Od żłobka do przedszkola - mini szkolenie z użytkowania pakietu OpenFOAM. Karol Wędołowski

Wielkość: px
Rozpocząć pokaz od strony:

Download "Od żłobka do przedszkola - mini szkolenie z użytkowania pakietu OpenFOAM. Karol Wędołowski 06.04.2011"

Transkrypt

1 Od żłobka do przedszkola - mini szkolenie z użytkowania pakietu OpenFOAM Karol Wędołowski Część 2. Struktura case'u na przykładzie przepływu w zagłębieniu 1. Potrzebne katalog i pliki W tej części szkolenia będziemy potrzebowali katalogu cavity zawierającego pliki niezbędne do uruchomienia omawianego case'u. Można go pobrać z następującej ścieżki: /mnt/local/kamil/wymiana/of_szkolenie0/cavity dla przypomnienia cp -r /mnt/local/kamil/wymiana/of_szkolenie0/cavity $HOME ) 2. Solver Do rozwiązywania przepływu w zagłębieniu będziemy używali solvera icofoam. Rozwiązuje on zmienne w czasie równania Navier-Sotkes'a dla nieściśliwego przepływu laminarnego. Nie ma możliwości używania w nim modeli turbulencji. Z tego powodu jedynymi zmiennymi używanymi w symulacji będą pola prędkości i ciśnienia. 3. Co potrzeba do symulacji? Do wykonania symulacji zawsze potrzebna jest siatka obliczeniowa. Informacje o niej znajdują się w katalogu constant/polymesh. Ogólniej w katalogu constant znajdują się parametry stałe w czasie całej symulacji na przykład lepkość w pliku transportproperties). Potrzebne są też warunki początkowe i brzegowe dla naszej symulacji. Znajdują się one w katalogu 0, chociaż liczba ta może być dowolna o tym za chwilę). Trzeci katalog w naszej symulacji to system. Tutaj znajdują się wszystkie informacje na temat czasu w symulacji chwila początkowa, końcowa, krok czasowy, momenty zapisu wyników), użytych schematów dyskretyzacji, oraz solverów macierzowych i parametrów używanych w odpowiednim algorytmie numerycznym. Ale po kolei... 3a. Katalog constant Znajduje się tu podkatalog polymesh. W nim znajdziemy wszystkie informacje o siatce użytej w symulacji. Zajrzyjmy do środka. Plikiem służącym do komunikacji z użytkownikiem jest blockmeshdict. Służy on jako plik wsadowy do aplikacji blockmesh tworzącej proste siatki. Jego struktura będzie omówiona w następnej części. Pozostałe pliki w katalogu polymesh zostają utworzone po uruchomieniu aplikacji blockmesh. Opisują one między innymi wszystkie punkty siatki points), ściany komórek faces) i brzegi domeny boundary). Pliki owner i neighbour nie są istotne z punktu widzenia uzytkownika.

2 Zawartość pliku blockmeshdict /* *- C++ -* *\ ========= \\ / F ield OpenFOAM: The Open Source CFD Toolbox \\ / O peration Version: \\ / A nd Web: \\/ M anipulation \* */ FoamFile version 2.0; format ascii; class dictionary; object blockmeshdict; converttometers 0.1; vertices 0 0 0) 1 0 0) 1 1 0) 0 1 0) ) ) ) ) blocks hex ) ) simplegrading 1 1 1) edges patches wall movingwall ) ) wall fixedwalls ) ) ) ) empty frontandback ) ) ) mergepatchpairs // ************************************************************************* //

3 Rysunek1. Siatka utworzona przez blockmesh. 3b. Katalog system Najważniejszym plikiem jest tu controldict. Zapisujemy w nim istotne informacje dotyczące czasu symulacji. Poniżej fragment tego pliku dla omawianej symulacji. location "system"; object controldict; application startfrom icofoam; starttime; starttime 0; stopat endtime; endtime 0.5; deltat 0.005; writecontrol timestep; writeinterval 20; purgewrite 0; fragment pliku controldict

4 Najważniejsze parametry: startfrom określa początek symulacji np. starttime wartość podana niżej explicite) lub latesttime ostatni zapisany moment symulacji) endtime moment zakończenia symulacji deltat krok czasowy writeinterval okres, co który zostaną zapisane wyniki symulacji Dwa pozostałe pliki fvschemes i fvsolutions zawierają informację odpowiednio o schematach dyskretyzacji i metodach rozwiązywania powstałych równań macierzowych. Przyjrzymy się jedynie pliku fvschemes. location "system"; object fvschemes; ddtschemes default gradschemes default gradp) divschemes default divphi,u) Euler; Gauss linear; Gauss linear; none; Gauss linear; Fragment pliku fvschemes Każdy operator różniczkowy ma zdefiniowane schematy dla różnych zmiennych. Słowo Gauss oznacza, że korzysta się tu ze wzoru Gaussa na zamianę całek objętościowych na powierzchniowe. Aby zobaczyć dostępne schematy najlepiej wpisać byle co na przykład zamiast linear ddss i uruchomić solver. 3c. Katalog 0 W tym katalogu znajdziemy dwa pliki U i p, zawierające informacje o warunkach brzegowych i początkowych dla prędkości i ciśnienia. Spójrzmy na ich strukturę. class volvectorfield; object U; dimensions [ ]; internalfield uniform 0 0 0

5 boundaryfield movingwall fixedvalue; value uniform fixedwalls fixedvalue; value uniform frontandback empty; Fragment pliku U W pliku U znajdziemy informację o tym czy jest to pole skalarne, wektorowe, czy tensorowe, jaką posiada jednostkę, o jego wartości w chwili 0 i rodzaju warunków brzegowych. class rodzaj pola volscalarfield, volvectorfield, voltensorfield) dimensions jednostka [kg m s K mol Amper Lumen], każda w odpowiedniej potędze ) np. [ ] m/s internalfield pole wewnątrz domeny, uniform oznacza że jest to pole jednorodne o danej wartości. W innym przypadku należy podać wartość pola w każdej komórce. boundaryfield dla każdego brzegu podany jest rodzaj warunku brzegowego i wartość odpowiednich parametrów. Empty oznacza, że symulacja jest dwuwymiarowa. class volscalarfield; object p; dimensions [ ]; internalfield uniform 0; boundaryfield movingwall fixedwalls zerogradient; zerogradient; frontandback empty; Fragment pliku p

6 4. Uruchomienie symulacji Najpierw tworzymy siatkę poleceniem blockmesh z poziomu katalogu cavity. Jeżeli nie wystąpił żaden błąd możemy uruchomić symulację, wpisując w terminalu icofoam. Na ekranie pojawią się informacje o przebiegu symulacji, np. poziomy niedokładności solverów oraz wartość liczby Couranta średnia i maksymalna). Liczba ta dla części schematów czasowych musi być mniejsza od 1 w każdej komórce. W konkretnej komórce dana jest ona wzorem Cu= t U x gdzie t oznacza krok czasowy, x rozmiar komórki w kierunku przepływu, a U wartość prędkości przepływu w komórce. Jeżeli nie pojawił się żaden błąd możemy obejrzeć wyniki w programie Paraview.

Pierwszy case - przepływy potencjalne i laminarne, wizualizacja Karol Wędołowski, IGF/ICM UW Czym będziemy się zajmować? () Problem fizyczny opływ cylindra Przepływ potencjalny (nieściśliwy i bezwirowy)

Bardziej szczegółowo

Otwarte oprogramowanie OpenFOAM 28-30 stycznia 2014 r. 1 / 61

Otwarte oprogramowanie OpenFOAM 28-30 stycznia 2014 r. 1 / 61 Otwarte oprogramowanie OpenFOAM 28-30 stycznia 2014 r. 1 / 61 Otwarte oprogramowanie OpenFOAM podstawy, wybrane zastosowania Kamil Kwiatkowski Paweł J. Żuk Interdyscyplinarne Centrum Modelowania Matematycznego

Bardziej szczegółowo

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość

Bardziej szczegółowo

Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika)

Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika) Ćwiczenie 2 Numeryczna symulacja swobodnego spadku ciała w ośrodku lepkim (Instrukcja obsługi interfejsu użytkownika) 1 1 Cel ćwiczenia Celem ćwiczenia jest rozwiązanie równań ruchu ciała (kuli) w ośrodku

Bardziej szczegółowo

Całkowanie numeryczne

Całkowanie numeryczne Całkowanie numeryczne Poniżej omówione zostanie kilka metod przybliżania operacji całkowania i różniczkowania w szczególności uzależnieniu pochodnej od jej różnic skończonych gdy równanie różniczkowe mamy

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie

Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie Wprowadzenie Metoda Elementów Skończonych (MES) należy do numerycznych metod otrzymywania przybliżonych rozwiązań

Bardziej szczegółowo

Excel - użycie dodatku Solver

Excel - użycie dodatku Solver PWSZ w Głogowie Excel - użycie dodatku Solver Dodatek Solver jest narzędziem używanym do numerycznej optymalizacji nieliniowej (szukanie minimum funkcji) oraz rozwiązywania równań nieliniowych. Przed pierwszym

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: WGG s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2013/2014 Kod: WGG s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Matematyka stosowana Rok akademicki: 2013/2014 Kod: WGG-1-304-s Punkty ECTS: 5 Wydział: Wiertnictwa, Nafty i Gazu Kierunek: Górnictwo i Geologia Specjalność: - Poziom studiów: Studia I stopnia

Bardziej szczegółowo

etrader Pekao Podręcznik użytkownika Strumieniowanie Excel

etrader Pekao Podręcznik użytkownika Strumieniowanie Excel etrader Pekao Podręcznik użytkownika Strumieniowanie Excel Spis treści 1. Opis okna... 3 2. Otwieranie okna... 3 3. Zawartość okna... 4 3.1. Definiowanie listy instrumentów... 4 3.2. Modyfikacja lub usunięcie

Bardziej szczegółowo

Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII

Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII Spis treści Od autora..................................................... Obliczenia inżynierskie i naukowe.................................. X XII Ostrzeżenia...................................................XVII

Bardziej szczegółowo

Instrukcja do wykonania symulacji numerycznych CFD w programie PolyFlow 14.0 przepływu płynów nienewtonowskich o właściwościach lepkosprężystych

Instrukcja do wykonania symulacji numerycznych CFD w programie PolyFlow 14.0 przepływu płynów nienewtonowskich o właściwościach lepkosprężystych Instrukcja do wykonania symulacji numerycznych CFD w programie PolyFlow 14.0 przepływu płynów nienewtonowskich o właściwościach lepkosprężystych 1. Uruchamianie programu PolyFlow W ramach projektu symulacje

Bardziej szczegółowo

Nowoczesne narzędzia obliczeniowe do projektowania i optymalizacji kotłów

Nowoczesne narzędzia obliczeniowe do projektowania i optymalizacji kotłów Nowoczesne narzędzia obliczeniowe do projektowania i optymalizacji kotłów Mateusz Szubel, Mariusz Filipowicz Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie AGH University of Science and

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr zimowy 2017/2018 Tomasz Chwiej 22 stycznia 2019 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃOCZNYCH Projekt

METODA ELEMENTÓW SKOŃOCZNYCH Projekt METODA ELEMENTÓW SKOŃOCZNYCH Projekt Wykonali: Maciej Sobkowiak Tomasz Pilarski Profil: Technologia przetwarzania materiałów Semestr 7, rok IV Prowadzący: Dr hab. Tomasz STRĘK 1. Analiza przepływu ciepła.

Bardziej szczegółowo

Materiały dodatkowe. Simulink PLC Coder

Materiały dodatkowe. Simulink PLC Coder Katedra Inżynierii Systemów Sterowania Materiały dodatkowe Simulink PLC Coder Opracowali: mgr inż. Tomasz Karla Data: Listopad, 2016 r. Dodatkowe informacje Materiały dodatkowe mają charakter ogólny i

Bardziej szczegółowo

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe. Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie

Bardziej szczegółowo

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1

Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Zagdanienia do egzaminu z Inżynierskich Metod Numerycznych - semestr 1 Tomasz Chwiej 6 czerwca 2016 1 Równania różniczkowe zwyczajne Zastosowanie szeregu Taylora do konstrukcji ilorazów różnicowych: iloraz

Bardziej szczegółowo

Microsoft EXCEL SOLVER

Microsoft EXCEL SOLVER Microsoft EXCEL SOLVER 1. Programowanie liniowe z wykorzystaniem dodatku Microsoft Excel Solver Cele Po ukończeniu tego laboratorium słuchacze potrafią korzystając z dodatku Solver: formułować funkcję

Bardziej szczegółowo

Studentom zostaną dostarczone wzory lub materiały opisujące. Zachęcamy do wykonania projektów programistycznych w postaci apletów.

Studentom zostaną dostarczone wzory lub materiały opisujące. Zachęcamy do wykonania projektów programistycznych w postaci apletów. W niniejszym dokumencie znajdują się propozycje projektów na rok 2008. Tematy sformułowane są ogólnie, po wyborze tematu i skontaktowaniu z prowadzącym zostaną określone szczegółowe wymagania co do projektu.

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH

METODA ELEMENTÓW SKOŃCZONYCH METODA ELEMENTÓW SKOŃCZONYCH PROJEKT Wykonali: Kucal Karol (TPM) Muszyński Dawid (KMU) Radowiecki Karol (TPM) Prowadzący: Dr hab. Tomasz Stręk Rok akademicki: 2012/2013 Semestr: VII 1 Spis treści: 1.Analiza

Bardziej szczegółowo

ROZWIĄZANIA I ODPOWIEDZI

ROZWIĄZANIA I ODPOWIEDZI ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. =1+cos a) = =2cos( sin) = = sin2 = ln += =sin2 = ln 1+cos +. b) sin(+3)= =+3 = 3 =( 3) = sin= =( 6+9) sin= sin 6 sin+9sin. Obliczamy teraz pierwszą całkę: sin= ()=

Bardziej szczegółowo

Seminarium kontaktowe

Seminarium kontaktowe Seminarium kontaktowe mgr inż. Piotr Andrzej Prusiński Instytut Geofizyki UW 04.03.2011 r. tytułem wstępu Kto: Piotrek Stanowisko: starszy specjalista Gdzie: CIŚ MANHAZ (o tym po tym ) Odpowiedzialny:

Bardziej szczegółowo

Ćwiczenie 2. Tworzenie serwisów internetowych. Zapoznanie z pakietem WebRatio

Ćwiczenie 2. Tworzenie serwisów internetowych. Zapoznanie z pakietem WebRatio Ćwiczenie 2 Zapoznanie z pakietem WebRatio Zadaniem na drugie zajęcia będzie zapoznanie się z pakietem do wizualnego projektowania serwisów internetowych z wykorzystaniem języka WebML Uruchomienie i zapoznanie

Bardziej szczegółowo

Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D

Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D Równanie konstytutywne opisujące sposób w jaki ciepło przepływa w materiale o danych właściwościach, prawo Fouriera Macierz konstytutywna (właściwości) materiału Wektor gradientu temperatury Wektor strumienia

Bardziej szczegółowo

OBLICZANIE POCHODNYCH FUNKCJI.

OBLICZANIE POCHODNYCH FUNKCJI. OBLICZANIE POCHODNYCH FUNKCJI. ROZWIĄZYWANIE RÓWNAŃ RÓŻNICZKOWYCH. ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ LINIOWYCH. Obliczanie pochodnych funkcji. Niech będzie dana funkcja y(x określona i różniczkowalna na przedziale

Bardziej szczegółowo

Zad. 3: Układ równań liniowych

Zad. 3: Układ równań liniowych 1 Cel ćwiczenia Zad. 3: Układ równań liniowych Wykształcenie umiejętności modelowania kluczowych dla danego problemu pojęć. Definiowanie właściwego interfejsu klasy. Zwrócenie uwagi na dobór odpowiednich

Bardziej szczegółowo

Metody numeryczne równań różniczkowych zwyczajnych

Metody numeryczne równań różniczkowych zwyczajnych Metody numeryczne równań różniczkowych zwyczajnych Marcin Jenczmyk m.jenczmyk@knm.katowice.pl 9 maja 2015 M. Jenczmyk XXX Sesja KNM Metody numeryczne R.R.Z. 1 / 18 Omawiany problem dotyczyć będzie numerycznego

Bardziej szczegółowo

Windows Server 2008 Standard Str. 1 Ćwiczenia. Opr. JK. I. Instalowanie serwera FTP w Windows Server 2008 (zrzuty ekranowe z maszyny wirtualnej)

Windows Server 2008 Standard Str. 1 Ćwiczenia. Opr. JK. I. Instalowanie serwera FTP w Windows Server 2008 (zrzuty ekranowe z maszyny wirtualnej) Windows Server 2008 Standard Str. 1 Ćwiczenia. Opr. JK I. Instalowanie serwera FTP w Windows Server 2008 (zrzuty ekranowe z maszyny wirtualnej) Uruchom maszynę wirtualną Server 2008 Zaloguj się do konta

Bardziej szczegółowo

Metoda różnic skończonych dla

Metoda różnic skończonych dla Metoda różnic skończonych dla cząstkowych równań różniczkowych na laboratorium rozwiązywać będziemy typowe równania: dyfuzji (również przewodnictwo cieplne) paraboliczne równanie Poissona (np. pole elektrostatyczne,

Bardziej szczegółowo

Różniczkowanie numeryczne

Różniczkowanie numeryczne Różniczkowanie numeryczne Przyjmijmy, że funkcja ciągła y = f(x) = 4sin(3x)e -x/2, gdzie x 0,2π, dana jest w postaci dyskretnej jako ciąg wartości y odpowiadających zmiennej niezależnej x, również danej

Bardziej szczegółowo

1. Metryki złożoności modułowej i międzymodułowej Chidamber & Kemerer (CK)

1. Metryki złożoności modułowej i międzymodułowej Chidamber & Kemerer (CK) 1. Metryki złożoności modułowej i międzymodułowej Chidamber & Kemerer (CK) 1.1. Podstawowe metryki CK: międzymodułowe CBO, RFC modułowe WMC, DIT, NOC, LCOM1. 1.2. Uzupełniony zbiór metryk przez innych

Bardziej szczegółowo

Teoria pola elektromagnetycznego

Teoria pola elektromagnetycznego Teoria pola elektromagnetycznego Odpowiedzialny za przedmiot (wykłady): prof. dr hab. inż. Stanisław Gratkowski Ćwiczenia i laboratoria: dr inż. Krzysztof Stawicki ks@zut.edu.pl e-mail: w temacie wiadomości

Bardziej szczegółowo

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania

Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania 1) Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi elementami obiektowymi systemu Windows wykorzystując Visual Studio 2008 takimi jak: przyciski, pola tekstowe, okna pobierania danych

Bardziej szczegółowo

Projekt badawczy N N209 374139 Badania doświadczalne i numeryczne przepływu płynów lepkosprężystych

Projekt badawczy N N209 374139 Badania doświadczalne i numeryczne przepływu płynów lepkosprężystych Tworzenie siatek numerycznych na przykładzie układu cylinder cylinder przepływ Couette Układ, dla którego przedstawiono w ramach niniejszego rozdziału sposób generowania siatek numerycznych, stanowiły

Bardziej szczegółowo

Podręczna pomoc Microsoft Excel 2007

Podręczna pomoc Microsoft Excel 2007 Podręczna pomoc Microsoft Excel 2007 Klawisze skrótów... 1 Podstawowe funkcje... 2 Narzędzie Szukaj wyniku... 3 Aktywowanie dodatków... 4 Narzędzie Solver (dodatek)... 6 Narzędzie Tabela przestawna...

Bardziej szczegółowo

Sieci obliczeniowe poprawny dobór i modelowanie

Sieci obliczeniowe poprawny dobór i modelowanie Sieci obliczeniowe poprawny dobór i modelowanie 1. Wstęp. Jednym z pierwszych, a zarazem najważniejszym krokiem podczas tworzenia symulacji CFD jest poprawne określenie rozdzielczości, wymiarów oraz ilości

Bardziej szczegółowo

Algorytmy i schematy blokowe

Algorytmy i schematy blokowe Algorytmy i schematy blokowe Algorytm dokładny przepis podający sposób rozwiązania określonego zadania w skończonej liczbie kroków; zbiór poleceń odnoszących się do pewnych obiektów, ze wskazaniem porządku,

Bardziej szczegółowo

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki

Bardziej szczegółowo

Projekt 6: Równanie Poissona - rozwiązanie metodą algebraiczną.

Projekt 6: Równanie Poissona - rozwiązanie metodą algebraiczną. Projekt 6: Równanie Poissona - rozwiązanie metodą algebraiczną. Tomasz Chwiej 9 sierpnia 18 1 Wstęp 1.1 Dyskretyzacja n y V V 1 V 3 1 j= i= 1 V 4 n x Rysunek 1: Geometria układu i schemat siatki obliczeniowej

Bardziej szczegółowo

J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1

J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 J. Szantyr Wykład nr 19 Warstwy przyścienne i ślady 1 Warstwa przyścienna jest to część obszaru przepływu bezpośrednio sąsiadująca z powierzchnią opływanego ciała. W warstwie przyściennej znaczącą rolę

Bardziej szczegółowo

Metody Obliczeniowe Mikrooptyki i Fotoniki

Metody Obliczeniowe Mikrooptyki i Fotoniki Metody Obliczeniowe Mikrooptyki i Fotoniki https://www.igf.fuw.edu.pl/pl/courses/lectures/metody-obliczen-95-021c/ Podstawy metody różnic skończonych (Basics of finite-difference methods) Podstawy metody

Bardziej szczegółowo

1 Symulacja procesów cieplnych 1. 2 Algorytm MES 2. 3 Implementacja rozwiązania 2. 4 Całkowanie numeryczne w MES 3. k z (t) t ) k y (t) t )

1 Symulacja procesów cieplnych 1. 2 Algorytm MES 2. 3 Implementacja rozwiązania 2. 4 Całkowanie numeryczne w MES 3. k z (t) t ) k y (t) t ) pis treści ymulacja procesów cieplnych Algorytm ME 3 Implementacja rozwiązania 4 Całkowanie numeryczne w ME 3 ymulacja procesów cieplnych Procesy cieplne opisuje równanie różniczkowe w postaci: ( k x (t)

Bardziej szczegółowo

MODELOWANIE NUMERYCZNE POLA PRZEPŁYWU WOKÓŁ BUDYNKÓW

MODELOWANIE NUMERYCZNE POLA PRZEPŁYWU WOKÓŁ BUDYNKÓW 1. WSTĘP MODELOWANIE NUMERYCZNE POLA PRZEPŁYWU WOKÓŁ BUDYNKÓW mgr inż. Michał FOLUSIAK Instytut Lotnictwa W artykule przedstawiono wyniki dwu- i trójwymiarowych symulacji numerycznych opływu budynków wykonanych

Bardziej szczegółowo

Numeryczna symulacja rozpływu płynu w węźle

Numeryczna symulacja rozpływu płynu w węźle 231 Prace Instytutu Mechaniki Górotworu PAN Tom 7, nr 3-4, (2005), s. 231-236 Instytut Mechaniki Górotworu PAN Numeryczna symulacja rozpływu płynu w węźle JERZY CYGAN Instytut Mechaniki Górotworu PAN,

Bardziej szczegółowo

2.2 Opis części programowej

2.2 Opis części programowej 2.2 Opis części programowej Rysunek 1: Panel frontowy aplikacji. System pomiarowy został w całości zintegrowany w środowisku LabVIEW. Aplikacja uruchamiana na komputerze zarządza przebiegiem pomiarów poprzez

Bardziej szczegółowo

Wykład z Technologii Informacyjnych. Piotr Mika

Wykład z Technologii Informacyjnych. Piotr Mika Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły

Bardziej szczegółowo

Metoda Różnic Skończonych (MRS)

Metoda Różnic Skończonych (MRS) Metoda Różnic Skończonych (MRS) METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek () Równania różniczkowe zwyczajne

Bardziej szczegółowo

Tworzenie macierzy pełnych Generowanie macierzy pełnych Funkcje przekształcające macierze pełne

Tworzenie macierzy pełnych Generowanie macierzy pełnych Funkcje przekształcające macierze pełne SPIS TREŚCI 1. WSTĘP 7 2. ŚRODOWISKO MATLABA 10 2.1. Charakterystyka 10 2.2. Budowa pakietu 11 2.2.1. Okno poleceń, katalogów i pamięci roboczej 12 2.2.2. Podstawowe zasady poruszania się w obrębie środowiska

Bardziej szczegółowo

3.4. Opis konfiguracji layoutów.

3.4. Opis konfiguracji layoutów. Definicja layout-ów dla tablicy odczytywana jest z tabeli w bazie danych: [UnitId_System] Gdańsk = 42, Gdynia = 43 [UnitId_Subsytem] 6 = TZT, 7 = ZZT [UnitId_Unit] identyfikator obiektu [Update_TimeStamp]

Bardziej szczegółowo

Metody rozwiązania równania Schrödingera

Metody rozwiązania równania Schrödingera Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania

Bardziej szczegółowo

Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład

Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład Inżynierskie metody numeryczne II Konsultacje: wtorek 8-9:30 Wykład Metody numeryczne dla równań hiperbolicznych Równanie przewodnictwa cieplnego. Prawo Fouriera i Newtona. Rozwiązania problemów 1D metodą

Bardziej szczegółowo

Kurs walut. Specyfikacja projektu. Marek Zając 2013-12-16

Kurs walut. Specyfikacja projektu. Marek Zając 2013-12-16 Kurs walut Specyfikacja projektu Marek Zając 2013-12-16 Spis treści 1. Podsumowanie... 2 1.1 Wstęp... 2 1.2 Projekt interfejsu... 2 1.2.1 Rozmiar głównego okna... 2 2. Słownik pojęć... 2 2.1 Definicja

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH

METODA ELEMENTÓW SKOŃCZONYCH INŻYNIERIA MECHANICZNA MECHANIKA I BUDOWA MASZYN WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA POLITECHNIKA POZNAŃSKA METODA ELEMENTÓW SKOŃCZONYCH Projekt Wykonawca: Jakub Spychała Nr indeksu 96052 Prowadzący: prof.

Bardziej szczegółowo

Numeryczna algebra liniowa

Numeryczna algebra liniowa Numeryczna algebra liniowa Numeryczna algebra liniowa obejmuje szereg algorytmów dotyczących wektorów i macierzy, takich jak podstawowe operacje na wektorach i macierzach, a także rozwiązywanie układów

Bardziej szczegółowo

Metoda Elementów Skończonych. Projekt: COMSOL Multiphysics 3.4.

Metoda Elementów Skończonych. Projekt: COMSOL Multiphysics 3.4. Politechnika Poznańska Metoda Elementów Skończonych Projekt: COMSOL Multiphysics 3.4. Prowadzący: dr hab. Tomasz Stręk Wykonali: Widerowski Karol Wysocki Jacek Wydział: Budowa Maszyn i Zarządzania Kierunek:

Bardziej szczegółowo

Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów

Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów W ramach zajęć oprogramujemy jedną, wybraną metodę numeryczną: metodę bisekcji numerycznego rozwiązywania równania nieliniowego

Bardziej szczegółowo

Język JAVA podstawy. wykład 1, część 2. Jacek Rumiński. Politechnika Gdańska, Inżynieria Biomedyczna

Język JAVA podstawy. wykład 1, część 2. Jacek Rumiński. Politechnika Gdańska, Inżynieria Biomedyczna Język JAVA podstawy wykład 1, część 2 1 Język JAVA podstawy Plan wykładu: 1. Krótka historia Javy 2. Jak przygotować sobie środowisko programistyczne 3. Opis środowiska JDK 4. Tworzenie programu krok po

Bardziej szczegółowo

Numeryczne rozwiązywanie równań i układów równań

Numeryczne rozwiązywanie równań i układów równań Lekcja Strona z 2 Numeryczne rozwiązywanie równań i układów równań Rozwiązywanie pojedynczego równania - funkcja root Do rozwiązywania jednego równania z jedną niewiadomą służy funkcja root(f(z), z), gdzie:

Bardziej szczegółowo

Platforma zakupowa GRUPY TAURON

Platforma zakupowa GRUPY TAURON Platforma zakupowa GRUPY TAURON Podręcznik dla oferenta Rejestracja w systemie Pierwsze logowanie do systemu Podstawowe elementy interfejsu użytkownika Strefa publiczna systemu Version 1.0 1 1. Rejestracja

Bardziej szczegółowo

Dokumentacja. Portal Mathfinance Wycena opcji paryskich metoda. Wiktor Madejski

Dokumentacja. Portal Mathfinance Wycena opcji paryskich metoda. Wiktor Madejski Dokumentacja Portal Mathfinance Wycena opcji paryskich metoda PDE Wiktor Madejski Spis treści 1 Wstęp 2 2 Opcje paryskie 2 2.1 Układ PDE dla opcji paryskich..................... 2 2.2 Schemat numeryczny..........................

Bardziej szczegółowo

Układ równań liniowych

Układ równań liniowych Układ równań liniowych 1 Cel zadania Wykształcenie umiejętności projektowania własnych klas modelujących pojęcia niezbędne do rozwiązania postawionego problemu. Rozwinięcie umiejętności przeciążania operatorów

Bardziej szczegółowo

E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu. Dynamicznych. Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy

E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu. Dynamicznych. Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu E-E-A-1008-s5 Komputerowa Symulacja Układów Nazwa modułu Dynamicznych Nazwa modułu w języku

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

numeryczne rozwiązywanie równań całkowych r i

numeryczne rozwiązywanie równań całkowych r i numeryczne rozwiązywanie równań całkowych r i Γ Ω metoda elementów brzegowych: punktem wyjściowym było rozwiązanie równania całkowego na brzegu obszaru całkowania równanie: wygenerowane z równania różniczkowego

Bardziej szczegółowo

Modelowanie i symulacja zagadnień biomedycznych PROJEKT BARTŁOMIEJ GRZEBYTA, JAKUB OTWOROWSKI

Modelowanie i symulacja zagadnień biomedycznych PROJEKT BARTŁOMIEJ GRZEBYTA, JAKUB OTWOROWSKI Modelowanie i symulacja zagadnień biomedycznych PROJEKT BARTŁOMIEJ GRZEBYTA, JAKUB OTWOROWSKI Spis treści Wstęp... 2 Opis problemu... 3 Metoda... 3 Opis modelu... 4 Warunki brzegowe... 5 Wyniki symulacji...

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Instrukcja obsługi programu SWWS autorstwa Michała Krzemińskiego

Instrukcja obsługi programu SWWS autorstwa Michała Krzemińskiego Instrukcja obsługi programu SWWS autorstwa Michała Krzemińskiego Krótkie informacje o programie można znaleźć zarówno w pliku readme.txt zamieszczonym w podkatalogu DANE jak i w zakładce O programie znajdującej

Bardziej szczegółowo

Analiza wektorowa. Teoria pola.

Analiza wektorowa. Teoria pola. Analiza wektorowa. Teoria pola. Pole skalarne Pole wektorowe ϕ = ϕ(x, y, z) A = A x (x, y, z) i x + A y (x, y, z) i y + A z (x, y, z) i z Gradient grad ϕ = ϕ x i x + ϕ y i y + ϕ z i z Jeśli przemieścimy

Bardziej szczegółowo

NS-2. Krzysztof Rusek. 26 kwietnia 2010

NS-2. Krzysztof Rusek. 26 kwietnia 2010 NS-2 Krzysztof Rusek 26 kwietnia 2010 1 Opis ćwiczenia Symulator ns-2 jest potężnym narzędziem, szeroko stosowanym w telekomunikacji. Ćwiczenie ma na cele przedstawić podstawy symulatora oraz symulacji

Bardziej szczegółowo

5.1. MINIPOS MINIPOS. INSTALACJA ORAZ URUCHOMIENIE USŁUGI

5.1. MINIPOS MINIPOS. INSTALACJA ORAZ URUCHOMIENIE USŁUGI 5.1. MINIPOS POSMobile to wersja zdalnego bonownika przeznaczona do prowadzenia sprzedaży na urządzeniach z systemem Android. Do działania potrzebuje urządzenia z systemem Android w wersji co najmniej

Bardziej szczegółowo

WYKŁAD 12 ENTROPIA I NIERÓWNOŚĆ THERMODYNAMICZNA 1/10

WYKŁAD 12 ENTROPIA I NIERÓWNOŚĆ THERMODYNAMICZNA 1/10 WYKŁAD 12 ENROPIA I NIERÓWNOŚĆ HERMODYNAMICZNA 1/10 ENROPIA PŁYNU IDEALNEGO W PRZEPŁYWIE BEZ NIECIĄGŁOŚCI Załóżmy, że przepływ płynu idealnego jest gładki, tj. wszystkie pola wielkości kinematycznych i

Bardziej szczegółowo

Ćwiczenie Stany nieustalone w obwodach liniowych pierwszego rzędu symulacja komputerowa

Ćwiczenie Stany nieustalone w obwodach liniowych pierwszego rzędu symulacja komputerowa INSTYTUT SYSTEMÓW INŻYNIERII ELEKTRYCZNEJ TEORIA OBWODÓW ELEKTRYCZNYCH LABORATORIUM Ćwiczenie Stany nieustalone w obwodach liniowych pierwszego rzędu symulacja komputerowa Grupa nr:. Zespół nr:. Skład

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 4

INSTRUKCJA DO ĆWICZENIA NR 4 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 4 PRZEDMIOT TEMAT Wybrane zagadnienia z optymalizacji elementów konstrukcji Zastosowanie optymalizacji

Bardziej szczegółowo

Badania operacyjne Instrukcja do c wiczen laboratoryjnych Rozwiązywanie problemów programowania liniowego z użyciem MS Excel + Solver

Badania operacyjne Instrukcja do c wiczen laboratoryjnych Rozwiązywanie problemów programowania liniowego z użyciem MS Excel + Solver Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Wydział Techniki Morskiej i Transportu Katedra Konstrukcji, Mechaniki i Technologii Okręto w Badania operacyjne Instrukcja do c wiczen laboratoryjnych

Bardziej szczegółowo

MS Visual Studio Express 2012 for Web instalacja i konfiguracja

MS Visual Studio Express 2012 for Web instalacja i konfiguracja MS Visual Studio Express 2012 for Web instalacja i konfiguracja Strona 1 z 10 Spis treści 1. Instalacja Visual Studio for Web....3 2. Przygotowanie projektu....5 3. Otwarcie projektu przy pomocy VSW....6

Bardziej szczegółowo

Zasady budowy i przekazywania komunikatów XML w systemie kdpw_otc

Zasady budowy i przekazywania komunikatów XML w systemie kdpw_otc Warszawa, 07 lutego 2013 Zasady budowy i przekazywania komunikatów XML w systemie kdpw_otc Wersja 1.4.2 1 Spis treści Tabela zmian... 3 Wstęp... 4 Budowa komunikatów XML... 4 Przestrzenie nazw (namespaces)...

Bardziej szczegółowo

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli?

Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? Dodatek Solver Teoria Dodatek Solver jest częścią zestawu poleceń czasami zwaną narzędziami analizy typu co-jśli (analiza typu co, jeśli? : Proces zmieniania wartości w komórkach w celu sprawdzenia, jak

Bardziej szczegółowo

dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska

dr inż. Damian Słota Gliwice r. Instytut Matematyki Politechnika Śląska Program wykładów z metod numerycznych na semestrze V stacjonarnych studiów stopnia I Podstawowe pojęcia metod numerycznych: zadanie numeryczne, algorytm. Analiza błędów: błąd bezwzględny i względny, przenoszenie

Bardziej szczegółowo

Materiały pomocnicze z Aparatury Przemysłu Chemicznego

Materiały pomocnicze z Aparatury Przemysłu Chemicznego Materiały pomocnicze z Aparatury Przemysłu Chemicznego Odstojnik dr inż. Szymon Woziwodzki Materiały dydaktyczne v.1. Wszelkie prawa zastrzeżone. Szymon.Woziwodzki@put.poznan.pl Strona 1 POLITECHNIKA POZNAŃSKA

Bardziej szczegółowo

Współpraca FDS z arkuszem kalkulacyjnym

Współpraca FDS z arkuszem kalkulacyjnym Współpraca FDS z arkuszem kalkulacyjnym 1. Wstęp: Program Pyrosim posiada możliwość bezpośredniego podglądu wykresów uzyskiwanych z urządzeń pomiarowych. Wszystkie wykresy wyświetlane są jako plik graficzny

Bardziej szczegółowo

Wyłączenie redukcji parametrów wytrzymałościowych ma zastosowanie w następujących sytuacjach:

Wyłączenie redukcji parametrów wytrzymałościowych ma zastosowanie w następujących sytuacjach: Przewodnik Inżyniera Nr 35 Aktualizacja: 01/2017 Obszary bez redukcji Program: MES Plik powiązany: Demo_manual_35.gmk Wprowadzenie Ocena stateczności konstrukcji z wykorzystaniem metody elementów skończonych

Bardziej szczegółowo

- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd.

- prędkość masy wynikająca z innych procesów, np. adwekcji, naprężeń itd. 4. Równania dyfuzji 4.1. Prawo zachowania masy cd. Równanie dyfuzji jest prostą konsekwencją prawa zachowania masy, a właściwie to jest to prawo zachowania masy zapisane dla procesu dyfuzji i uwzględniające

Bardziej szczegółowo

Procedury techniczne modułu Forte Kontroling. Raportowanie danych w MS Excel - Konfiguracja IIS na Windows oraz wykonanie importu

Procedury techniczne modułu Forte Kontroling. Raportowanie danych w MS Excel - Konfiguracja IIS na Windows oraz wykonanie importu Procedury techniczne modułu Forte Kontroling Raportowanie danych w MS Excel - Konfiguracja IIS na Windows oraz wykonanie importu Raportowanie danych w MS Excel - Konfiguracja IIS na Windows oraz wykonanie

Bardziej szczegółowo

Karta (sylabus) przedmiotu

Karta (sylabus) przedmiotu Karta (sylabus) przedmiotu [Budownictwo] Studia I stopnia Przedmiot: Metody obliczeniowe Rok: III Semestr: VI Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 15 16 Ćwiczenia

Bardziej szczegółowo

Obliczenia w programie MATLAB

Obliczenia w programie MATLAB Obliczenia w programie MATLAB Na zajęciach korzystamy z programu MATLAB, w którym wykonywać będziemy większość obliczeń. Po uruchomieniu programu w zależności od wersji i konfiguracji może pojawić się

Bardziej szczegółowo

Analiza danych przy uz yciu Solvera

Analiza danych przy uz yciu Solvera Analiza danych przy uz yciu Solvera Spis treści Aktywacja polecenia Solver... 1 Do jakich zadań wykorzystujemy Solvera?... 1 Zadanie 1 prosty przykład Solvera... 2 Zadanie 2 - Optymalizacja programu produkcji

Bardziej szczegółowo

akademia androida Pierwsze kroki w Androidzie część I

akademia androida Pierwsze kroki w Androidzie część I akademia androida Pierwsze kroki w Androidzie część I agenda Środowisko do pracy + emulator Struktura projektu z omówieniem Po co nam AndroidManifest.xml? Cykl życia aplikacji Zadanie 1. Kod, symulacja,

Bardziej szczegółowo

plansoft.org www.plansoft.org Zmiany w Plansoft.org Błyskawiczny eksport danych PLANOWANIE ZAJĘĆ, REZERWOWANIE SAL I ZASOBÓW

plansoft.org www.plansoft.org Zmiany w Plansoft.org Błyskawiczny eksport danych PLANOWANIE ZAJĘĆ, REZERWOWANIE SAL I ZASOBÓW Zmiany w Plansoft.org Błyskawiczny eksport danych... 1 Jak wyeksportować dane... 1 Eksportowanie planu studiów, zajęć, statystyk i danych słownikowych... 2 Dostosowywanie wyników eksportu... 4 Filtrowanie

Bardziej szczegółowo

A B. Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych B: 1. da dt. A v. v t

A B. Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych B: 1. da dt. A v. v t B: 1 Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych 1. ZałóŜmy, Ŝe zmienna A oznacza stęŝenie substratu, a zmienna B stęŝenie produktu reakcji chemicznej

Bardziej szczegółowo

Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy. Obowiązkowy Polski VI semestr zimowy

Elektrotechnika I stopień Ogólno akademicki. Przedmiot kierunkowy. Obowiązkowy Polski VI semestr zimowy KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Numeryczne rozwiązywanie równań różniczkowych ( )

Numeryczne rozwiązywanie równań różniczkowych ( ) Numeryczne rozwiązywanie równań różniczkowych Równanie różniczkowe jest to równanie, w którym występuje pochodna (czyli różniczka). Przykładem najprostszego równania różniczkowego może być: y ' = 2x które

Bardziej szczegółowo

Jak napisać program obliczający pola powierzchni różnych figur płaskich?

Jak napisać program obliczający pola powierzchni różnych figur płaskich? Część IX C++ Jak napisać program obliczający pola powierzchni różnych figur płaskich? Na początku, przed stworzeniem właściwego kodu programu zaprojektujemy naszą aplikację i stworzymy schemat blokowy

Bardziej szczegółowo

Instrukcja instalacji aplikacji Comarch Smart Card ToolBox

Instrukcja instalacji aplikacji Comarch Smart Card ToolBox Instrukcja instalacji aplikacji Comarch Smart Card ToolBox dla urządzeń kryptograficznych Bankowość Internetowa R-Online Biznes Spis treści: 1. Wstęp...2 2. Instalacja Comarch Smart Card ToolBox w systemie

Bardziej szczegółowo

INSTRUKCJA SKŁADANIA SPRAWOZDANIA FINANSOWEGO PRZEZ ekrs GDY PRZYNAJMNIEJ JEDNA Z OSÓB UPRAWNIONYCH DO REPREZENTACJI POSIADA NUMER PESEL

INSTRUKCJA SKŁADANIA SPRAWOZDANIA FINANSOWEGO PRZEZ ekrs GDY PRZYNAJMNIEJ JEDNA Z OSÓB UPRAWNIONYCH DO REPREZENTACJI POSIADA NUMER PESEL INSTRUKCJA SKŁADANIA SPRAWOZDANIA FINANSOWEGO PRZEZ ekrs GDY PRZYNAJMNIEJ JEDNA Z OSÓB UPRAWNIONYCH DO REPREZENTACJI POSIADA NUMER PESEL Do bezpłatnego złożenia e-sprawozdania przez ekrs konieczne jest

Bardziej szczegółowo

World Wide Web? rkijanka

World Wide Web? rkijanka World Wide Web? rkijanka World Wide Web? globalny, interaktywny, dynamiczny, wieloplatformowy, rozproszony, graficzny, hipertekstowy - system informacyjny, działający na bazie Internetu. 1.Sieć WWW jest

Bardziej szczegółowo

Simulink MATLAB Przegląd obiektów i przykłady zastosowań

Simulink MATLAB Przegląd obiektów i przykłady zastosowań Simulink MATLAB Przegląd obiektów i przykłady zastosowań M. Berndt-Schreiber 1 Simulink MATLAB SIMULINK jest rozszerzeniem pakietu MATLAB; przy pomocy graficznego środowiska pozwala konstruować diagramy

Bardziej szczegółowo

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż. Joanna Szulczyk Politechnika Warszawska Instytut Techniki Lotniczej i Mechaniki

Bardziej szczegółowo

Mirror Tool.

Mirror Tool. Mirror Tool Narzędzie Mirror Tool służy do pobierania baz sygnatur wirusów offline. Jeśli klienty nie mają połączenia do sieci Internet, a potrzebują dostęp do bazy sygnatur wirusów, można w takim przypadku

Bardziej szczegółowo