Analizator syntaktyczny

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analizator syntaktyczny"

Transkrypt

1 Analizator syntaktyczny program źródłowy analizator leksykalny token daj nast. token analizator syntaktyczny drzewo rozbioru syntaktycznego analizator semantyczny kod pośredni tablica symboli Analizator Syntaktyczny (parser) ma za zadanie dokonać rozbioru syntaktycznego tekstu źródłowego analizowanego programu. Analizator leksykalny (skaner) dokonuje zamiany tekstu wejściowego na ciąg tokenów. Nie zostaje przy tym zmieniona struktura syntaktyczna programu wejściowego. Parser pracuje na podstawie gramatyki syntaktycznej G s, która na ogół jest gramatyką bezkontekstową. Od parsera oczekujemy odtworzenia wywodu i jakiegoś zanotowania tego wywodu. Najczęściej stosowanym sposobem notowania wyprowadzenia jest podanie ciągu numerów produkcji. Niekiedy równolegle z analizą syntaktyczną parser wykonuje pewne akcje semantyczne jak np. generowanie kodu pośredniego w postaci ONP. tetrad (n-tek), itd. Działanie parsera: * We: ω S (ω jest słowem nad alfabetem S, S jest zbiorem tokenów) Wy: π=p 1...p i...p n (p i numer produkcji) lub err

2 Przykład: G S =<{,,},{id,+,*,(,)},p,> P: (1) + (2) (3) * (4) (5) () (6) id * Analizowane słowo: (id+id)*id Do zbudowania drzewa rozbioru syntakt. (podstawa konstrukcji kodu wynikowego) niezbędna jest wiadomość, że ciąg numerów produkcji związany jest z wywodem (tutaj) lewostronnym ( id + ) id (2) (3) (4) (5) (1) (2) (4) (6) (4) (6) (6) * * ()* (+)* (+)* (+)* (id+)* (id+)* (id+id)* (id+id)* id acc ciąg numerów produkcji jest wyjściem z parsera

3 Definicja zbiorów IRS i OLLOW G = < N,, P, Z > G BK IRS K (α) = {x * : (α*xβ x =k) (α*x x <k); α,β (N ) * } Zbiór IRS K (α) jest zbiorem wszystkich terminalnych przedrostków długości k (lub mniejszej, jeżeli z α wyprowadza się łańcuch terminalny krótszy niż k) łańcuchów, które mogą być wyprowadzalne z α OLLOW K (β) = {x * : (Z*αβγ x IRS K (γ); α,β,γ (N ) * } Zbiór OLLOW K (β) zawiera terminalne łańcuchy o długości k (lub mniejszej patrz powyżej), które mogą pojawić się w wyprowadzeniach jako następniki β. Uwaga: jeśli OLLOW K (β) zawiera x: x <k, to wówczas zastępujemy x przez x$, gdzie $ prawy ogranicznik słowa (dla wygody). Wyznaczanie IRS 1 dla gramatyki G=<N,, P, Z> G BK Wyznaczanie IRS 1 (x) dla x (N ) (1) if x then IRS 1 (x):={x}; (2) if (x ε) P then IRS 1 (x):= IRS 1 (x) {ε}; (3) if x N and (x y 1 y 2...y k ) P then begin IRS 1 (x):=irs 1 (x) (IRS 1 (y 1 )\{ε}) for i:=2 to k do if (ε IRS 1 (y 1 ))and...and(ε IRS 1 (y i-1 )) then IRS 1 (x):=irs 1 (x) (IRS 1 (y i )\{ε}); if (ε IRS 1 (y 1 ))and...and(ε IRS 1 (y k )) then IRS 1 (x):=irs 1 (x) {ε} end; Aby wyznaczyć IRS 1 (x) dla wszystkich X (N ) należy stosować reguły (1), (2) i (3) tak długo, aż nic nowego nie da się dołączyć do któregokolwiek zbioru IRS 1 (x). Wyznaczanie IRS 1 (x 1 x 2...x n ) IRS 1 (x 1 x 2 x n ):=IRS 1 (x 1 )\{ε} for i:=2 to k do if (ε IRS 1 (x 1 ))and and(ε IRS 1 (x i-1 ))then IRS 1 (x 1 x n ):= IRS 1 (x 1 x n ) (IRS 1 (x i )\{ε}); if (ε IRS 1 (x 1 ))and and(ε IRS 1 (x n )) then IRS 1 (x 1 x n ):= IRS 1 (x 1 x n ) {ε};

4 Wyznaczenie OLLOW 1 dla wszystkich A N Stosować poniższe reguły (1), (2), (3) dopóty nic nowego nie może już zostać dodane do żadnego zbioru OLLOW 1. (1) OLLOW 1 (Z):=OLLOW 1 (Z) {$} (2) if (A αbβ) P then OLLOW 1 (B):=OLLOW 1 (B) (IRS 1 (β)\{ε}) (3) if (A αb) P or ((A αbβ) P and (ε IRS 1 (β))) then OLLOW 1 (B):=OLLOW 1 (B) OLLOW 1 (A); Przykład: (1) ` (2) +` ε (3) ` (4) ` *` ε (5) () id IRS 1 [+]={+} IRS 1 [*]={*} IRS 1 [(]={(} IRS 1 [)]={)} IRS 1 [id]={id} IRS 1 ()={(, id} IRS 1 (`)={ε,+} IRS 1 ()={(, id } IRS 1 (`)={ε,*} IRS 1 ()={(, id} OLLOW 1 ()={$,)} OLLOW 1 (`)={$,)} OLLOW 1 ()={+,),$} OLLOW 1 (`)={+,),$} OLLOW 1 ()={+,*,),$}

5 Generacja parsera: We: gramatyka syntaktyczna G S =<N S, S,P S,Z S > (oznaczana dalej G=<N,,P,Z>) Wy: algorytm parsera Algorytm parsera musi być efektywny. Uniwersalny algorytm arley a ma dla gramatyki bezkontekstowej (bez ograniczeń na jednoznaczność) złożoność obliczeniową: czasową O(n 3 ), pamięciową O(n 2 ), zaś dla gramatyk jednoznacznych złożoność czasowa wynosi O(n 2 ). Są to złożoności niedopuszczalne w praktyce. Musimy się posługiwać algorytmami prostszymi, ale wiąże się to z zawężeniem klasy gramatyk. Dla gramatyk LL(k) i LR(k) złożoność obliczeniowa algorytmu parsera wynosi: czasowa O(n) oraz pamięciowa O(n). Dalej rozpatrywane będą algorytmy parsingu dla gramatyk LL(k) i LR(k) przeglądanie wejścia od lewej do prawej LR(k) odtwarzanie wywodu prawostronnego metodą bottom-up LL(k) liczba symboli, które trzeba podglądać na wejściu, aby jednoznacznie określić numer produkcji, którą należy zastosować przeglądanie wejścia od lewej do prawej odtwarzanie wywodu lewostronnego metodą top-down liczba symboli, które trzeba podglądać na wejściu, aby jednoznacznie określić numer produkcji, którą należy zastosować

6 Na ogół stosowane są gramatyki: LL(1) LR(1) oraz jej podklasy SLR(1) oraz LALR(1), dające możliwość znacznego uproszczenia algorytmu parsingu przy niewielkim ograniczeniu możliwości gramatyki.

Metody Kompilacji Wykład 8 Analiza Syntaktyczna cd. Włodzimierz Bielecki WI ZUT

Metody Kompilacji Wykład 8 Analiza Syntaktyczna cd. Włodzimierz Bielecki WI ZUT Metody Kompilacji Wykład 8 Analiza Syntaktyczna cd Analiza Syntaktyczna Wstęp Parser dostaje na wejściu ciąg tokenów od analizatora leksykalnego i sprawdza: czy ciąg ten może być generowany przez gramatykę.

Bardziej szczegółowo

Gramatyka operatorowa

Gramatyka operatorowa Gramatyki z pierwszeństwem operatorów Teoria kompilacji Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyka operatorowa Definicja: G = G BK jest gramatyką operatorową (i) (ii) G jest gramatyką

Bardziej szczegółowo

Metody Kompilacji Wykład 7 Analiza Syntaktyczna

Metody Kompilacji Wykład 7 Analiza Syntaktyczna Metody Kompilacji Wykład 7 Analiza Syntaktyczna Parsowanie Parsowanie jest to proces określenia jak ciąg terminali może być generowany przez gramatykę. Włodzimierz Bielecki WI ZUT 2/57 Parsowanie Dla każdej

Bardziej szczegółowo

Plan wykładu. Kompilatory. Literatura. Translatory. Literatura Translatory. Paweł J. Matuszyk

Plan wykładu. Kompilatory. Literatura. Translatory. Literatura Translatory. Paweł J. Matuszyk Plan wykładu (1) Paweł J. Matuszyk AGH Kraków 1 2 tor leksykalny tor syntaktyczny Generator pośredniego Generator wynikowego Hopcroft J. E., Ullman J. D., Wprowadzenie do teorii automatów, języków i obliczeń,

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 3

Języki formalne i automaty Ćwiczenia 3 Języki formalne i automaty Ćwiczenia 3 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Algorytm LL(1)... 2 Definicja zbiorów FIRST1 i FOLLOW1... 3 Konstrukcja tabeli parsowania

Bardziej szczegółowo

Analiza leksykalna 1. Teoria kompilacji. Dr inż. Janusz Majewski Katedra Informatyki

Analiza leksykalna 1. Teoria kompilacji. Dr inż. Janusz Majewski Katedra Informatyki Analiza leksykalna 1 Teoria kompilacji Dr inż. Janusz Majewski Katedra Informatyki Zadanie analizy leksykalnej Kod źródłowy (ciąg znaków) Analizator leksykalny SKANER Ciąg symboli leksykalnych (tokenów)

Bardziej szczegółowo

3.4. Przekształcenia gramatyk bezkontekstowych

3.4. Przekształcenia gramatyk bezkontekstowych 3.4. Przekształcenia gramatyk bezkontekstowych Definicje Niech będzie dana gramatyka bezkontekstowa G = G BK Symbol X (N T) nazywamy nieużytecznym w G G BK jeśli nie można w tej gramatyce

Bardziej szczegółowo

0.1 Lewostronna rekurencja

0.1 Lewostronna rekurencja 0.1 Lewostronna rekurencja Sprawdź czy poniższa gramatyka E jest zgodna z LL(1), tzn. czy umożliwia przeprowadzenie analizy bez powrotu z wyprzedzeniem o jeden symbol. Wyjaśnienie pojęcia LL(1): Pierwsze

Bardziej szczegółowo

Analiza leksykalna 1. Języki formalne i automaty. Dr inż. Janusz Majewski Katedra Informatyki

Analiza leksykalna 1. Języki formalne i automaty. Dr inż. Janusz Majewski Katedra Informatyki Analiza leksykalna 1 Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Zadanie analizy leksykalnej Kod źródłowy (ciąg znaków) Analizator leksykalny SKANER Ciąg symboli leksykalnych

Bardziej szczegółowo

Wykład 5. Jan Pustelnik

Wykład 5. Jan Pustelnik Wykład 5 Jan Pustelnik Konstruowanie parsera Istnieje kilka podstawowych metod konstrukcji parsera bez nawracania Ze względów wydajnościowych parser bez nawracania jest jedynym sensownym rozwiązaniem (prawo

Bardziej szczegółowo

Automat ze stosem. Języki formalne i automaty. Dr inż. Janusz Majewski Katedra Informatyki

Automat ze stosem. Języki formalne i automaty. Dr inż. Janusz Majewski Katedra Informatyki Automat ze stosem Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Automat ze stosem (1) dno stosu Stos wierzchołek stosu Wejście # B B A B A B A B a b b a b a b $ q i Automat ze

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 4

Języki formalne i automaty Ćwiczenia 4 Języki formalne i automaty Ćwiczenia 4 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Sposób tworzenia deterministycznego automatu skończonego... 4 Intuicyjne rozumienie konstrukcji

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Gramatyki bezkontekstowe I Gramatyką bezkontekstową

Bardziej szczegółowo

Gramatyki rekursywne

Gramatyki rekursywne Gramatyki bezkontekstowe, rozbiór gramatyczny eoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyki rekursywne Niech będzie dana gramatyka bezkontekstowa G =

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 2

Języki formalne i automaty Ćwiczenia 2 Języki formalne i automaty Ćwiczenia 2 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Metoda brute force... 2 Konwersja do postaci normalnej Chomskiego... 5 Algorytm Cocke a-youngera-kasamiego

Bardziej szczegółowo

Odtworzenie wywodu metodą wstępującą (bottom up)

Odtworzenie wywodu metodą wstępującą (bottom up) Przeglądane wejśca od lewej strony do prawej L (k) Odtwarzane wywodu prawostronnego Wystarcza znajomosc "k" następnych symbol łańcucha wejścowego hstor dotychczasowych redukcj, aby wyznaczyc jednoznaczne

Bardziej szczegółowo

Zadanie analizy leksykalnej

Zadanie analizy leksykalnej Analiza leksykalna 1 Teoria kompilacji Dr inŝ. Janusz Majewski Katedra Informatyki Zadanie analizy leksykalnej Przykład: We: COST := ( PRICE + TAX ) * 0.98 Wy: id 1 := ( id 2 + id 3 ) * num 4 Tablica symboli:

Bardziej szczegółowo

Uproszczony schemat działania kompilatora

Uproszczony schemat działania kompilatora Uproszczony schemat działania kompilatora Wykład7,str.1 program źródłowy ciąg leksemów drzewo wywodu drzewo i tablice symboli analiza leksykalna analiza syntaktyczna analiza semantyczna KOMPILATOR generacja

Bardziej szczegółowo

2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego

2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego 2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną G = gdzie: N zbiór symboli nieterminalnych, T zbiór symboli terminalnych, P zbiór

Bardziej szczegółowo

Wprowadzenie do analizy składniowej. Bartosz Bogacki.

Wprowadzenie do analizy składniowej. Bartosz Bogacki. Wprowadzenie do analizy składniowej Bartosz Bogacki Bartosz.Bogacki@cs.put.poznan.pl Witam Państwa. Wykład, który za chwilę Państwo wysłuchają dotyczy wprowadzenia do analizy składniowej. Zapraszam serdecznie

Bardziej szczegółowo

Uproszczony schemat działania kompilatora

Uproszczony schemat działania kompilatora Wykład7,13XI2009,str.1 Uproszczony schemat działania kompilatora program źródłowy ciąg leksemów drzewo wywodu drzewo i tablice symboli analiza leksykalna analiza syntaktyczna analiza semantyczna KOMPILATOR

Bardziej szczegółowo

Gramatyki atrybutywne

Gramatyki atrybutywne Gramatyki atrybutywne, część 1 (gramatyki S-atrybutywne Teoria kompilacji Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyki atrybutywne Do przeprowadzenia poprawnego tłumaczenia, oprócz informacji

Bardziej szczegółowo

JIP. Analiza składni, gramatyki

JIP. Analiza składni, gramatyki JIP Analiza składni, gramatyki Książka o różnych językach i paradygmatach 2 Polecam jako obowiązkową lekturę do przeczytania dla wszystkich prawdziwych programistów! Podsumowanie wykładu 2 3 Analiza leksykalna

Bardziej szczegółowo

Włączenie analizy leksykalnej do analizy składniowej jest nietrudne; po co więc jest wydzielona?

Włączenie analizy leksykalnej do analizy składniowej jest nietrudne; po co więc jest wydzielona? Po co wydziela się analizę leksykalną? Wykład7,str1 Włączenie analizy leksykalnej do analizy składniowej jest nietrudne; po co więc jest wydzielona? 1 Analiza leksykalna jest prostsza niż składniowa leksyka

Bardziej szczegółowo

Generatory analizatorów

Generatory analizatorów Generatory analizatorów Generator analizatora leksykalnego flex ( http://www.gnu.org/software/flex/ ) Generator analizatora składniowego bison ( http://www.gnu.org/software/bison/ ) Idea ogólna Opis atomów

Bardziej szczegółowo

10. Translacja sterowana składnią i YACC

10. Translacja sterowana składnią i YACC 10. Translacja sterowana składnią i YACC 10.1 Charakterystyka problemu translacja sterowana składnią jest metodą generacji przetworników tekstu języków, których składnię opisano za pomocą gramatyki (bezkontekstowej)

Bardziej szczegółowo

Gramatyki, wyprowadzenia, hierarchia Chomsky ego. Gramatyka

Gramatyki, wyprowadzenia, hierarchia Chomsky ego. Gramatyka Gramatyki, wyprowadzenia, hierarchia Chomsky ego Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G =

Bardziej szczegółowo

Analiza semantyczna. Gramatyka atrybutywna

Analiza semantyczna. Gramatyka atrybutywna Analiza semantyczna Do przeprowadzenia poprawnego tłumaczenia, oprócz informacji na temat składni języka podlegającego tłumaczeniu, translator musi posiadać możliwość korzystania z wielu innych informacji

Bardziej szczegółowo

Efektywna analiza składniowa GBK

Efektywna analiza składniowa GBK TEORETYCZNE PODSTAWY INFORMATYKI Efektywna analiza składniowa GBK Rozbiór zdań i struktur zdaniowych jest w wielu przypadkach procesem bardzo skomplikowanym. Jego złożoność zależy od rodzaju reguł produkcji

Bardziej szczegółowo

GRAMATYKI BEZKONTEKSTOWE

GRAMATYKI BEZKONTEKSTOWE GRAMATYKI BEZKONTEKSTOWE PODSTAWOWE POJĘCIE GRAMATYK Przez gramatykę rozumie się pewien układ reguł zadający zbiór słów utworzonych z symboli języka. Słowa te mogą być i interpretowane jako obiekty językowe

Bardziej szczegółowo

Program We Kompilator Wy Źródłowy

Program We Kompilator Wy Źródłowy 1. Aho A.V., Ullman J.D. - The Theory of Parsing, Translation and Compiling.1972. 2. Foster J.M. - Automatyczna analiza składniowa. 1976 3. Gries D. - Konstrukcja translatorów dla maszyn cyfrowych, 1984

Bardziej szczegółowo

Wybrane narzędzia do tworzenia analizatorów leksykalnych i składniowych w C/C++ by Kapitol Team

Wybrane narzędzia do tworzenia analizatorów leksykalnych i składniowych w C/C++ by Kapitol Team Wybrane narzędzia do tworzenia analizatorów leksykalnych i składniowych w C/C++ by Kapitol Team Flex a generatory skanerów C++ 2 sposoby wymuszenia stworzenia skanera w C++ flex -+ flexfile.l użycie %option

Bardziej szczegółowo

ZYKI BEZKONTEKSTOWE (KLASA

ZYKI BEZKONTEKSTOWE (KLASA Spis treści 6. JĘZYKI BEZKONTEKSTOWE (KLASA "2")... 2 6.1. GRAMATYKI BEZKONTEKSTOWE... 2 6.2. AUTOMATY ZE STOSEM... 12 7. DETERMINISTYCZNE JĘZYKI BEZKONTEKSTOWE I ICH AKCEPTORY... 16 7.1. GRAMATYKI I JĘZYKI

Bardziej szczegółowo

PARADYGMATY I JĘZYKI PROGRAMOWANIA. Analiza leksykalna i syntaktyczna. w- 5

PARADYGMATY I JĘZYKI PROGRAMOWANIA. Analiza leksykalna i syntaktyczna. w- 5 PARADYGMATY I JĘZYKI PROGRAMOWANIA Analiza leksykalna i syntaktyczna. Treść 2 Wstęp Analiza leksykalna Analiza syntaktyczna Rekurencja zstępująca Parsery LL Parsery LL sterowane tablicą 3 Wstęp dobra książka

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 1

Języki formalne i automaty Ćwiczenia 1 Języki formalne i automaty Ćwiczenia Autor: Marcin Orchel Spis treści Spis treści... Wstęp teoretyczny... 2 Wprowadzenie do teorii języków formalnych... 2 Gramatyki... 5 Rodzaje gramatyk... 7 Zadania...

Bardziej szczegółowo

5. JĘZYKI BEZKONTEKSTOWE (KLASA "2") GRAMATYKI BEZKONTEKSTOWE AUTOMATY ZE STOSEM DETERMINISTYCZNE JĘZYKI BEZKONTEKSTOWE I

5. JĘZYKI BEZKONTEKSTOWE (KLASA 2) GRAMATYKI BEZKONTEKSTOWE AUTOMATY ZE STOSEM DETERMINISTYCZNE JĘZYKI BEZKONTEKSTOWE I 5. JĘZYKI BEZKONTEKSTOWE (KLASA "2")...2 5.1. GRAMATYKI BEZKONTEKSTOWE...2 5.2. AUTOMATY ZE STOSEM...12 6. DETERMINISTYCZNE JĘZYKI BEZKONTEKSTOWE I ICH AKCEPTORY...16 6.1. GRAMATYKI I JĘZYKI LR...16 7.

Bardziej szczegółowo

Lingwistyka Matematyczna Języki formalne i gramatyki Analiza zdań

Lingwistyka Matematyczna Języki formalne i gramatyki Analiza zdań Katedra Informatyki Stosowanej Politechnika Łódzka Lingwistyka Matematyczna Języki formalne i gramatyki Analiza zdań dr hab. inŝ. Lidia Jackowska-Strumiłło Historia rozwoju języków programowania 1955 1955

Bardziej szczegółowo

Metody Kompilacji Wykład 1 Wstęp

Metody Kompilacji Wykład 1 Wstęp Metody Kompilacji Wykład 1 Wstęp Literatura: Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman: Compilers: Princiles, Techniques, and Tools. Addison-Wesley 1986, ISBN 0-201-10088-6 Literatura: Alfred V. Aho,

Bardziej szczegółowo

Języki formalne i automaty Ćwiczenia 9

Języki formalne i automaty Ćwiczenia 9 Języki formalne i automaty Ćwiczenia 9 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Maszyna Mealy'ego... 2 Maszyna Moore'a... 2 Automat ze stosem... 3 Konwersja gramatyki bezkontekstowej

Bardziej szczegółowo

Translacja wprowadzenie

Translacja wprowadzenie Translacja wprowadzenie Teoria kompilacji Dr inż. Janusz Majewski Katedra Informatyki Literatura 1) Aho A. V., Sethi R., Ullman J. D.: Compilers. Principles, Techniques and Tools, Addison- Wesley, 1986

Bardziej szczegółowo

Metody Realizacji Języków Programowania

Metody Realizacji Języków Programowania 1/54 Metody Realizacji Języków Programowania Analiza składniowa wstępujaca Marcin Benke MIM UW 9 stycznia 2015 2/54 Analiza wstępujaca metoda LR Od Lewej, prawostronne wyprowadzenie (w odwrotnej kolejności)

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Automat ze stosem Automat ze stosem to szóstka

Bardziej szczegółowo

Generator YACC: gramatyki niejednoznaczne

Generator YACC: gramatyki niejednoznaczne Plan wykładu Generator YACC: gramatyki niejednoznaczne Wojciech Complak Wojciech.Complak@cs.put.poznan.pl gramatyki jednoznaczne i niejednoznaczne zalety gramatyk niejednoznacznych opisywanie łączności

Bardziej szczegółowo

Hierarchia Chomsky ego Maszyna Turinga

Hierarchia Chomsky ego Maszyna Turinga Hierarchia Chomsky ego Maszyna Turinga Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G = V skończony zbiór

Bardziej szczegółowo

Wykład 10. Translacja sterowana składnią

Wykład 10. Translacja sterowana składnią Wykład 10 Translacja sterowana składnią Translacja sterowana składnią Z konstrukcjami języków programowania wiąże się pewną informację przez dołączenie atrybutów do symboli gramatyki reprezentujących te

Bardziej szczegółowo

1 X-gramatyki, Hierarchia Chomsky ego

1 X-gramatyki, Hierarchia Chomsky ego 1 X-gramatyki, Hierarchia Chomsky ego 1.1 X-gramatyka i język przez nią wyznaczony Symbolem X dalej oznaczamy ustalony niepusty zbiór symboli terminalnych zwanych też tokenami. Definicja 1.1 X-gramatyką

Bardziej szczegółowo

JAO - lematy o pompowaniu dla jezykow bezkontekstowy

JAO - lematy o pompowaniu dla jezykow bezkontekstowy JAO - lematy o pompowaniu dla jezykow bezkontekstowych Postać normalna Chomsky ego Gramatyka G ze zbiorem nieterminali N i zbiorem terminali T jest w postaci normalnej Chomsky ego wtw gdy każda produkcja

Bardziej szczegółowo

JAO - Wprowadzenie do Gramatyk bezkontekstowych

JAO - Wprowadzenie do Gramatyk bezkontekstowych JAO - Wprowadzenie do Gramatyk bezkontekstowych Definicja gramatyki bezkontekstowej Podstawowymi narzędziami abstrakcyjnymi do opisu języków formalnych są gramatyki i automaty. Gramatyka bezkontekstowa

Bardziej szczegółowo

Semantyka i Weryfikacja Programów - Laboratorium 6

Semantyka i Weryfikacja Programów - Laboratorium 6 Semantyka i Weryfikacja Programów - Laboratorium 6 Analizator leksykalny i składniowy - kalkulator programowalny Cel. Przedstawienie zasad budowy i działania narzędzi do tworzenia kompilatorów języków

Bardziej szczegółowo

Algorytmy zwiazane z gramatykami bezkontekstowymi

Algorytmy zwiazane z gramatykami bezkontekstowymi Algorytmy zwiazane z gramatykami bezkontekstowymi Rozpoznawanie j zyków bezkontekstowych Problem rozpoznawania j zyka L polega na sprawdzaniu przynale»no±ci sªowa wej±ciowego x do L. Zakªadamy,»e j zyk

Bardziej szczegółowo

11 Probabilistic Context Free Grammars

11 Probabilistic Context Free Grammars 11 Probabilistic Context Free Grammars Ludzie piszą i mówią wiele rzeczy, a ich wypowiedzi mają zawsze jakąś określoną strukture i regularność. Celem jest znalezienie i wyizolowanie tego typu struktur.

Bardziej szczegółowo

Hierarchia Chomsky ego

Hierarchia Chomsky ego Hierarchia Chomsky ego Gramatyki nieograniczone Def. Gramatyką nieograniczoną (albo typu 0) nazywamy uporządkowaną czwórkę G= gdzie: % Σ - skończony alfabet symboli końcowych (alfabet, nad którym

Bardziej szczegółowo

Języki, automaty i obliczenia

Języki, automaty i obliczenia Języki, automaty i obliczenia Wykład 12: Gramatyki i inne modele równoważne maszynom Turinga. Wstęp do złożoności obliczeniowej Sławomir Lasota Uniwersytet Warszawski 20 maja 2015 Plan 1 Gramatyki 2 Języki

Bardziej szczegółowo

Maszyna Turinga. Algorytm. czy program???? Problem Hilberta: Przykłady algorytmów. Cechy algorytmu: Pojęcie algorytmu

Maszyna Turinga. Algorytm. czy program???? Problem Hilberta: Przykłady algorytmów. Cechy algorytmu: Pojęcie algorytmu Problem Hilberta: 9 Czy istnieje ogólna mechaniczna procedura, która w zasadzie pozwoliłaby nam po kolei rozwiązać wszystkie matematyczne problemy (należące do odpowiednio zdefiniowanej klasy)? 2 Przykłady

Bardziej szczegółowo

Wprowadzenie do programowania języki i gramatyki formalne. dr hab. inż. Mikołaj Morzy

Wprowadzenie do programowania języki i gramatyki formalne. dr hab. inż. Mikołaj Morzy Wprowadzenie do programowania języki i gramatyki formalne dr hab. inż. Mikołaj Morzy plan wykładu wprowadzenie gramatyki podstawowe definicje produkcje i drzewa wywodu niejednoznaczność gramatyk hierarchia

Bardziej szczegółowo

Lista 5 Gramatyki bezkontekstowe i automaty ze stosem

Lista 5 Gramatyki bezkontekstowe i automaty ze stosem Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Teoretyczne Podstawy Informatyki Lista 5 Gramatyki bezkontekstowe i automaty ze stosem 1 Wprowadzenie 1.1 Gramatyka bezkontekstowa

Bardziej szczegółowo

Teoretyczne podstawy informatyki. Wykład 12: Gramatyki. E. Richter-Was 1

Teoretyczne podstawy informatyki. Wykład 12: Gramatyki. E. Richter-Was 1 Teoretyczne podstawy informatyki Wykład 12: Gramatyki 1 18.12.2012 Gramatyki bezkontekstowe Opis wzorców polegający na wykorzystaniu modelu definicji rekurencyjnych, nazywamy gramatyką bezkontekstową (ang.

Bardziej szczegółowo

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie. Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy

Bardziej szczegółowo

Metody Kompilacji Wykład 3

Metody Kompilacji Wykład 3 Metody Kompilacji Wykład 3 odbywa się poprzez dołączenie zasad(reguł) lub fragmentów kodu do produkcji w gramatyce. Włodzimierz Bielecki WI ZUT 2 Na przykład, dla produkcji expr -> expr 1 + term możemy

Bardziej szczegółowo

Wprowadzenie do kompilatorów

Wprowadzenie do kompilatorów Wprowadzenie do kompilatorów Czy ja kiedykolwiek napisz jaki kompilator? Jakie zadania ma do wykonania kompilator? Czy jzyk formalny to rodzaj jzyka programowania? Co to jest UML?, Czy ja kiedykolwiek

Bardziej szczegółowo

Metody Kompilacji Wykład 13

Metody Kompilacji Wykład 13 Metody Kompilacji Wykład 13 Prosty Translator Translator dla prostych wyrażeń Schemat translacji sterowanej składnią często służy za specyfikację translatora. Schemat na następnym slajdzie zostanie użyty

Bardziej szczegółowo

Języki i gramatyki formalne

Języki i gramatyki formalne Języki i gramatyki formalne Języki naturalne i formalne Cechy języka naturalnego - duża swoboda konstruowania zdań (brak ścisłych reguł gramatycznych), duża ilość wyjątków. Języki formalne - ścisły i jednoznaczny

Bardziej szczegółowo

Generacja kodu docelowego

Generacja kodu docelowego Generacja kodu docelowego Zagadnienia związane z generacją kodu Język wejściowy i wynikowy Zarządzanie pamięcią (adresacja) Wybór rozkazów maszynowych (koszty rozkazów) Przydział i wyznaczanie rejestrów

Bardziej szczegółowo

Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne

Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na

Bardziej szczegółowo

Obiektowa implementacja parsera klasy LL(1)

Obiektowa implementacja parsera klasy LL(1) Obiektowa implementacja parsera klasy LL(1) Piotr Jeruszka 1 1 Wydział Inżynierii Mechanicznej i Informatyki Kierunek Informatyka, II stopień Specjalność: Aplikacje biznesowe i bazy danych, Rok II Streszczenie

Bardziej szczegółowo

Gramatyki wykorzystywane w analizie języka naturalnego

Gramatyki wykorzystywane w analizie języka naturalnego Gramatyki wykorzystywane w analizie języka naturalnego PCFG=Probabilistic Context-Free Grammars HLPCFG=Head-Lexicalised PCFG HG=Head Grammar HPSG=Head Grammar IG=Indexed Grammar LIG=Linear Indexed Grammar

Bardziej szczegółowo

Analiza leksykalna i generator LEX

Analiza leksykalna i generator LEX Analiza leksykalna i generator LEX Wojciech Complak Wojciech.Complak@cs.put.poznan.pl wprowadzenie generator LEX wyrażenia regularne i niejednoznaczności retrakcja definicje regularne atrybuty lewy kontekst

Bardziej szczegółowo

TRANSLACJA I TRANSLATORY

TRANSLACJA I TRANSLATORY TRANSLACJA I TRANSLATORY Języki programowania niskiego czy też wysokiego poziomu mają na zadanie przetworzyć ogół algorytmów w nich zapisanych na taką postać aby maszyna cyfrowa była w stanie je wykonać

Bardziej szczegółowo

Metodologie programowania

Metodologie programowania Co kształtuje języki programowania? Wykład2,str.1 Metodologie programowania Koszty obliczeń: 1980 1960:sprzętdrogi,a wysiłek programistów niewielki 1970: sprzęt coraz tańszy, a programowane problemy coraz

Bardziej szczegółowo

Analiza metodą zstępującą. Bartosz Bogacki.

Analiza metodą zstępującą. Bartosz Bogacki. Analiza metodą zstępującą Bartosz Bogacki Bartosz.Bogacki@cs.put.poznan.pl Witam Państwa. Wykład, który za chwilę Państwo wysłuchają dotyczy analizy metodą zstępującą. Zapraszam serdecznie do wysłuchania.

Bardziej szczegółowo

Podstawy generatora YACC. Bartosz Bogacki.

Podstawy generatora YACC. Bartosz Bogacki. Podstawy generatora YACC Bartosz Bogacki Bartosz.Bogacki@cs.put.poznan.pl Witam Państwa. Wykład, który za chwilę Państwo wysłuchają dotyczy generatora analizatorów składniowych YACC. Zapraszam serdecznie

Bardziej szczegółowo

Wprowadzenie do złożoności obliczeniowej

Wprowadzenie do złożoności obliczeniowej problemów Katedra Informatyki Politechniki Świętokrzyskiej Kielce, 16 stycznia 2007 problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów Plan wykładu 1 2 algorytmów 3 4 5 6 problemów problemów

Bardziej szczegółowo

Gramatyki regularne i automaty skoczone

Gramatyki regularne i automaty skoczone Gramatyki regularne i automaty skoczone Alfabet, jzyk, gramatyka - podstawowe pojcia Co to jest gramatyka regularna, co to jest automat skoczony? Gramatyka regularna Gramatyka bezkontekstowa Translacja

Bardziej szczegółowo

Analiza algorytmów zadania podstawowe

Analiza algorytmów zadania podstawowe Analiza algorytmów zadania podstawowe Zadanie 1 Zliczanie Zliczaj(n) 1 r 0 2 for i 1 to n 1 3 do for j i + 1 to n 4 do for k 1 to j 5 do r r + 1 6 return r 0 Jaka wartość zostanie zwrócona przez powyższą

Bardziej szczegółowo

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych

Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Algorytmy równoległe: ocena efektywności prostych algorytmów dla systemów wielokomputerowych Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2013/14 Znajdowanie maksimum w zbiorze

Bardziej szczegółowo

Generator YACC: gramatyki niejednoznaczne

Generator YACC: gramatyki niejednoznaczne Generator YACC: gramatyki niejednoznaczne Wojciech Complak Wojciech.Complak@cs.put.poznan.pl 1 Plan wykładu gramatyki jednoznaczne i niejednoznaczne zalety gramatyk niejednoznacznych opisywanie łączności

Bardziej szczegółowo

Kolejka priorytetowa. Często rozważa się kolejki priorytetowe, w których poszukuje się elementu minimalnego zamiast maksymalnego.

Kolejka priorytetowa. Często rozważa się kolejki priorytetowe, w których poszukuje się elementu minimalnego zamiast maksymalnego. Kolejki Kolejka priorytetowa Kolejka priorytetowa (ang. priority queue) to struktura danych pozwalająca efektywnie realizować następujące operacje na zbiorze dynamicznym, którego elementy pochodzą z określonego

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu

Bardziej szczegółowo

Gramatyki grafowe. Dla v V, ϕ(v) etykieta v. Klasa grafów nad Σ - G Σ.

Gramatyki grafowe. Dla v V, ϕ(v) etykieta v. Klasa grafów nad Σ - G Σ. Gramatyki grafowe Def. Nieskierowany NL-graf (etykietowane wierzchołki) jest czwórką g = (V, E, Σ, ϕ), gdzie: V niepusty zbiór wierzchołków, E V V zbiór krawędzi, Σ - skończony, niepusty alfabet etykiet

Bardziej szczegółowo

Sortowanie topologiczne skierowanych grafów acyklicznych

Sortowanie topologiczne skierowanych grafów acyklicznych Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)

Bardziej szczegółowo

Algorytmy i struktury danych. wykład 2

Algorytmy i struktury danych. wykład 2 Plan wykładu: Pojęcie algorytmu. Projektowanie wstępujące i zstępujące. Rekurencja. Pojęcie algorytmu Pojęcie algorytmu Algorytm skończony zbiór operacji, koniecznych do wykonania zadania z pewnej klasy

Bardziej szczegółowo

Generator LLgen. Wojciech Complak Generator LLgen - charakterystyka. Generator LLgen -składnia specyfikacji

Generator LLgen. Wojciech Complak Generator LLgen - charakterystyka. Generator LLgen -składnia specyfikacji Plan wykładu Wojciech Complak Wojciech.Complak@cs.put.poznan.pl charakterystyka generatora LLgen składnia specyfikacji analizatora składniowego dołączanie analizatora leksykalnego rozszerzenia składni

Bardziej szczegółowo

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może

Bardziej szczegółowo

Efektywny parsing języka naturalnego przy użyciu gramatyk probabilistycznych

Efektywny parsing języka naturalnego przy użyciu gramatyk probabilistycznych Uniwersytet im. Adama Mickiewicza Wydział Matematyki i Informatyki Paweł Skórzewski nr albumu: 301654 Efektywny parsing języka naturalnego przy użyciu gramatyk probabilistycznych Praca magisterska na kierunku:

Bardziej szczegółowo

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325 PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj

Bardziej szczegółowo

Strategia "dziel i zwyciężaj"

Strategia dziel i zwyciężaj Strategia "dziel i zwyciężaj" W tej metodzie problem dzielony jest na kilka mniejszych podproblemów podobnych do początkowego problemu. Problemy te rozwiązywane są rekurencyjnie, a następnie rozwiązania

Bardziej szczegółowo

Podstawy Informatyki Gramatyki formalne

Podstawy Informatyki Gramatyki formalne Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Języki i gramatyki Analiza syntaktyczna Semantyka 2 Podstawowe pojęcia Gramatyki wg Chomsky ego Notacja Backusa-Naura

Bardziej szczegółowo

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują

Bardziej szczegółowo

Data Mining Wykład 3. Algorytmy odkrywania binarnych reguł asocjacyjnych. Plan wykładu

Data Mining Wykład 3. Algorytmy odkrywania binarnych reguł asocjacyjnych. Plan wykładu Data Mining Wykład 3 Algorytmy odkrywania binarnych reguł asocjacyjnych Plan wykładu Algorytm Apriori Funkcja apriori_gen(ck) Generacja zbiorów kandydujących Generacja reguł Efektywności działania Własności

Bardziej szczegółowo

Złożoność obliczeniowa zadania, zestaw 2

Złożoność obliczeniowa zadania, zestaw 2 Złożoność obliczeniowa zadania, zestaw 2 Określanie złożoności obliczeniowej algorytmów, obliczanie pesymistycznej i oczekiwanej złożoności obliczeniowej 1. Dana jest tablica jednowymiarowa A o rozmiarze

Bardziej szczegółowo

Programowanie w Logice Gramatyki metamorficzne. Przemysław Kobylański na podstawie [CM2003] i [SS1994]

Programowanie w Logice Gramatyki metamorficzne. Przemysław Kobylański na podstawie [CM2003] i [SS1994] Programowanie w Logice Gramatyki metamorficzne Przemysław Kobylański na podstawie [CM2003] i [SS1994] Gramatyki bezkontekstowe Gramatyką bezkontekstową jest uporządkowana czwórka G = Σ, N, S, P, gdzie

Bardziej szczegółowo

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa.

Metoda tabel semantycznych. Dedukcja drogi Watsonie, dedukcja... Definicja logicznej konsekwencji. Logika obliczeniowa. Plan Procedura decyzyjna Reguły α i β - algorytm Plan Procedura decyzyjna Reguły α i β - algorytm Logika obliczeniowa Instytut Informatyki 1 Procedura decyzyjna Logiczna konsekwencja Teoria aksjomatyzowalna

Bardziej szczegółowo

Gramatyki (1-2) Definiowanie języków programowania. Piotr Chrząstowski-Wachjtel

Gramatyki (1-2) Definiowanie języków programowania. Piotr Chrząstowski-Wachjtel Gramatyki (1-2) Definiowanie języków programowania Piotr Chrząstowski-Wachjtel Zagadnienia Jak zdefiniować język programowania? Gramatyki formalne Definiowanie składni Definiowanie semantyki l 2 Pożądane

Bardziej szczegółowo

Teoretyczne Podstawy Informatyki

Teoretyczne Podstawy Informatyki Instytut Informatyki Stosowanej Teoretyczne Podstawy Informatyki Wykªad 2. J zyki i gramatyki formalne Zdzisªaw Spªawski Zdzisªaw Spªawski: Teoretyczne Podstawy Informatyki, Wykªad 2. J zyki i gramatyki

Bardziej szczegółowo

Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott

Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott Struktury danych i złozoność obliczeniowa Prof. dr hab. inż. Jan Magott Formy zajęć: Wykład 1 godz., Ćwiczenia 1 godz., Projekt 2 godz.. Adres strony z materiałami do wykładu: http://www.zio.iiar.pwr.wroc.pl/sdizo.html

Bardziej szczegółowo

1 Automaty niedeterministyczne

1 Automaty niedeterministyczne Szymon Toruńczyk 1 Automaty niedeterministyczne Automat niedeterministyczny A jest wyznaczony przez następujące składniki: Alfabet skończony A Zbiór stanów Q Zbiór stanów początkowych Q I Zbiór stanów

Bardziej szczegółowo

Wykład 6. Wyszukiwanie wzorca w tekście

Wykład 6. Wyszukiwanie wzorca w tekście Wykład 6 Wyszukiwanie wzorca w tekście 1 Wyszukiwanie wzorca (przegląd) Porównywanie łańcuchów Algorytm podstawowy siłowy (naive algorithm) Jak go zrealizować? Algorytm Rabina-Karpa Inteligentne wykorzystanie

Bardziej szczegółowo

Translacja sterowana składnią w metodzie zstępującej

Translacja sterowana składnią w metodzie zstępującej Translacja sterowana składnią w metodzie zstępującej Wojciech Complak Wojciech.Complak@cs.put.poznan.pl 1 Plan wykładu translacja sterowana składnią definicje sterowane składnią i schematy translacji atrybuty

Bardziej szczegółowo

Definiowanie języka przez wyrażenie regularne(wr)

Definiowanie języka przez wyrażenie regularne(wr) Wykład3,str1 Definiowanie języka przez wyrażenie regularne(wr) DEFINICJA: (wyrażenia regularne) M(specjalneznakinienależącedoalfabetu:{,},, ) literyalfabetusąwr złożeniawrsąwr: jeśliw 1 iw 2 sąwr,to{w

Bardziej szczegółowo

Sortowanie. Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania:

Sortowanie. Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania: Sortowanie Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania: podać strukturę danych dla elementów dynamicznego skończonego multi-zbioru S, względem którego są wykonywane następujące

Bardziej szczegółowo