Politechnika Gdańska

Wielkość: px
Rozpocząć pokaz od strony:

Download "Politechnika Gdańska"

Transkrypt

1 Politechnika Gdańska Wymiana ciepła Temat: Wrzenie wewnątrz rur i jego opis matematyczny. wykonali : Kamil Kaszyński wydział : Mechaniczny data:

2 Wstęp Wrzenie w przepływie jest szczególnym przypadkiem konwekcyjnej wyniany ciepła. W trakcie trwania tego procesu mamy do czynienia z więcej niŝ jedna fazą tego samego czynnika. Doprowadzenie ciepła powoduje przejście jednej fazy w drugą bez zmiany temperatury na granicy rozdziału faz. Procesy wrzenia, podobnie jak procesy konwekcji w jednej fazie dziela się ogólnie na procesy, w których kształt rozpatrywanej przestrzeni nie wpływa istotnie na proces wymiany ciepła, oraz na zagadnienia, w których geometria przestrzeni ma zasadniczy wpływ na wymianę ciepła. Wrzenie w warunkach, w których geometria przestrzeni nie wpływa na proces wymiany ciepła nazywa się wrzeniem w objętości, zaś proces wrzenia, dla którego istotny jest kształt przestrzeni nazywa się wrzeniem w przepływie. W pierwszym przypadku, hydrodynamika przepływu obu faz nie wpływa istotnie na proces wymiany ciepła, natomiast w drugim przypadku wpływ hydrodynamiki przepływu nie moŝe być pominięty. Rozpatrując ogólnie proces wrzenia zachodzący w przepływie w rurach pionowych i poziomych, w zaleŝności od temperatury cieczy, w duŝej odległości od ścianki, moŝemy wyróŝnić wrzenie przechłodzone i wrzenie nasycone. Wrzenie przechłodzone ma miejsce wtedy, gdy temperatura cieczy z dala od ścianki jest niŝsza od temperatury nasycenia, natomiast wrzenie nasycone występuje wówczas, gdy temperatura cieczy w całej rozpatrywanej objętości jest przynajmniej równa temperaturze nasycenia. W praktyce dostarczanie ciepła podczas wrzenia najczęściej odbywa się przy stałej gęstości strumienia cieplnego. Nieznaczne przekroczenie wartości maksymalnej tego strumienia powoduje powstanie wrzenia błonowego, połączone z tak znacznym wzrostem temperatury powierzchni wymieniającej ciepło, ze na przykład podczas wrzenia wody moŝe nastąpić natychmiastowe zniszczenie ścianki. Jest to tzw. I kryzys wrzenia. Podobnie przy zmniejszaniu wartości strumienia cieplnego poniŝej wartości minimalnej nastąpi zmiana wrzenia błonowego w pęcherzykowe. Jest to tzw. II kryzys wrzenia. Wartość strumienia cieplnego oraz róŝnica temperatur w stanie I i II kryzysu wrzenia noszą nazwy wartości krytycznych- odpowiednio krytyczny strumień cieplny q kr, oraz krytyczna róŝnica temperatury T kr. Na tej podstawie moŝna równieŝ określić krytyczny współczynnik przejmowania ciepła α kr jako iloraz: Szczególnie niebezpieczny dla wrzenia wody jest I kryzys wrzenia.

3 Opis fizyki procesu wrzenia w przepływie Mechanizm wrzenia w przepływie jest bardziej złoŝony od mechanizmu wrzenia w objętości. Wywiera nań zdecydowany wpływ hydrodynamika przepływu dwufazowego, tworzącego się w ograniczonej przestrzeni na skutek ciągłego generowania się fazy parowej z fazy ciekłej. Odpowiednio do wzajemnego stosunku ilości jednej fazy do drugiej w zaleŝności od prędkości przepływu oraz orientacji osi kanału w stosunku do kierunku pola cięŝkości, tworzą się róŝne struktury przepływu dwufazowego. Przepływ dwufazowy z wymianą ciepła róŝni się od przepływu dwufazowego adiabatycznego- bez doprowadzania ciepła. Podczas przepływu z wymianą ciepła, masowa zawartość fazy parowej, a stąd i stopnia zapełnienia kanału fazą parową, zmienia wzdłuŝ długości kanału swoją strukturę w czasie wrzenia. Przepływ jest przyspieszany wskutek zmiany prędkości faz. Typowe zmiany struktury podczas wrzenia w przepływie ilustruje rys.1 W najogólniejszym przypadku, ciecz wpływa do kanałujako przechłodzona. Następnie wskutek ogrzewania przy ściance kanału przegrzewa się, dzięki czemu powstają pierwsze pęcherzyki parowe. Pęcherzyki te rosną i odrywają się od ścianki. JeŜeli rdzeń przepływu jest jeszcze niedogrzany do temperatury nasycenia, to pęcherzyki ulegają kondensacji. Ten zakres wrzenia nazywa się wrzeniem przechłodzonym. Dalszy m etapem wrzenia jest wrzenie w warunkach, gdy cała ciecz osiągnie w przekroju kanału temperaturę nasycenia. Wrzenie takie nazywa się wrzeniem nasyconym. W pierwszej fazie w kanale pionowym wrzenie ma charakter wrzenia pęcherzykowego, które następnie wskutek łączenia się pęcherzy pary przechodzi we wrzenie o strukturze duŝych pęcherzy, w tzw. strukturę korkową, a następnie w strukturę pierścieniową z rozproszoną fazą ciekłą w rdzeniu parowym i cieczą pokrywającą filmem ściankę kanału. Dalsze ogrzewanie prowadzi do struktury mgłowej, w której ciecz znika ze ścianki kanału i występuje tylko w formie kropel w rdzeniu przepływu. Struktura przepływu z wymianą ciepła w kanale poziomym jest bardziej zróŝnicowana niŝ w kanale pionowym, rys. 2. Jedną z głównych róŝnic pomiędzy przepływami w kanałach pionowych i poziomych jest tendencja przepływu poziomego do stratyfikacji (rozwarstwienia). Bez względu na warunki przepływu, para unosi się do części górnej kanału, podczas gdy ciecz wypełnia jego dolną część. Jest to wynik działania siły grawitacji. Podczas wrzenia w kanale poziomym przy małej zawartości pary w przepływie (małych stopniach suchości) przepływ nazywany jest pęcherzykowym. Pęcherzyki gromadzą się w górnej części kanału na skutek działania sił wyporu. Ze wzrostem ilości pary następuje koalescencja pęcherzyków. Pęcherze tworzą korki o róŝnych rozmiarach, gromadzące się z natury rzeczy w górnej części kanału. Ten rodzaj przepływu nazywamy przepływem korkowym. Przy małych natęŝeniach przepływu i wyŝszych stopniach suchości następuje całkowite rozwarstwienie obu faz przy zachowaniu gładkich powierzchni rozdziału. Prędkości obu faz są róŝne. Jest to przepływ rozwarstwiony.

4 Zwiększenie natęŝenia przepływu lub stopnia suchości powoduje, Ŝe powierzchnia rozdziału faz zacznie w końcu falować. Mamy wtedy do czynienia z przepływem falowym. Silne oddziaływania napręŝeń wywołanych obecnością pary oraz formowanie i rozpadanie się fal prowadzi do silnego porywania kropel cieczy w rdzeniu parowym przepływu. Przy duŝych natęŝeniach przepływu cieczy, amplituda fal rośnie tak bardzo, ze moŝe dojść do całkowitego wypełnienia przekroju kanału przez ciecz z utworzeniem jednocześnie duŝej ilości pęcherzy parowych. Na skutek siły wyporu pęcherze przemieszczają się w kierunku górnej części kanału. Przepływ ma wówczas charakter pulsacyjny lub inaczej mówiąc intermitentny. Przy duŝych natęŝeniach przepływu gazu i małych natęŝeniach przepływu cieczy formuje się struktura pierścieniowa. W tych warunkach, grubość cienkiego filmu cieczowego jest z reguły węŝsza u góry niŝ na dole wskutek działania siły wyporu. MoŜliwe jest jednak wyrównanie grubości filmu przez szybko płynącą parę na skutek występowania obwodowych sił i napręŝeń. MoŜliwe jest takŝe, Ŝe przepływająca para zacznie porywać kropelki cieczy. W tych przypadkach siły grawitacji są raczej małe w porównaniu z siłami bezwładności i transportu turbulentnego, a wynikowy przepływ pierścieniowy w tych warunkach jest nieco inny niŝ ten w kanałach pionowych. Do najistotniejszych parametrów opisujących proces wrzenia w przepływie naleŝą: -temperatura płynu - średnia dla danego przekroju rury: t f -temperatura nasycenia, odpowiadająca ciśnieniu płynu: t s -temperatura ścianki kanału: t w -gęstość strumienia ciepła: gdzie: A - powierzchnia przekazywania ciepła -stopień zapełnienia (udział objętościowy fazy parowej): -stopień suchości, czyli udział masowy fazy parowej: -równowagowy stopień suchości, określany z bilansu energii:

5 -dynamiczny stopień suchości -gęstość strumienia masy: gdzie: Ao - pole przekroju przepływu; -współczynnik przejmowania ciepła: Metody obliczania współczynnika przejmowania ciepła podczas wrzenia w przepływie Zarówno dla poznania procesów zachodzących podczas wrzenia w przepływie, jak i dla celów projektowania wymienników ciepła, jakimi są parowniki urządzeń chłodniczych, kluczowe znaczenie ma znajomość współczynnika przejmowania ciepła α od ścianki kanału do wrzącego płynu oraz spadek ciśnienia p w przepływającym czynniku. Największy wpływ na wartość współczynnika przejmowania ciepła ma opór cieplny warstwy przyściennej i procesy w niej zachodzące, takie jak rozrywanie warstwy przyściennej przez pęcherzyki, wysychanie powierzchni ścianki, czy zaleganie oleju. Natomiast spadek ciśnienia podczas przepływu dwufazowego w gładkiej rurze jest zdeterminowany przez oddziaływanie faz na granicy cieczy i pary, przy czym oddziaływanie to jest róŝne dla róŝnych struktur przepływu, a więc i dla róŝnych stopni zapełnienia. Hydrodynamika przepływu dwufazowego decyduje, zatem o mechanizmie przekazywania ciepła - bardziej złoŝonym niŝ w przypadku wrzenia w objętości. Z kolei struktura przepływu i konfiguracja powierzchni międzyfazowej są uzaleŝnione od stosunku ilości obu faz, prędkości przepływu oraz orientacji osi kanału względem kierunku działania sił masowych. ZłoŜoność mechanizmów przenoszenia ciepła, jak i zróŝnicowanie struktur przepływu podczas wrzenia w przepływie uniemoŝliwia opracowanie modelu obliczeniowego opisującego ten proces wystarczająco dokładnie, z uwzględnieniem wszystkich jego etapów i warunków, w jakich moŝe zachodzić. W wyniku tego w literaturze opublikowano wiele korelacji ujmujących współczynnik przejmowania ciepła i spadki ciśnienia dla konkretnych płynów, wrzących w ściśle określonych przedziałach warunków eksperymentalnych, przy danej strukturze przepływu. ZaleŜności na współczynnik przejmowania ciepła najczęściej wynikaj ą z uproszczonego, przybliŝonego i zweryfikowanego doświadczalnie opisu fizycznych modeli wrzenia w przepływie, uwzględniających takie mechanizmy transportu energii, jak; jednofazowa konwekcja swobodna, niestacjonarne przewodzenie ciepła, parowanie cienkowarstwowe i makrowarstwowe, wzmoŝona konwekcja, konwekcja termokapilarna, czy transport energii przez transport masy. Większość korelacji eksperymentalnych opiera się ta załoŝeniu, Ŝe o intensywności przejmowania ciepła podczas wrzenia w przepływie decyduje mechanizm konwekcji w cieczy lub parze stykającej się ze ścianką kanału oraz mechanizm tworzenia się fazy parowej na ściance, podobny jak przy wrzeniu w objętości. Stąd częstym zaleceniem jest propozycja dwukrotnego obliczania współczynnika przejmowania ciepła - jak dla konwekcyjnego przejmowania ciepła i jak dla wrzenia w objętości- a następnie wyboru większej z uzyskanych wartości. W zakresie małych stopni zapełnienia, przy niewielkim przegrzaniu ścianki decydujące znaczenie przypisuje się konwekcji jednofazowej, a korelacje na współczynnik przejmowania ciepła tworzy się w oparciu o analogię pomiędzy

6 przenoszeniem ciepła i pędu. Stosunek współczynnika przejmowania ciepła w przepływie dwufazowym do współczynnika dla przypadku gdyby ciecz w ilości występującej w przepływie dwufazowym płynęła samodzielnie w kanale ujmuje się jako funkcję parametru Martinellego X tt,. Tego typu korelacje podali Dengler i Addoms oraz Bennet i Chen. Przy większym przegrzaniu ścianki uwzględnienia wymaga takŝe mechanizm nukleacji. Korelację dla takich warunków zaproponował Kutateładze. Z kolei w przypadku duŝej zawartości fazy parowej i duŝych strumieni ciepła moŝna stosować korelacje o postaci przytoczonej przez Colliera i Pullinga bądź Schrocka i Grossmana. Dla wrzenia amoniaku i,,freonów'' własną korelację zaproponował Troniewski Natomiast w przypadku niewielkiej zawartości fazy parowej zastosowanie znajduje korelacja Łabuncowa. W obszarze wrzenia pęcherzykowego, kiedy o intensywności przejmowania ciepła decyduje mechanizm tworzenia się pęcherzyków parowych, wykorzystuje się koreacje bazujące na współczynniku przejmowania ciepła podczas wrzenia w objętości, zawierające wyraŝenia ujmujące wpływ ruchu cieczy. Przykładem takiej zaleŝności jest korelacja Chawli. Na podstawie danych eksperymentalnych dla wody, cykloheksanu i czynników R 11, R 12, R 22 i R 113, Shah opracował graficzną metodę wyznaczania stosunku współczynnika przejmowania ciepła w przepływie dwufazowym do współczynnika dla przypadku, gdyby ciecz w ilości występującej w przepływie dwufazowym płynęła samodzielnie w kanale dla rur poziomych i pionowych, w zaleŝności od liczb kryterialnych (Co, Bo, Fr). Po ich wyznaczeniu naleŝy odczytać wartość współczynnika przejmowania ciepła z wykresu, bądź obliczyć go według równowaŝnej procedury. Mechanizmy wrzenia w objętości konwekcji, jako elementy składowe wrzenia w przepływie są uwzględnione w modelach addytywnych. Przykładem jest tu stosowana dla czynników jednoskładnikowych korelacja Chena, korelacja Junga i Radermachera oraz korelacja Gungora i Wintertona. Ich zapis ogólny stanowi superpozycję współczynników przejmowania ciepła odnoszących się do obu mechanizmów, wraz ze współczynnikami intensyfikacji. Występują one takŝe w asymptotycznym modelu Liu i Wintertona oraz w korelacji Steinera, która równieŝ wywodzi się z modelu asymptotycznego. W wyniku badań wrzenia czynników R 12,R 22 i R 502 w rurze poziomej, Pierze zaproponował korelację pozwalającą wyznaczyć średni współczynnik przejmowania ciepła dla zakresu stopnia suchości od 0 do 1. Bogdanow, obok metody graficznej, podał zaleŝność do obliczenia współczynnika przejmowania ciepła podczas wrzenia freonów'' w rurach poziomych. Szczególne znaczenie posiadają modele półempiryczne, oparte na teoretycznym uzasadnieniu mechanizmów przenoszenia ciepła, uzupełnione pewnymi danymi pochodzącymi z eksperymentu. Do grupy tej naleŝy metoda J. Mikielewicza wraz z jej późniejszymi modyfikacjami, wykorzystująca znajomość współczynników przejmowania ciepła dla przypadków wrzenia w objętości i dla konwekcyjnego przenoszenia ciepła oraz współczynników oporów hydrodynamicznych w adiabatycznym przepływie dwufazowym. Metoda ta pozwala na wyznaczenie współczynnika przejmowania ciepła podczas wrzenia w przepływie zarówno dla małych, jak i duŝych zawartości fazy parowej. ZaleŜność Mikielewicza w zakresie wrzenia z generacją pęcherzyków parowych w przepływie zmodyfikował Blicki, oddając takŝe własny model lokalnego przepływu ciepła dla tego przypadku, pozwalający na wyjaśnienie zjawiska zerowego kryzysu wrzenia oraz oszacowanie intensywności przejmowania ciepła. Korelacja Bilickiego, ujmuje dodatkowo wpływ gęstości strumienia ciepła, grubości warstwy przyściennej i generacji pęcherzyków. Innymi korelacjami o charakterze ogólnym są korelacja Kandlikara i korelacja Witczaka. W obu metodach przyjmuje się większą z wartości współczynnika przejmowania ciepła wyznaczoną odpowiednio dla wrzenia konwekcyjnego i wrzenia pęcherzykowego.

7 Przytoczenie korelacje nie uwzględniają wpływu chropowatości ścianki kanału na współczynnik przejmowania ciepła w procesie wrzenia, podczas gdy taki wpływ istnieje, co wykazali Yu i In.. W swojej korelacji dla przepływu pierścieniowego, efekt chropowatości powierzchni ujęli oni w składniku dotyczącym wrzenia pęcherzykowego i powiązali go z rozmiarem zarodków wrzenia. Nowe moŝliwości w zakresie modelowania struktur przepływu i przenoszenia ciepła przyniósł rozwój metod symulacji komputerowej. Dobre przewidywania dla róŝnorodnych dwufazowych przepływów diabatycznych i adiabatycznych uzyskuje się z wykorzystaniem wielowymiarowego modelu dwupłynowego czteropolowego. Numeryczne rozwiązanie układu równań pozwala na wyznaczenie rozkładu faz w poszczególnych strukturach przepływu oraz innych wielkości charakteryzujących przepływ. Podsumowanie Uniwersalny model wrzenia w przepływie powinien uwzględniać wszystkie struktury występujące w przepływie, a takie zmieniający się wzdłuŝ drogi przepływu stopień zapełnienia (stopień suchości). NaleŜy zwrócić uwagę, Ŝe tego rodzaju model byłby trudny do zastosowania w praktyce, gdyŝ z góry zakładałby znajomość rodzaju przepływu. Dostępne w literaturze korelacje empiryczne i półempiryczne waŝne są jedynie w konkretnych zakresach warunków eksperymentalnych. Ponadto, nie biorą pod uwagę zjawisk falowych i niestabilności towary ssących procesowi wrzenia w przepływie. Niezbędne są zatem dalsze jego badania. Bibliografia: Technika chłodnicza i klimatyzacyjna.

WYMIANA CIEPŁA A PRZY ZMIANACH STANU SKUPIENIA

WYMIANA CIEPŁA A PRZY ZMIANACH STANU SKUPIENIA WYMIANA CIEPŁA A PRZY ZMIANACH STANU SKUPIENIA WYKŁAD 8 Dariusz Mikielewicz Politechnika Gdańska Wydział Mechaniczny Katedra Techniki Cieplnej Wymiana ciepła podczas wrzenia Przejście fazy ciekłej w parową

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA

POLITECHNIKA GDAŃSKA POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Temat: Proces wrzenia czynników chłodniczych w rurach o rozwiniętej powierzchni Wykonał Korpalski Radosław Koniszewski Adam Sem. 8 SiUChKl 1 Gdańsk 2008 Spis treści

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA

POLITECHNIKA GDAŃSKA POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Katedra Techniki Cieplnej Wybrane zagadnienia wymiany ciepła i masy Przejmowanie ciepła podczas skraplania czynników niskowrzących w skraplaczach chłodzonych powietrzem

Bardziej szczegółowo

wrzenie - np.: kotły parowe, wytwornice pary, chłodziarki parowe, chłodzenie (np. reaktory jądrowe, silniki rakietowe, magnesy nadprzewodzące)

wrzenie - np.: kotły parowe, wytwornice pary, chłodziarki parowe, chłodzenie (np. reaktory jądrowe, silniki rakietowe, magnesy nadprzewodzące) Wymiana ciepła podczas wrzenia 1. Wstęp wrzenie - np.: kotły parowe, wytwornice pary, chłodziarki parowe, chłodzenie (np. reaktory jądrowe, silniki rakietowe, magnesy nadprzewodzące) współczynnik wnikania

Bardziej szczegółowo

WYMIANA CIEPŁA i WYMIENNIKI CIEPŁA

WYMIANA CIEPŁA i WYMIENNIKI CIEPŁA WYMIANA CIEPŁA i WYMIENNIKI CIEPŁA Prof. M. Kamiński Gdańsk 2015 PLAN Znaczenie procesowe wymiany ciepła i zasady ogólne Pojęcia i definicje podstawowe Ruch ciepła na drodze przewodzenia Ruch ciepła na

Bardziej szczegółowo

Politechnika Gdańska

Politechnika Gdańska Politechnika Gdańska Wybrane zagadnienia wymiany ciepła i masy Temat: Wyznaczanie współczynnika przejmowania ciepła dla rekuperatorów metodą WILSONA wykonał : Kamil Kłek wydział : Mechaniczny Spis treści.wiadomości

Bardziej szczegółowo

Wnikanie ciepła przy konwekcji swobodnej. 1. Wstęp

Wnikanie ciepła przy konwekcji swobodnej. 1. Wstęp Wnikanie ciepła przy konwekcji swobodnej 1. Wstęp Współczynnik wnikania ciepła podczas konwekcji silnie zależy od prędkości czynnika. Im prędkość czynnika jest większa, tym współczynnik wnikania ciepła

Bardziej szczegółowo

Miniskrypt do ćw. nr 4

Miniskrypt do ćw. nr 4 granicach ekonomicznych) a punktami P - I (obszar inwersji) występuje przyspieszenie wzrostu spadku ciśnienia na wypełnieniu. Faza gazowa wnika w fazę ciekłą, jej spływ jest przyhamowany. Między punktami

Bardziej szczegółowo

Skraplanie czynnika chłodniczego R404A w obecności gazu inertnego. Autor: Tadeusz BOHDAL, Henryk CHARUN, Robert MATYSKO Środa, 06 Czerwiec :42

Skraplanie czynnika chłodniczego R404A w obecności gazu inertnego. Autor: Tadeusz BOHDAL, Henryk CHARUN, Robert MATYSKO Środa, 06 Czerwiec :42 Przeprowadzono badania eksperymentalne procesu skraplania czynnika chłodniczego R404A w kanale rurowym w obecności gazu inertnego powietrza. Wykazano negatywny wpływ zawartości powietrza w skraplaczu na

Bardziej szczegółowo

Występują dwa zasadnicze rodzaje skraplania: skraplanie kroplowe oraz skraplanie błonkowe.

Występują dwa zasadnicze rodzaje skraplania: skraplanie kroplowe oraz skraplanie błonkowe. Wymiana ciepła podczas skraplania (kondensacji) 1. Wstęp Do skraplania dochodzi wtedy, gdy para zostaje ochłodzona do temperatury niższej od temperatury nasycenia (skraplania, wrzenia). Ma to najczęściej

Bardziej szczegółowo

Laboratorium. Hydrostatyczne Układy Napędowe

Laboratorium. Hydrostatyczne Układy Napędowe Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracowanie: Z.Kudżma, P. Osiński J. Rutański,

Bardziej szczegółowo

Warunki izochoryczno-izotermiczne

Warunki izochoryczno-izotermiczne WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne

Bardziej szczegółowo

WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ

WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ INSYU INFORMAYKI SOSOWANEJ POLIECHNIKI ŁÓDZKIEJ Ćwiczenie Nr2 WSPÓŁCZYNNIK PRZEJMOWANIA CIEPŁA PRZEZ KONWEKCJĘ 1.WPROWADZENIE. Wymiana ciepła pomiędzy układami termodynamicznymi może być realizowana na

Bardziej szczegółowo

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI ABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR DOŚWIADCZENIE REYNODSA: WYZNACZANIE KRYTYCZNEJ ICZBY REYNODSA opracował: Piotr Strzelczyk Rzeszów 997 . Cel ćwiczenia Celem

Bardziej szczegółowo

WNIKANIE CIEPŁA PRZY WRZENIU CIECZY

WNIKANIE CIEPŁA PRZY WRZENIU CIECZY WNIKANIE CIEPŁA PRZY WRZENIU CIECZY 1. Wprowadzenie Z wrzeniem cieczy jednoskładnikowej A mamy do czynienia wówczas, gdy proces przechodzenia cząstek cieczy w parę zachodzi w takiej temperaturze, w której

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała

Bardziej szczegółowo

Przedmowa Przewodność cieplna Pole temperaturowe Gradient temperatury Prawo Fourier a...15

Przedmowa Przewodność cieplna Pole temperaturowe Gradient temperatury Prawo Fourier a...15 Spis treści 3 Przedmowa. 9 1. Przewodność cieplna 13 1.1. Pole temperaturowe.... 13 1.2. Gradient temperatury..14 1.3. Prawo Fourier a...15 1.4. Ustalone przewodzenie ciepła przez jednowarstwową ścianę

Bardziej szczegółowo

K raków 26 ma rca 2011 r.

K raków 26 ma rca 2011 r. K raków 26 ma rca 2011 r. Zadania do ćwiczeń z Podstaw Fizyki na dzień 1 kwietnia 2011 r. r. dla Grupy II Zadanie 1. 1 kg/s pary wo dne j o ciśnieniu 150 atm i temperaturze 342 0 C wpada do t urbiny z

Bardziej szczegółowo

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ

PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 7 PROFIL PRĘDKOŚCI W RURZE PROSTOLINIOWEJ . Cel ćwiczenia Doświadczalne i teoretyczne wyznaczenie profilu prędkości w rurze prostoosiowej 2. Podstawy teoretyczne:

Bardziej szczegółowo

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia.

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. PARA WODNA 1. PRZEMIANY FAZOWE SUBSTANCJI JEDNORODNYCH Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. Przy niezmiennym ciśnieniu zmiana wody o stanie początkowym odpowiadającym

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY

POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY AUTOMATYKA CHŁODNICZA TEMAT: Racje techniczne wykorzystania rurki kapilarnej lub dyszy w małych urządzeniach chłodniczych i sprężarkowych pompach ciepła Mateusz

Bardziej szczegółowo

OKREŚLANIE STRUKTUR PRZEPŁYWU UKŁADU DWUFAZOWEGO GAZ-CIECZ

OKREŚLANIE STRUKTUR PRZEPŁYWU UKŁADU DWUFAZOWEGO GAZ-CIECZ Ćwiczenie 6: OKREŚLANIE STRUKTUR PRZEPŁYWU UKŁADU DWUFAZOWEGO GAZ-CIECZ 1. CEL ĆWICZENIA Celem ćwiczenia jest identyfikacja struktur przepływu układu dwufazowego woda-powietrze w rurach pionowych i poziomych

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA

POLITECHNIKA GDAŃSKA POLITECHNIKA GDAŃSKA SEMINARIUM Z WYBRANYCH ZAGADNIEŃ Z WYMIANY CIEPŁA I MASY. Temat 4: Elektrohydrodynamiczna intensyfikacja wymiany ciepła Opracował: Daniel Piotrowski sem. VIII SUCHiKL rok ak. 2007/08

Bardziej szczegółowo

Modelowanie zjawisk przepływowocieplnych. i wewnętrznie ożebrowanych. Karol Majewski Sławomir Grądziel

Modelowanie zjawisk przepływowocieplnych. i wewnętrznie ożebrowanych. Karol Majewski Sławomir Grądziel Modelowanie zjawisk przepływowocieplnych w rurach gładkich i wewnętrznie ożebrowanych Karol Majewski Sławomir Grądziel Plan prezentacji Wprowadzenie Wstęp do obliczeń Obliczenia numeryczne Modelowanie

Bardziej szczegółowo

BADANIE WYMIENNIKA CIEPŁA TYPU RURA W RURZE

BADANIE WYMIENNIKA CIEPŁA TYPU RURA W RURZE BDNIE WYMIENNIK CIEPŁ TYPU RUR W RURZE. Cel ćwiczenia Celem ćwiczenia jest zapoznanie z konstrukcją, metodyką obliczeń cieplnych oraz poznanie procesu przenikania ciepła w rurowych wymiennikach ciepła..

Bardziej szczegółowo

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ.

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Jolanta Zimmerman 1. Wprowadzenie do metody elementów skończonych Działanie rzeczywistych

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

W8 40. Para. Równanie Van der Waalsa Temperatura krytyczna ci Przemiany pary. Termodynamika techniczna

W8 40. Para. Równanie Van der Waalsa Temperatura krytyczna ci Przemiany pary. Termodynamika techniczna W8 40 Równanie Van der Waalsa Temperatura krytyczna Stopień suchości ci Przemiany pary 1 p T 1 =const T 2 =const 2 Oddziaływanie międzycz dzycząsteczkowe jest odwrotnie proporcjonalne do odległości (liczonej

Bardziej szczegółowo

mgr inż. Michał Klugmann Praca doktorska

mgr inż. Michał Klugmann Praca doktorska POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY mgr inż. Michał Klugmann Intensyfikacja wymiany ciepła podczas wrzenia w przepływie w kanałach o małej średnicy Praca doktorska Promotor dr hab. inż. Dariusz Mikielewicz,

Bardziej szczegółowo

BADANIE WYMIENNIKÓW CIEPŁA

BADANIE WYMIENNIKÓW CIEPŁA 1.Wprowadzenie DNIE WYMIENNIKÓW CIEPŁ a) PŁSZCZOWO-RUROWEGO b) WĘŻOWNICOWEGO adanie wymiennika ciepła sprowadza się do pomiaru współczynników przenikania ciepła k w szerokim zakresie zmian parametrów ruchowych,

Bardziej szczegółowo

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej w Systemach Technicznych Symulacja prosta dyszy pomiarowej Bendemanna Opracował: dr inż. Andrzej J. Zmysłowski

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIEII ŚODOWISKA I ENEGETYKI POLITECHNIKI ŚLĄSKIEJ INSTUKCJA LABOATOYJNA Temat ćwiczenia: WYZNACZANIE WSPÓŁCZYNNIKA WNIKANIA CIEPŁA PZY KONWEKCJI SWOBODNEJ W WODZIE

Bardziej szczegółowo

Instrukcja stanowiskowa

Instrukcja stanowiskowa POLITECHNIKA WARSZAWSKA Wydział Budownictwa, Mechaniki i Petrochemii Instytut Inżynierii Mechanicznej w Płocku Zakład Aparatury Przemysłowej LABORATORIUM WYMIANY CIEPŁA I MASY Instrukcja stanowiskowa Temat:

Bardziej szczegółowo

SEMINARIUM Z CHŁODNICTWA

SEMINARIUM Z CHŁODNICTWA POLITECHNIKA GDAŃSKA Katedra Techniki Cieplnej SEMINARIUM Z CHŁODNICTWA Ocena wpływu poślizgu temperaturowego mieszanin zeotropowych na warunki pracy wentylatorowej chłodnicy powietrza. Michał Szajner

Bardziej szczegółowo

Spis treści. PRZEDMOWA.. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ.. 13

Spis treści. PRZEDMOWA.. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ.. 13 Spis treści PRZEDMOWA.. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ.. 13 Wykład 16: TERMODYNAMIKA POWIETRZA WILGOTNEGO ciąg dalszy 21 16.1. Izobaryczne chłodzenie i ogrzewanie powietrza wilgotnego.. 22 16.2. Izobaryczne

Bardziej szczegółowo

Ćwiczenie N 13 ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO

Ćwiczenie N 13 ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO . Cel ćwiczenia Doświadczalne wyznaczenie rozkładu ciśnienia piezometrycznego w zwęŝce Venturiego i porównanie go z

Bardziej szczegółowo

3. Przejścia fazowe pomiędzy trzema stanami skupienia materii:

3. Przejścia fazowe pomiędzy trzema stanami skupienia materii: Temat: Zmiany stanu skupienia. 1. Energia sieci krystalicznej- wielkość dzięki której można oszacować siły przyciągania w krysztale 2. Energia wiązania sieci krystalicznej- ilość energii potrzebnej do

Bardziej szczegółowo

2. Zapoczątkowanie kawitacji. - formy przejściowe. - spadek sprawności maszyn przepływowych

2. Zapoczątkowanie kawitacji. - formy przejściowe. - spadek sprawności maszyn przepływowych J. A. Szantyr Wykład 22: Kawitacja Podstawy fizyczne Konsekwencje hydrodynamiczne 1. Definicja kawitacji 2. Zapoczątkowanie kawitacji 3. Formy kawitacji - kawitacja laminarna - kawitacja pęcherzykowa -

Bardziej szczegółowo

Wykład Nr 13 PRZEPŁYWY DWUFAZOWE

Wykład Nr 13 PRZEPŁYWY DWUFAZOWE Wykład Nr 13 PRZEPŁYWY DWUFAZOWE 1. Wstęp Przepływ dwufazowy wspólny przepływ dwóch faz. Rozróżnia się trzy zasadnicze formy przepływów dwufazowych: gaz-ciecz lub para-ciecz, gaz-faza stała, ciecz-faza

Bardziej szczegółowo

Badania charakterystyki sprawności cieplnej kolektorów słonecznych płaskich o zmniejszonej średnicy kanałów roboczych

Badania charakterystyki sprawności cieplnej kolektorów słonecznych płaskich o zmniejszonej średnicy kanałów roboczych Badania charakterystyki sprawności cieplnej kolektorów słonecznych płaskich o zmniejszonej średnicy kanałów roboczych Jednym z parametrów istotnie wpływających na proces odprowadzania ciepła z kolektora

Bardziej szczegółowo

Chłodnictwo i Kriogenika - Ćwiczenia Lista 4

Chłodnictwo i Kriogenika - Ćwiczenia Lista 4 Chłodnictwo i Kriogenika - Ćwiczenia Lista 4 dr hab. inż. Bartosz Zajączkowski bartosz.zajaczkowski@pwr.edu.pl Politechnika Wrocławska Wydział Mechaniczno-Energetyczny Katedra Termodynamiki, Teorii Maszyn

Bardziej szczegółowo

Badanie początku skraplania czynnika chłodniczego

Badanie początku skraplania czynnika chłodniczego Badanie początku skraplania czynnika chłodniczego Wstęp W wielu skraplaczach stosowanych w energetyce występuje w ich króćcu dopływowym para przegrzana czynnika. Wśród nich wyróżniają się skraplacze czynników

Bardziej szczegółowo

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36 Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną

Bardziej szczegółowo

WYMIANA CIEPŁA W PROCESIE TERMICZNEGO EKSPANDOWANIA NASION PROSA W STRUMIENIU GORĄCEGO POWIETRZA

WYMIANA CIEPŁA W PROCESIE TERMICZNEGO EKSPANDOWANIA NASION PROSA W STRUMIENIU GORĄCEGO POWIETRZA Konopko Henryk Politechnika Białostocka WYMIANA CIEPŁA W PROCESIE TERMICZNEGO EKSPANDOWANIA NASION PROSA W STRUMIENIU GORĄCEGO POWIETRZA Streszczenie W pracy przedstawiono wyniki symulacji komputerowej

Bardziej szczegółowo

Seminarium AUTOMATYKA CHŁODNICZA I KLIMATYZACYJNA

Seminarium AUTOMATYKA CHŁODNICZA I KLIMATYZACYJNA POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Seminarium AUTOMATYKA CHŁODNICZA I KLIMATYZACYJNA TEMAT: Ocena techniczna rurki kapilarnej jako elementu dławiącego w małych urządzeniach chłodniczych o zmiennych

Bardziej szczegółowo

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy

Bardziej szczegółowo

Hydrostatyczne Układy Napędowe Laboratorium

Hydrostatyczne Układy Napędowe Laboratorium Hydrostatyczne Układy Napędowe Laboratorium Temat: Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracował: Z. Kudźma, P. Osiński, J. Rutański, M. Stosiak CEL

Bardziej szczegółowo

Spis treści. Przedmowa WPROWADZENIE DO PRZEDMIOTU... 11

Spis treści. Przedmowa WPROWADZENIE DO PRZEDMIOTU... 11 Spis treści Przedmowa... 10 1. WPROWADZENIE DO PRZEDMIOTU... 11 2. PODSTAWOWE OKREŚLENIA W TERMODYNAMICE... 13 2.1. Układ termodynamiczny... 13 2.2. Wielkości fizyczne, układ jednostek miary... 14 2.3.

Bardziej szczegółowo

KRYTYCZNY STRUMIEŃ CIEPŁA PODCZAS WRZENIA W PRZEPŁYWIE W KANAŁACH

KRYTYCZNY STRUMIEŃ CIEPŁA PODCZAS WRZENIA W PRZEPŁYWIE W KANAŁACH KRYTYCZNY STRUMIEŃ CIEPŁA PODCZAS WRZENIA W PRZEPŁYWIE W KANAŁACH dr hab. inż. Dariusz MIKIELEWICZ, prof. nadzw. PG mgr inż. Michał GLIŃSKI mgr inż. Jan WAJS Katedra Techniki Cieplnej POLITECHNIKA GDAŃSKA

Bardziej szczegółowo

Wykład 3. Diagramy fazowe P-v-T dla substancji czystych w trzech stanach. skupienia. skupienia

Wykład 3. Diagramy fazowe P-v-T dla substancji czystych w trzech stanach. skupienia. skupienia Wykład 3 Substancje proste i czyste Przemiany w systemie dwufazowym woda para wodna Diagram T-v dla przejścia fazowego woda para wodna Diagramy T-v i P-v dla wody Punkt krytyczny Temperatura nasycenia

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA WNIKANIA CIEPŁA PODCZAS KONWEKCJI WYMUSZONEJ GAZU W RURZE

WYZNACZANIE WSPÓŁCZYNNIKA WNIKANIA CIEPŁA PODCZAS KONWEKCJI WYMUSZONEJ GAZU W RURZE Ćwiczenie 1: WYZNACZANIE WSPÓŁCZYNNIKA WNIKANIA CIEPŁA PODCZAS KONWEKCJI WYMUSZONEJ GAZU W RURZE 1. CEL ĆWICZENIA Celem ćwiczenia jest eksperymentalne wyznaczenie współczynnika wnikania ciepła podczas

Bardziej szczegółowo

Porównanie strat ciśnienia w przewodach ssawnych układu chłodniczego.

Porównanie strat ciśnienia w przewodach ssawnych układu chłodniczego. Porównanie strat ciśnienia w przewodach ssawnych układu chłodniczego. Poszczególne zespoły układu chłodniczego lub klimatyzacyjnego połączone są systemem przewodów transportujących czynnik chłodniczy.

Bardziej szczegółowo

Straty energii podczas przepływu wody przez rurociąg

Straty energii podczas przepływu wody przez rurociąg 1. Wprowadzenie Ć w i c z e n i e 11 Straty energii podczas przepływu wody przez rurociąg Celem ćwiczenia jest praktyczne wyznaczenie współczynników strat liniowych i miejscowych podczas przepływu wody

Bardziej szczegółowo

Przemiany energii w zjawiskach cieplnych. 1/18

Przemiany energii w zjawiskach cieplnych. 1/18 Przemiany energii w zjawiskach cieplnych. 1/18 Średnia energia kinetyczna cząsteczek Średnia energia kinetyczna cząsteczek to suma energii kinetycznych wszystkich cząsteczek w danej chwili podzielona przez

Bardziej szczegółowo

Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej

Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej Katedra Silników Spalinowych i Pojazdów ATH ZAKŁAD TERMODYNAMIKI Wyznaczanie współczynnika przenikania ciepła dla przegrody płaskiej - - Wstęp teoretyczny Jednym ze sposobów wymiany ciepła jest przewodzenie.

Bardziej szczegółowo

III r. EiP (Technologia Chemiczna)

III r. EiP (Technologia Chemiczna) AKADEMIA GÓRNICZO HUTNICZA WYDZIAŁ ENERGETYKI I PALIW III r. EiP (Technologia Chemiczna) INŻYNIERIA CHEMICZNA I PROCESOWA (przenoszenie pędu) Prof. dr hab. Leszek CZEPIRSKI Kontakt: A4, p. 424 Tel. 12

Bardziej szczegółowo

ANALIZA WYMIANY CIEPŁA OŻEBROWANEJ PŁYTY GRZEWCZEJ Z OTOCZENIEM

ANALIZA WYMIANY CIEPŁA OŻEBROWANEJ PŁYTY GRZEWCZEJ Z OTOCZENIEM Wymiana ciepła, żebro, ogrzewanie podłogowe, komfort cieplny Henryk G. SABINIAK, Karolina WIŚNIK* ANALIZA WYMIANY CIEPŁA OŻEBROWANEJ PŁYTY GRZEWCZEJ Z OTOCZENIEM W artykule przedstawiono sposób wymiany

Bardziej szczegółowo

PRZEPŁYW CIECZY W KORYCIE VENTURIEGO

PRZEPŁYW CIECZY W KORYCIE VENTURIEGO LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N 9 PRZEPŁYW CIECZY W KORYCIE VENTURIEGO . Cel ćwiczenia Sporządzenie carakterystyki koryta Venturiego o przepływie rwącym i wyznaczenie średniej wartości współczynnika

Bardziej szczegółowo

Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii

Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii 8.1.21 Zad. 1. Obliczyć ciśnienie potrzebne do przemiany grafitu w diament w temperaturze 25 o C. Objętość właściwa (odwrotność gęstości)

Bardziej szczegółowo

Spis treści. Od Redaktora... Spis ważniejszych oznaczeń...

Spis treści. Od Redaktora... Spis ważniejszych oznaczeń... Od Redaktora................................................... Spis ważniejszych oznaczeń........................................... XII XIII 1 Konstrukcja współczesnych kotłów energetycznych..........................

Bardziej szczegółowo

Spis treści. Od Redaktora. Spis waŝniejszych oznaczeń

Spis treści. Od Redaktora. Spis waŝniejszych oznaczeń Procesy cieplne i przepływowe w duŝych kotłach energetycznych : modelowanie i monitoring / red. nauk. Jan Taler ; aut. Artur Cebula [et al.]. Warszawa, 2011 Spis treści Od Redaktora Spis waŝniejszych oznaczeń

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

Temat: Przyczyny i skutki niestabilności pracy parowników i skraplaczy w urządzeniach chłodniczych.

Temat: Przyczyny i skutki niestabilności pracy parowników i skraplaczy w urządzeniach chłodniczych. Temat: Przyczyny i skutki niestabilności pracy parowników i skraplaczy w urządzeniach chłodniczych. Ireneusz Wolański Marcin Szymański SiUChKl Politechnika Gdańska GDAŃSK, 2008 PLAN PRACY: I. Wprowadzenie

Bardziej szczegółowo

KOMPENDIUM WIEDZY. Opracowanie: BuildDesk Polska CHARAKTERYSTYKA ENERGETYCZNA BUDYNKÓW I ŚWIADECTWA ENERGETYCZNE NOWE PRZEPISY.

KOMPENDIUM WIEDZY. Opracowanie: BuildDesk Polska CHARAKTERYSTYKA ENERGETYCZNA BUDYNKÓW I ŚWIADECTWA ENERGETYCZNE NOWE PRZEPISY. Sprawdzanie warunków cieplno-wilgotnościowych projektowanych przegród budowlanych (wymagania formalne oraz narzędzie: BuildDesk Energy Certificate PRO) Opracowanie: BuildDesk Polska Nowe Warunki Techniczne

Bardziej szczegółowo

J. Szantyr Wykład nr 20 Warstwy przyścienne i ślady 2

J. Szantyr Wykład nr 20 Warstwy przyścienne i ślady 2 J. Szantyr Wykład nr 0 Warstwy przyścienne i ślady W turbulentnej warstwie przyściennej można wydzielić kilka stref różniących się dominującymi mechanizmami kształtującymi przepływ. Ogólnie warstwę można

Bardziej szczegółowo

ciąg podciśnienie wywołane róŝnicą ciśnień hydrostatycznych zamkniętego słupa gazu oraz otaczającego powietrza atmosferycznego

ciąg podciśnienie wywołane róŝnicą ciśnień hydrostatycznych zamkniętego słupa gazu oraz otaczającego powietrza atmosferycznego 34 3.Przepływ spalin przez kocioł oraz odprowadzenie spalin do atmosfery ciąg podciśnienie wywołane róŝnicą ciśnień hydrostatycznych zamkniętego słupa gazu oraz otaczającego powietrza atmosferycznego T0

Bardziej szczegółowo

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 12 Procesy transportu Janusz Brzychczyk, Instytut Fizyki UJ Zjawiska transportu Zjawiska transportu są typowymi procesami nieodwracalnymi zachodzącymi w przyrodzie. Zjawiska te polegają

Bardziej szczegółowo

wymiana energii ciepła

wymiana energii ciepła wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk

Bardziej szczegółowo

ANALIZA STRUKTUR PRZEPŁYWU DWUFAZOWEGO GAZ-CIECZ W KANALE O PRZEKROJU KOŁOWYM

ANALIZA STRUKTUR PRZEPŁYWU DWUFAZOWEGO GAZ-CIECZ W KANALE O PRZEKROJU KOŁOWYM ANALIZA STRUKTUR PRZEPŁYWU DWUFAZOWEGO GAZ-CIECZ W KANALE O PRZEKROJU KOŁOWYM Sebastian STEFAŃSKI * Streszczenie: W artykule opisano zjawisko przepływu dwufazowego gaz-ciecz, struktury towarzyszące temu

Bardziej szczegółowo

Jan A. Szantyr tel

Jan A. Szantyr tel Katedra Energetyki i Aparatury Przemysłowej Zakład Mechaniki Płynów, Turbin Wodnych i Pomp J. Szantyr Wykład 1 Rozrywkowe wprowadzenie do Mechaniki Płynów Jan A. Szantyr jas@pg.gda.pl tel. 58-347-2507

Bardziej szczegółowo

Ćwiczenie nr 2 Wpływ budowy skraplacza na wymianę ciepła

Ćwiczenie nr 2 Wpływ budowy skraplacza na wymianę ciepła Andrzej Grzebielec 2009-11-12 wersja 1.1 Laboratorium Chłodnictwa Ćwiczenie nr 2 Wpływ budowy skraplacza na wymianę ciepła 1 2 Wpływ budowy skraplacza na wymianę ciepła 2.1 Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

TEMAT: Ocena techniczna rurki kapilarnej jako elementu dławiącego w klimatyzatorach samochodowych.

TEMAT: Ocena techniczna rurki kapilarnej jako elementu dławiącego w klimatyzatorach samochodowych. POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Seminarium z przedmiotu AUTOMATYKA CHŁODNICZA I KLIMATYZACYJNA TEMAT: Ocena techniczna rurki kapilarnej jako elementu dławiącego w klimatyzatorach samochodowych.

Bardziej szczegółowo

Przykładowe kolokwium nr 1 dla kursu. Przenoszenie ciepła ćwiczenia

Przykładowe kolokwium nr 1 dla kursu. Przenoszenie ciepła ćwiczenia Przykładowe kolokwium nr 1 dla kursu Grupa A Zad. 1. Określić różnicę temperatur zewnętrznej i wewnętrznej strony stalowej ścianki kotła parowego działającego przy nadciśnieniu pn = 14 bar. Grubość ścianki

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: TERMODYNAMIKA TECHNICZNA 2. Kod przedmiotu: Sd 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechanika i budowa maszyn 5. Specjalność: Eksploatacja

Bardziej szczegółowo

Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja)

Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja) Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja) Temat lekcji Siła wypadkowa siła wypadkowa, składanie sił o tym samym kierunku, R składanie sił o różnych kierunkach, siły równoważące się.

Bardziej szczegółowo

Zasada działania maszyny przepływowej.

Zasada działania maszyny przepływowej. Zasada działania maszyny przepływowej. Przyrost ciśnienia statycznego. Rys. 1. Izotermiczny schemat wirnika maszyny przepływowej z kanałem miedzy łopatkowym. Na rys.1. pokazano schemat wirnika maszyny

Bardziej szczegółowo

gazów lub cieczy, wywołanym bądź różnicą gęstości (różnicą temperatur), bądź przez wymuszenie czynnikami zewnętrznymi.

gazów lub cieczy, wywołanym bądź różnicą gęstości (różnicą temperatur), bądź przez wymuszenie czynnikami zewnętrznymi. WYMIANA (TRANSPORT) CIEPŁA Trzy podstawowe mechanizmy transportu ciepła (wymiany ciepła): 1. PRZEWODZENIIE - przekazywanie energii od jednej cząstki do drugiej, za pośrednictwem ruchu drgającego tych cząstek.

Bardziej szczegółowo

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika

Bardziej szczegółowo

WYDZIAŁ LABORATORIUM FIZYCZNE

WYDZIAŁ LABORATORIUM FIZYCZNE 1 W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 3 Temat: WYZNACZNIE WSPÓŁCZYNNIKA LEPKOŚCI METODĄ STOKESA Warszawa 2009 2 1. Podstawy fizyczne Zarówno przy przepływach płynów (ciecze

Bardziej szczegółowo

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów FORMOWANIE SIĘ PROFILU PRĘDKOŚCI W NIEŚCIŚLIWYM, LEPKIM PRZEPŁYWIE PRZEZ PRZEWÓD ZAMKNIĘTY Cel ćwiczenia Celem ćwiczenia będzie analiza formowanie się profilu prędkości w trakcie przepływu płynu przez

Bardziej szczegółowo

BILANS CIEPLNY CZYNNIKI ENERGETYCZNE

BILANS CIEPLNY CZYNNIKI ENERGETYCZNE POLITECHNIKA WARSZAWSKA Wydział Chemiczny LABORATORIUM PROCESÓW TECHNOLOGICZNYCH PROJEKTOWANIE PROCESÓW TECHNOLOGICZNYCH Ludwik Synoradzki, Jerzy Wisialski BILANS CIEPLNY CZYNNIKI ENERGETYCZNE Jerzy Wisialski

Bardziej szczegółowo

Techniki niskotemperaturowe w medycynie

Techniki niskotemperaturowe w medycynie INŻYNIERIA MECHANICZNO-MEDYCZNA WYDZIAŁ MECHANICZNY POLITECHNIKA GDAŃSKA Techniki niskotemperaturowe w medycynie Temat: Lewobieżny obieg gazowy Joule a a obieg parowy Lindego Prowadzący: dr inż. Zenon

Bardziej szczegółowo

Laboratorium InŜynierii i Aparatury Przemysłu SpoŜywczego

Laboratorium InŜynierii i Aparatury Przemysłu SpoŜywczego Laboratorium InŜynierii i Aparatury Przemysłu SpoŜywczego 1. Temat ćwiczenia :,,Wyznaczanie współczynnika przenikania ciepła 2. Cel ćwiczenia : Określenie globalnego współczynnika przenikania ciepła k

Bardziej szczegółowo

LABORATORIUM - TRANSPORT CIEPŁA I MASY II

LABORATORIUM - TRANSPORT CIEPŁA I MASY II Ćwiczenie numer 4 Transport ciepła za pośrednictwem konwekcji 1. Wprowadzenie Jednostka eksperymentalna WL 352 Heat Transfer by Convection umożliwia analizę transportu ciepła za pośrednictwem konwekcji

Bardziej szczegółowo

MECHANIKA PŁYNÓW Płyn

MECHANIKA PŁYNÓW Płyn MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ . Cel ćwiczenia Pomiar współrzędnych powierzchni swobodnej w naczyniu cylindrycznym wirującym wokół

Bardziej szczegółowo

Obiegi gazowe w maszynach cieplnych

Obiegi gazowe w maszynach cieplnych OBIEGI GAZOWE Obieg cykl przemian, po przejściu których stan końcowy czynnika jest identyczny ze stanem początkowym. Obrazem geometrycznym obiegu jest linia zamknięta. Dla obiegu termodynamicznego: przyrost

Bardziej szczegółowo

Chłodnictwo i Kriogenika - Ćwiczenia Lista 7

Chłodnictwo i Kriogenika - Ćwiczenia Lista 7 Chłodnictwo i Kriogenika - Ćwiczenia Lista 7 dr hab. inż. Bartosz Zajączkowski bartosz.zajaczkowski@pwr.edu.pl Politechnika Wrocławska Wydział Mechaniczno-Energetyczny Katedra Termodynamiki, Teorii Maszyn

Bardziej szczegółowo

4. Wentylatory oddymiające powinny mieć klasę:

4. Wentylatory oddymiające powinny mieć klasę: Projektanci często zadają pytanie jak oszacować przewidywaną temperaturę dymu, będącą kluczowym parametrem w doborze klasy odporności temperaturowej wentylatorów oddymiających? Niniejszy artykuł przedstawia

Bardziej szczegółowo

Termodynamika Techniczna dla MWT, wykład 3. AJ Wojtowicz IF UMK Izobaryczne wytwarzanie pary wodnej; diagram T-v przy stałym ciśnieniu

Termodynamika Techniczna dla MWT, wykład 3. AJ Wojtowicz IF UMK Izobaryczne wytwarzanie pary wodnej; diagram T-v przy stałym ciśnieniu Wykład 3 1. Substancje proste i czyste 2. Przemiany w systemie dwufazowym ciecz para 2.1. Izobaryczne wytwarzanie pary wodnej; diagram T-v przy stałym ciśnieniu 2.2. Temperatura wrzenia cieczy, a ciśnienie

Bardziej szczegółowo

Ćwiczenie 5: Wymiana masy. Nawilżanie powietrza.

Ćwiczenie 5: Wymiana masy. Nawilżanie powietrza. 1 Część teoretyczna Powietrze wilgotne układ złożony z pary wodnej i powietrza suchego, czyli mieszaniny azotu, tlenu, wodoru i pozostałych gazów Z punktu widzenia różnego typu przemian skład powietrza

Bardziej szczegółowo

Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym?

Sonochemia. Schemat 1. Strefy reakcji. Rodzaje efektów sonochemicznych. Oscylujący pęcherzyk gazu. Woda w stanie nadkrytycznym? Schemat 1 Strefy reakcji Rodzaje efektów sonochemicznych Oscylujący pęcherzyk gazu Woda w stanie nadkrytycznym? Roztwór Znaczne gradienty ciśnienia Duże siły hydrodynamiczne Efekty mechanochemiczne Reakcje

Bardziej szczegółowo

ĆWICZENIE NR 11 WNIKANIE MASY

ĆWICZENIE NR 11 WNIKANIE MASY ĆWICZENIE NR 11 WNIKANIE MASY PODSTAWY TEORETYCZNE Większość procesów dyfuzyjnych w układach dwufazowych polega na przenoszeniu składnika z głębi jednej fazy do rdzenia drugiej przez powierzchnię międzyfazową

Bardziej szczegółowo

W zaleŝności od charakteru i ilości cząstek wyróŝniamy: a. opadanie cząstek ziarnistych, b. opadanie cząstek kłaczkowatych.

W zaleŝności od charakteru i ilości cząstek wyróŝniamy: a. opadanie cząstek ziarnistych, b. opadanie cząstek kłaczkowatych. BADANIE PROCESU SEDYMENTACJI Wstęp teoretyczny. Sedymentacja, to proces opadania cząstek ciała stałego w cieczy, w wyniku działania siły grawitacji lub sił bezwładności. Zaistnienie róŝnicy gęstości ciała

Bardziej szczegółowo

Prędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki.

Prędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki. Spis treści 1 Podstawowe definicje 11 Równanie ciągłości 12 Równanie Bernoulliego 13 Lepkość 131 Definicje 2 Roztwory wodne makrocząsteczek biologicznych 3 Rodzaje przepływów 4 Wyznaczania lepkości i oznaczanie

Bardziej szczegółowo

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem

Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem Wykład 7 Entalpia: odwracalne izobaryczne rozpręŝanie gazu, adiabatyczne dławienie gazu dla przepływu ustalonego, nieodwracalne napełnianie gazem pustego zbiornika rzy metody obliczeń entalpii gazu doskonałego

Bardziej szczegółowo

POLITECHNIKA CZĘSTOCHOWSKA. Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji

POLITECHNIKA CZĘSTOCHOWSKA. Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji POLITECHNIKA CZĘSTOCHOWSKA Instytut Maszyn Cieplnych Optymalizacja Procesów Cieplnych Ćwiczenie nr 3 Poszukiwanie optymalnej średnicy rurociągu oraz grubości izolacji Częstochowa 2002 Wstęp. Ze względu

Bardziej szczegółowo

PRZEPŁYW CIEPŁA PRZEZ PRZEGRODY BUDOWLANE

PRZEPŁYW CIEPŁA PRZEZ PRZEGRODY BUDOWLANE PRZEPŁYW CIEPŁA PRZEZ PRZEGRODY BUDOWLANE dr inż. Andrzej Dzięgielewski 1 OZNACZENIA I SYMBOLE Q - ciepło, energia, J, kwh, (kcal) Q - moc cieplna, strumień ciepła, J/s, W (kw), (Gcal/h) OZNACZENIA I SYMBOLE

Bardziej szczegółowo

Ćwiczenie 5: RUCH CIEPŁA PODCZAS KONDENSACJI NASYCONEJ PARY WODNEJ 1. CEL ĆWICZENIA

Ćwiczenie 5: RUCH CIEPŁA PODCZAS KONDENSACJI NASYCONEJ PARY WODNEJ 1. CEL ĆWICZENIA Ćwiczenie 5: RUCH CIEPŁA PODCZAS KONDENSACJI NASYCONEJ PARY WODNEJ 1. CEL ĆWICZENIA Celem ćwiczenia jest ocena przebiegu procesu kondensacji nasyconej pary wodnej na zewnętrznej powierzchni chłodzonych

Bardziej szczegółowo

Aerodynamika i mechanika lotu

Aerodynamika i mechanika lotu Prędkość określana względem najbliższej ścianki nazywana jest prędkością względną (płynu) w. Jeśli najbliższa ścianka porusza się względem ciał bardziej oddalonych, to prędkość tego ruchu nazywana jest

Bardziej szczegółowo