Oddziaływanie leków z celami molekularnymi i projektowanie leków Prof. dr hab. Sławomir Filipek Grupa BIOmodelowania (biomodellab.eu) Uniwersytet Warszawski, Wydział Chemii oraz Centrum Nauk Biologiczno-Chemicznych (CeNT-III)
Piśmiennictwo m.in.
Klasyfikacje leków według: Efektu farmakologicznego przeciwbólowe, antyalergiczne, antybiotyki Struktury chemicznej penicyliny, opiaty, benzodiazepiny, steroidy Docelowego układu w organizmie np. leki antyhistaminowe blokują wytwarzanie lub uwalnianie histaminy Miejsca akcji leku np. antycholinesterazy - hamują rozkład ACh przez acetylocholinesterazę (AChE) Stosowane w leczeniu choroby Alzheimera AChE YASARA Ach_drugs.sce
Miejsca działania leków komórka bakteryjna komórka zwierzęca Białka (glikoproteiny): enzymy i receptory komórkowe Kwasy nukleinowe (DNA i RNA np. rybosom) Lipidy: tworzenie tunelu w błonie (grzybobójcze) lub jako przenośnik jonów www.interklasa.pl
Wiązanie leków do białek - enzymy Wiązanie do enzymów - substraty - inhibitory Działanie leków - inhibitory współzawodnicze (odwracalne) - Inhibitory niewspółzawodnicze - nieodwracalne - odwracalne (allosteryczne)
Wiązanie leków do białek - receptory Wiązanie do receptorów - agoniści - antagoniści - odwrotni agoniści Działanie leków - pobudzają receptor - agoniści / częściowi agoniści - blokują receptor - antagoniści - inwersyjni agoniści
Adaptacja liganda podczas wiązania konformacja bioaktywna YASARA Ach.sce
Konformacja bioaktywna liganda Molecular Conceptor
Adaptacja enzymu podczas wiązania reszty katalityczne
Duże zmiany konformacyjne Glucose hexokinase
Zmiany konformacyjne enzymów podczas wiązania ligandów Shikimate dehydrogenase from Helicobacter pylori Struktura bez kofaktora (PDB id:3phh) z kofaktorem (PDB id: 3PHI) Indukowane dopasowanie baza Protein Data Bank (PDB)
Bazy strukturalne danych Protein Data Bank (PDB) Format pliku PDB Bazy leków (DrugBank, PubChem)
Protein Data Bank (PDB) www.rcsb.org
Format pliku PDB na przykładzie pliku 1FXV.pdb HEADER HYDROLASE 27-SEP-00 1FXV TITLE PENICILLIN ACYLASE MUTANT IMPAIRED IN CATALYSIS WITH TITLE 2 PENICILLIN G IN THE ACTIVE SITE COMPND MOL_ID: 1; COMPND 2 MOLECULE: PENICILLIN ACYLASE; COMPND 3 CHAIN: A; COMPND 4 FRAGMENT: ALPHA SUBUNIT; COMPND 5 EC: 3.5.1.11; COMPND 6 ENGINEERED: YES; COMPND 7 MOL_ID: 2; COMPND 8 MOLECULE: PENICILLIN ACYLASE; COMPND 9 CHAIN: B; COMPND 10 FRAGMENT: BETA SUBUNIT; COMPND 11 EC: 3.5.1.11; COMPND 12 ENGINEERED: YES; COMPND 13 MUTATION: YES SOURCE MOL_ID: 1; SOURCE 2 ORGANISM_SCIENTIFIC: ESCHERICHIA COLI; SOURCE 3 ORGANISM_TAXID: 562; SOURCE 4 EXPRESSION_SYSTEM: ESCHERICHIA COLI; SOURCE 5 EXPRESSION_SYSTEM_TAXID: 562; SOURCE 6 EXPRESSION_SYSTEM_VECTOR_TYPE: PLASMID; SOURCE 7 EXPRESSION_SYSTEM_PLASMID: PEC; SOURCE 8 MOL_ID: 2;............... 1FXV.pdb
Bazy leków (DrugBank) www.drugbank.ca
Bazy leków (PubChem) pubchem.ncbi.nlm.nih.gov
Siły molekularnego oddziaływania Wiązanie wodorowe Oddziaływania elektronów - (nie tylko benzen-benzen) Oddziaływania elektrostatyczne mieszane Przykład oddziaływań w leku Hydrofobowe = van der Waalsa + entropia H S
Siły tworzące strukturę III-rzędową białka wiązania kowalencyjne: S S (Cys... Cys) (siła wiązania 250 kj/mol) oddziaływania jonowe: CO 2... + H 3 N (Asp... Lys) (siła wiązania 20 kj/mol) wiązania wodorowe: O-H... O(H) (Ser... Ser) siła wiązania 7-30 kj/mol - stackingowe: Ph... Ph (Phe... Phe) siła wiązania 8-12 kj/mol oddziaływania van der Waalsa: C... C (każdy atom) siła wiązania 2 kj/mol wiązania wodorowe i oddziaływania van der Waalsa są bardzo powszechne (także do oddziaływań z otaczającą wodą) i one decydują o III-rzędowej strukturze białka + oddziaływanie ze środowiskiem woda/błona (efekty entropowe)
Efekty polaryzacji ładunku Oddziaływania pomiędzy molekułami niepolarnymi siły van der Waalsa Niestabilne ładunki cząstkowe Stabilne ładunki cząstkowe Oddziaływania stackingowe
Wiązania w łańcuchach bocznych Leu Leu Ser Gln Val Val Asp Lys http://zguw.ibb.waw.pl/~knbm/bmwi/
Miejsce aktywne enzymu kofaktor NAD+ jest potrzebny do zajścia reakcji YASARA dehydrogenase
Wykład 2
Aminokwasy Notacja jedno- i trójliterowa
Wiązanie peptydowe Dipeptyd Gly-Gly (GG) Wiązanie peptydowe jest płaskie i sztywne Tripeptyd Ala-Gly-Phe (AGF)
Met-enkefalina - jeden z endogennych środków przeciwbólowych Notacja jednoliterowa: YGGFM Morfina działa na ten sam receptor Podobieństwo? YASARA enkephalin_morph
Wiązania wodorowe w białkach budowa -helisy budowa -kartki YASARA 1crn.pdb
Struktura II- i III-rzędowa białek Pętle między helisami -helisa, i+4 -helisa = 3.6 13 helisa (pełny obrót co 3.6 aminokwasu i 13 wiązań w pętli wiązania wodorowego) mioglobina 3 10 helisa, i+3 -helisa, i+5
Wykres Ramachandrana skręcona -kartka kolagen
Wykres Ramachandrana przykłady białek
Struktury nad-ii-rzędowe i foldy
Proces zwijania się białka Tylko z uwzględnieniem entropii Woda w głębi roztworu: Silne wiązania wodorowe, słabe efekty orientacyjne mobilność (duża entropia) Woda przy powierzchni hydrofobowej: Słabe wiązania wodorowe, silne efekty orientacyjne stabilność (mała entropia)
Proces zwijania się białka - energetyka Potencjał termodynamiczny: G = H - T S Minima kinetyczne i termodynamiczne podczas zwijania białka Paradoks Levinthala: Czas potrzebny na sprawdzenie wszystkich konformacji białka jest większy niż wiek wszechświata.
Proces zwijania się białka udział chaperonów Białko chaperonowe Hsp70
Proces zwijania się białka misfolding Schemat misfoldingu i powstawania agregatów Enzymy z węzłami: struktury prawidłowo zwinięte! PDB: 1YVE, 1XD3, 1UAJ.
Proces zwijania się białka amyloidy Powstawanie amyloidów Amyloidy są termodynamicznie trwalsze niż natywne białko! Także są celami leków. Wczesne formy amyloidów - najbardziej szkodliwe?
Krystalografia dopasowywanie do map gęstości elektronowej
Dopasowywanie struktury do więzów z NMR Przypisywanie NOE Usuwanie szumów/ znajdowanie dodatkowych więzów Przypisywanie NOE Usuwanie szumów/ znajdowanie dodatkowych więzów
Modelowanie - elementy pola siłowego U bond bond k ( r i i i r 2 0 i) angle U angle k i ( i 0 i) i tors U k [ 1 cos( n )] U U tors Coulomb vdw i i j i i i j i q q ij 4 ij rij i j 4 0 r ij 12 2 i ij rij Potencjał Lennarda-Jonesa (lub potencjał 6-12) 6 YASARA
Skala czasowa ruchów białek modelowanie pełnoatomowe Krok czasowy dynamiki molekularnej: 1 fs = 10-15 s