziej szczegółowo

SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie

SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie DEFINICJE OGÓLNE I WIELKOŚCI CHARAKTERYSTYCZNE WENTYLATORA WENTYLATOR maszyna wirnikowa, która otrzymuje energię mechaniczną za pomocą jednego wirnika lub kilku wirników zaopatrzonych w łopatki, użytkuje

Bardziej szczegółowo

ĆWICZENIE WYZNACZANIE CHARAKTERYSTYK POMPY WIROWEJ

ĆWICZENIE WYZNACZANIE CHARAKTERYSTYK POMPY WIROWEJ ĆWICZENIE WYZNACZANIE CHARAKTERYSTYK POMPY WIROWEJ 1. Cel i zakres ćwiczenia Celem ćwiczenia jest opanowanie umiejętności dokonywania pomiarów parametrów roboczych układu pompowego. Zapoznanie z budową

Bardziej szczegółowo

WYZNACZANIE STOSUNKU c p /c v

WYZNACZANIE STOSUNKU c p /c v Uniwersytet Wrocławski, Instytut Fizyki Doświadczalnej, I Pracownia Ćwiczenie nr 33 WYZNACZANIE STOSUNKU c p /c v I WSTĘP Układ termodynamiczny Rozważania dotyczące przekazywania energii poprzez wykonywanie

Bardziej szczegółowo

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2.

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2. Fizyka Z fizyką w przyszłość Sprawdzian 8B Sprawdzian 8B. Gaz doskonały przeprowadzono ze stanu P do stanu K dwoma sposobami: i, tak jak pokazano na rysunku. Poniżej napisano kilka zdań o tych przemianach.

Bardziej szczegółowo

Laboratorium z Konwersji Energii SILNIK SPALINOWY

Laboratorium z Konwersji Energii SILNIK SPALINOWY Laboratorium z Konwersji Energii SILNIK SPALINOWY 1. Wstęp teoretyczny Silnik spalinowy to maszyna, w której praca jest wykonywana przez gazy spalinowe, powstające w wyniku spalania paliwa w przestrzeni

Bardziej szczegółowo

Wydajne wentylatory promieniowe Fulltech o wysokim ciśnieniu statycznym

Wydajne wentylatory promieniowe Fulltech o wysokim ciśnieniu statycznym 1 Wydajne wentylatory promieniowe Fulltech o wysokim ciśnieniu statycznym Wydajne wentylatory promieniowe Fulltech o wysokim ciśnieniu statycznym Wentylatory są niezbędnym elementem systemów wentylacji

Bardziej szczegółowo

Termodynamika. Energia wewnętrzna ciał

Termodynamika. Energia wewnętrzna ciał ermodynamika Energia wewnętrzna ciał Cząsteczki ciał stałych, cieczy i gazów znajdują się w nieustannym ruchu oddziałując ze sobą. Sumę energii kinetycznej oraz potencjalnej oddziałujących cząsteczek nazywamy

Bardziej szczegółowo

K raków 26 ma rca 2011 r.

K raków 26 ma rca 2011 r. K raków 26 ma rca 2011 r. Zadania do ćwiczeń z Podstaw Fizyki na dzień 1 kwietnia 2011 r. r. dla Grupy II Zadanie 1. 1 kg/s pary wo dne j o ciśnieniu 150 atm i temperaturze 342 0 C wpada do t urbiny z

Bardziej szczegółowo

Termodynamika. Część 5. Procesy cykliczne Maszyny cieplne. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 5. Procesy cykliczne Maszyny cieplne. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 5 Procesy cykliczne Maszyny cieplne Janusz Brzychczyk, Instytut Fizyki UJ Z pierwszej zasady termodynamiki: Procesy cykliczne du = Q el W el =0 W cyklu odwracalnym (złożonym z procesów

Bardziej szczegółowo

4. Przyrost temperatury gazu wynosi 20 C. W kelwinach przyrost ten jest równy

4. Przyrost temperatury gazu wynosi 20 C. W kelwinach przyrost ten jest równy 1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 bar jest dokładnie równy a) 10000

Bardziej szczegółowo

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia.

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. PARA WODNA 1. PRZEMIANY FAZOWE SUBSTANCJI JEDNORODNYCH Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. Przy niezmiennym ciśnieniu zmiana wody o stanie początkowym odpowiadającym

Bardziej szczegółowo

Fizykochemiczne podstawy inżynierii procesowej

Fizykochemiczne podstawy inżynierii procesowej Fizykochemiczne podstawy inżynierii procesowej Wykład II Podstawowe definicje cd. Podstawowe idealizacje termodynamiczne I i II Zasada termodynamiki Proste przemiany termodynamiczne PRZYPOMNIENIE Z OSTATNIEGO

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Kinetyczna teoria gazów AZ DOSKONAŁY Liczba rozważanych cząsteczek gazu jest bardzo duża. Średnia odległość między cząsteczkami jest znacznie większa niż ich rozmiar. Cząsteczki

Bardziej szczegółowo

Przemiany gazowe. 4. Który z poniższych wykresów reprezentuje przemianę izobaryczną: 5. Który z poniższych wykresów obrazuje przemianę izochoryczną:

Przemiany gazowe. 4. Który z poniższych wykresów reprezentuje przemianę izobaryczną: 5. Który z poniższych wykresów obrazuje przemianę izochoryczną: Przemiany gazowe 1. Czy możliwa jest przemiana gazowa, w której temperatura i objętość pozostają stałe, a ciśnienie rośnie: a. nie b. jest możliwa dla par c. jest możliwa dla gazów doskonałych 2. W dwóch

Bardziej szczegółowo

Pompy wyporowe. 1. Wg PN-90/M ( Podział pomp i innych przenośników cieczy).

Pompy wyporowe. 1. Wg PN-90/M ( Podział pomp i innych przenośników cieczy). Pompy wyporowe 1. Wg PN-90/M-44000 ( Podział pomp i innych przenośników cieczy). 2. Podział pomp tłokowych. Pompy tłokowe dzielą się według sposobu działania na: - jednostronnie działające, - obustronnie

Bardziej szczegółowo

M. Chorowski, Podstawy Kriogeniki, wykład Chłodziarki z regeneracyjnymi wymiennikami ciepła.

M. Chorowski, Podstawy Kriogeniki, wykład Chłodziarki z regeneracyjnymi wymiennikami ciepła. M. Chorowski, Podstawy Kriogeniki, wykład 0 7. Chłodziarki z regeneracyjnymi wymiennikami ciepła. W chłodziarkach z regeneracyjnymi wymiennikami ciepła wstępne obniżenie temperatury gazu zachodzi w regeneratorze,

Bardziej szczegółowo

Krótki przegląd termodynamiki

Krótki przegląd termodynamiki Wykład I Przejścia fazowe 1 Krótki przegląd termodynamiki Termodynamika fenomenologiczna oferuje makroskopowy opis układów statystycznych w stanie równowagi termodynamicznej bądź w stanach jemu bliskich.

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Katedra Energetyki i Aparatury Przemysłowej PRACA SEMINARYJNA

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Katedra Energetyki i Aparatury Przemysłowej PRACA SEMINARYJNA POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Katedra Energetyki i Aparatury Przemysłowej Agnieszka Wendlandt Nr albumu : 127643 IM M (II st.) Semestr I Rok akademicki 2012 / 2013 PRACA SEMINARYJNA Z PRZEDMIOTU

Bardziej szczegółowo

Chłodnictwo i Kriogenika - Ćwiczenia Lista 3

Chłodnictwo i Kriogenika - Ćwiczenia Lista 3 Chłodnictwo i Kriogenika - Ćwiczenia Lista 3 dr hab. nż. Bartosz Zajączkowski bartosz.zajaczkowski@pwr.edu.pl Politechnika Wrocławska Wydział Mechaniczno-Energetyczny Katedra Termodynamiki, Teorii Maszyn

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura

Bardziej szczegółowo

T 1 > T 2 U = 0. η = = = - jest to sprawność maszyny cieplnej. ε = 1 q. Sprawność maszyn cieplnych. Z II zasady termodynamiki wynika:

T 1 > T 2 U = 0. η = = = - jest to sprawność maszyny cieplnej. ε = 1 q. Sprawność maszyn cieplnych. Z II zasady termodynamiki wynika: Sprawność maszyn cieplnych. Z II zasady termodynamiki wynika: Zamiana ciepła na pracę przez cyklicznie działającą maszynę cieplną jest możliwa tylko przy wykorzystaniu dwóch zbiorników ciepła o różnych

Bardziej szczegółowo

WLOTY I SPRĘŻARKI SILNIKÓW TURBINOWYCH. Dr inż. Robert Jakubowski

WLOTY I SPRĘŻARKI SILNIKÓW TURBINOWYCH. Dr inż. Robert Jakubowski WLOTY I SPRĘŻARKI SILNIKÓW TURBINOWYCH Dr inż. Robert Jakubowski Literatura Literatura: [] Balicki W. i in. Lotnicze siln9iki turbinowe, Konstrukcja eksploatacja diagnostyka, BNIL nr 30 n, 00 [] Dzierżanowski

Bardziej szczegółowo

Wykład 6: Przekazywanie energii elementy termodynamiki

Wykład 6: Przekazywanie energii elementy termodynamiki Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak

Bardziej szczegółowo

Termodynamika. Cel. Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa. William Thomson 1. Baron Kelvin

Termodynamika. Cel. Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa. William Thomson 1. Baron Kelvin Cel Termodynamika Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa Nicolas Léonard Sadi Carnot 1796 1832 Rudolf Clausius 1822 1888 William Thomson 1. Baron Kelvin 1824 1907 i inni...

Bardziej szczegółowo

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH

OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH OBLICZENIA SILNIKA TURBINOWEGO ODRZUTOWEGO (SILNIK IDEALNY) PRACA W WARUNKACH STATYCZNYCH DANE WEJŚCIOWE : Parametry otoczenia p H, T H Spręż sprężarki π S, Temperatura gazów przed turbiną T 3 Model obliczeń

Bardziej szczegółowo

Tomasz P. Olejnik, Michał Głogowski Politechnika Łódzka

Tomasz P. Olejnik, Michał Głogowski Politechnika Łódzka Tomasz P. Olejnik, Michał Głogowski Politechnika Łódzka Agenda Wprowadzenie do problemu gospodarki energetycznej Teza Alternatywne (unikatowe) podejście Opis rozwiązania Postęp techniczny w przemyśle cukrowniczym,

Bardziej szczegółowo

Chłodnictwo i Kriogenika - Ćwiczenia Lista 4

Chłodnictwo i Kriogenika - Ćwiczenia Lista 4 Chłodnictwo i Kriogenika - Ćwiczenia Lista 4 dr hab. inż. Bartosz Zajączkowski bartosz.zajaczkowski@pwr.edu.pl Politechnika Wrocławska Wydział Mechaniczno-Energetyczny Katedra Termodynamiki, Teorii Maszyn

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: TERMODYNAMIKA 2. Kod przedmiotu: Sdt 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechanika i budowa maszyn 5. Specjalność: Eksploatacja

Bardziej szczegółowo

Maszyny cieplne substancja robocza

Maszyny cieplne substancja robocza Maszyny cieplne cel: zamiana ciepła na pracę (i odwrotnie) pracują cyklicznie pracę wykonuje substancja robocza (np.gaz, mieszanka paliwa i powietrza) która: pochłania ciepło dostarczane ze źródła ciepła

Bardziej szczegółowo

Wykład 6: Przekazywanie energii elementy termodynamiki

Wykład 6: Przekazywanie energii elementy termodynamiki Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak

Bardziej szczegółowo

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2.

b) Wybierz wszystkie zdania prawdziwe, które odnoszą się do przemiany 2. Sprawdzian 8A. Gaz doskonały przeprowadzono ze stanu P do stanu K dwoma sposobami: i, tak jak pokazano na rysunku. Poniżej napisano kilka zdań o tych przemianach. a) Wybierz spośród nich wszystkie zdania

Bardziej szczegółowo

Janusz Walczak, Termodynamika techniczna

Janusz Walczak, Termodynamika techniczna Pr z e d m o wa Termodynamika jest nauką zajmującą się przemianami różnych postaci energii. W podręczniku, który przekazujemy Państwu, ograniczyliśmy się do opisu przemian energii zachodzących w różnych

Bardziej szczegółowo

Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne

Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne Janusz Brzychczyk, Instytut Fizyki UJ Postulat Nernsta (1906):

Bardziej szczegółowo

Przy prawidłowej pracy silnika zapłon mieszaniny paliwowo-powietrznej następuje od iskry pomiędzy elektrodami świecy zapłonowej.

Przy prawidłowej pracy silnika zapłon mieszaniny paliwowo-powietrznej następuje od iskry pomiędzy elektrodami świecy zapłonowej. TEMAT: TEORIA SPALANIA Spalanie reakcja chemiczna przebiegająca między materiałem palnym lub paliwem a utleniaczem, z wydzieleniem ciepła i światła. Jeżeli w procesie spalania wszystkie składniki palne

Bardziej szczegółowo

3. BADA IE WYDAJ OŚCI SPRĘŻARKI TŁOKOWEJ

3. BADA IE WYDAJ OŚCI SPRĘŻARKI TŁOKOWEJ 1.Wprowadzenie 3. BADA IE WYDAJ OŚCI SPRĘŻARKI TŁOKOWEJ Sprężarka jest podstawowym przykładem otwartego układu termodynamicznego. Jej zadaniem jest między innymi podwyższenie ciśnienia gazu w celu: uzyskanie

Bardziej szczegółowo

Podstawy fizyki sezon 1 X. Elementy termodynamiki

Podstawy fizyki sezon 1 X. Elementy termodynamiki Podstawy fizyki sezon 1 X. Elementy termodynamiki Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Temodynamika

Bardziej szczegółowo

Parametry pracy pompy i zjawisko kawitacji

Parametry pracy pompy i zjawisko kawitacji Parametry pracy pompy i zjawisko kawitacji 1. Parametry pracy pompy 1.1. Wysokości podnoszenia 1.2. Wydajności 1.3. Moce 1.4. Sprawności 2. Kawitacja 2.1. Zjawisko kawitacji 2.2. Wpływ kawitacji na pracę

Bardziej szczegółowo

Lekcja 6. Rodzaje sprężarek. Parametry siłowników

Lekcja 6. Rodzaje sprężarek. Parametry siłowników Lekcja 6. Rodzaje sprężarek. Parametry siłowników Sprężarki wyporowe (tłokowe) Sprężarka, w której sprężanie odbywa sięcyklicznie w zarżniętej przestrzeni zwanej komorąsprężania. Na skutek działania napędu

Bardziej szczegółowo

Max liczba pkt. Rodzaj/forma zadania. Zasady przyznawania punktów zamknięte 1 1 p. każda poprawna odpowiedź. zamknięte 1 1 p.

Max liczba pkt. Rodzaj/forma zadania. Zasady przyznawania punktów zamknięte 1 1 p. każda poprawna odpowiedź. zamknięte 1 1 p. KARTOTEKA TESTU I SCHEMAT OCENIANIA - szkoła podstawowa Nr zadania Cele ogólne 1 I. Wykorzystanie pojęć i Cele szczegółowe II.5. Uczeń nazywa ruchem jednostajnym ruch, w którym droga przebyta w jednostkowych

Bardziej szczegółowo