Prof. dr hab. Henryk Woźniakowski. Słowo Laureata. Magnificencjo, Wysoki Senacie, Szanowny Panie Promotorze, Szanowni i Drodzy Państwo!
|
|
- Justyna Tomaszewska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Prof. dr hab. Henryk Woźniakowski Słowo Laureata Magnificencjo, Wysoki Senacie, Szanowny Panie Promotorze, Szanowni i Drodzy Państwo! Chciałbym zacząć swoje wystąpienie od słów serdecznego podziękowania Wysokiemu Senatowi Uniwersytetu Kardynała Stefana Wyszyńskiego za przyznanie mi zaszczytnego tytułu doctora honoris causa tej uczelni. Dziękuję również gorąco Radzie Wydziału Matematyczno-Przyrodniczego i Radzie Wydziału Filozofii Chrześcijańskiej oraz promotorowi panu Profesorowi Markowi Kowalskiemu za trud wniesiony w realizację przyznania mi tego tytułu. Zanim przejdę do matematycznej strony swego wystąpienia chciałbym zacząć od kilku osobistych refleksji. Urodziłem się w Lublinie w 1946 roku i tam w tym samym roku byłem ochrzczony przez mojego wuja Henryka. Wuj Henryk był karmelitą bosym i nosił imię Ojca Chryzostoma. Moi Rodzice chcieli abym miał na imię Andrzej, ale Wuj sprzeciwił się tej decyzji uważając, że powinienem się nazywać tak jak on przed wstąpieniem do zakonu, czyli Henryk. Rodzice zaproponowali rozwiązanie kompromisowe i przez chwilę miałem nazywać się Henryk Andrzej. Ale i na to Wuj się nie zgodził, uważając, że dwóch imion to on nie zapamięta. I tak zostałem Henrykiem bez drugiego imienia. Z moim Wujem łączy się jeszcze jedno nieco metafizyczne wspomnienie. Otóż Wuj był kaznodzieją, ale często jego kazania zawierały elementy antyreżimowe. Przez to wiele razy miał zakaz wygłaszania kazań. Oczywiście nie mógł też wyjeżdżać za granicę.
2 I tak jego marzenie odwiedzenia góry Karmel w Izraelu, gdzie powstał zakon karmelitów bosych, nigdy się nie spełniło. W 1994 roku byłem razem z żoną Grażyną i obecnym tu moim uczniem profesorem Leszkiem Plaskotą na konferencji matematycznej w Hajfie. W ramach bogatego programu zwiedzania Ziemi Świętej odwiedziliśmy też górę Karmel. W czasie rozmowy z przeorem zakonu dowiedzieliśmy się, ze wizytuje ich teraz karmelita z Polski. Przeor pobiegł po tego zakonnika, który z wielką radością wykrzyknął: Ależ ja jestem uczniem Ojca Chryzostoma. W tym momencie poczułem, że pragnienie mojego Wuja się spełniło i ja, jako jego siostrzeniec, zostałem wybrany do urzeczywistnienia jego marzenia. W 1950 roku moja rodzina, teraz już z jednoroczną siostrą Grażyną, przeniosła się do Warszawy. W 1969 roku skończyłem studia matematyczne na Uniwersytecie Warszawskim i tam też w 1972 i 1976 roku uzyskałem doktorat i habilitację w zakresie analizy numerycznej. Jestem uczniem profesora Andrzeja Kiełbasińskiego. Całe swoje życie naukowe byłem pracownikiem Uniwersytetu Warszawskiego, choć około 25 lat spędziłem za granicą wizytując czy też pracując na różnych Uniwersytetach, głównie na Uniwersytecie Columbia w Nowym Jorku, gdzie byłem profesorem od roku 1984 aż do przejścia na emeryturę w Nawiązałem wiele kontaktów naukowych z matematykami zagranicznymi. Kilku z nich chciałbym tu wymienić. Jest to przede wszystkim nieżyjący już Joe Traub, mój wieloletni współpracownik i przyjaciel ze Stanów Zjednoczonych. Są to Erich Novak, Stefan Heinrich, Klaus Ritter i Aicke Hinrichs z Niemiec, Ian Sloan, Josef Dick i Frances Kuo z Australii, Arthur Werschulz, Anargyros Papageorgiou Fred Hickernell ze Stanów Zjednoczonych, oraz Fritz Pillichshammer i Peter Kritzer z Austrii. Jednak najbardziej cieszę się ze swoich polskich kolegów, uczniów i uczniów moich uczniów. Należą do nich nieżyjący już Michał Jankowski i Krzysztof Sikorski, oraz Adam Bojańczyk, Dorota Dąbrowska, Maciej Goćwin, Tomasz Jackowski, Janina Jankowska, Bolesław Kacewicz, Marek Kowalski, Jacek
3 Kuczyński, Marek Kwas, Paweł Morkisz, Leszek Plaskota, Paweł Przybyłowicz, Paweł Siedlecki, Marek Szczęsny, Jerzy Trojan, Grzegorz Wasilkowski i Adam Zawilski. Niektórzy z nich pracują dziś za granicą, co nie przeszkadza nam wciąż utrzymywać żywej współpracy matematycznej. Pragnę teraz podzielić się z Państwem kilkoma uwagami na temat tego działu matematyki, który uprawiam i który nazywa się złożonością obliczeniową zadań ciągłych, a po angielsku information-based complexity, w skrócie IBC. W wielkim uproszczeniu można powiedzieć, że matematyka definiuje wiele obiektów i bada, przy jakich założeniach obiekty te istnieją i jakie mają własności. Ale również, praktycznie od początku matematyki, podejmowane były próby obliczenia numerycznych własności istotnych parametrów tych obiektów. Jako przykład wspomnę tu o liczbie π. Już w 1701 obliczono pierwszych 100 cyfr rozwinięcia dziesiętnego liczby π. Drugim przykładem może być rozwiązywanie nawet kilkudziesięciu równań liniowych w 19 wieku. Robili to ludzie zwani rachmistrzami, którzy na początku powstawania komputerów z łatwością z nimi wygrywali. Jednak dopiero powstanie szybkich komputerów pozwoliło, aby dział matematyki obliczeniowej istotnie się rozwinął. Początkowo sądzono, a może i dziś niektórzy tak sądzą, że komputery są tak szybkie, że mogą praktycznie obliczyć wszystko i to w dodatku prawie natychmiast. Niestety, a może dla matematyków stety, tak nie jest. Okazuje się, że istnieją tak trudne zadania matematyczne, że nawet najszybsze komputery nie potrafią obliczyć rozsądnego przybliżenia w rozsądnym czasie. Co więcej, można to matematycznie udowodnić. I to jest właśnie ten dział matematyki, którym się zajmuję. Chciałbym powiedzieć nieformalnie kilka słów o tym dziale. Otóż wprowadza się pojęcie złożoności obliczeniowej zadania jako minimalnej liczby dopuszczalnych działań koniecznych do obliczenia jego rozwiązania. Podkreślam tu słowo minimalna liczba działań,
4 gdyż implikuje to używanie najlepszego możliwego algorytmu. Znalezienie złożoności obliczeniowej jest na ogół bardzo trudne i wymaga znalezienia nowych technik dowodowych. W wielu przypadkach musimy zadowolić się oszacowaniami z góry i z dołu na złożoność obliczeniową, a oszacowania te nie zawsze są bliskie siebie. Zilustruję to stosunkowo łatwym przykładem mnożenia dwóch dowolnych macierzy n n przez siebie. Zadanie to ma 2n 2 danych współczynników macierzy, które mnożymy, i n 2 wyników współczynników macierzy, którą chcemy otrzymać. Na pierwszy rzut oka widać, że można to zrobić za pomocą rzędu n 3 działań mnożenia i dodawania. Tak więc n 3 jest prostym oszacowaniem z góry złożoności obliczeniowej mnożenia macierzy. Ale czy można to zrobić lepiej używając wyraźnie mniej niż n 3 działań? Okazuje się, że tak. Dziś znamy algorytmy mnożenia macierzy kosztem proporcjonalnym do n 2, Zatem wykładnik 3 może być zmniejszony do 2, Ale wciąż nie mamy dowodu, że można to zrobić jeszcze z mniejszym wykładnikiem. Jedyne znane oszacowanie z dołu jest rzędu n 2, a dowód tego faktu jest bardzo prosty. Otóż mamy 2n 2 danych, a każda dana jest istotna gdyż może zmienić wynik. Musimy więc użyć wszystkich danych, a ponieważ stosujemy działania dwuargumentowe, więc musimy wykonać co najmniej n 2 działań. Reasumując, wciąż nie wiemy, jaki jest wykładnik złożoności mnożenia macierzy. Wiemy tylko, że jest pomiędzy 2 a 2,378. Zadanie to jest dobrym przykładem, gdyż łatwo się je definiuje, każdy student je zrozumie, a mimo to rozwiązanie jest wciąż nieuchwytne. Zapewne rozwiązanie tego zadania wymaga nowych, jeszcze nieznanych, technik dowodowych. Chociaż nie znamy złożoności zadania mnożenia macierzy, pomnożenie dwóch konkretnych macierzy jest łatwe, gdyż na ogół wymiar macierzy n nie jest zbyt duży i wykonanie nawet n 3 działań nie sprawia większych kłopotów obliczeniowych. Na koniec mojego wystąpienia wspomnę o zadaniach naprawdę trudnych, które cierpią na tak zwane przekleństwo czy też klątwę
5 wymiaru. Otóż można udowodnić, że dla wielu zadań określonych na typowych klasach funkcji d zmiennych ich złożoność obliczeniowa jest wykładnicza w d, powiedzmy dla prostoty, że jest co najmniej proporcjonalna do 2 d. Do takich zadań spotykanych często w praktyce obliczeniowej należą całkowanie i aproksymacja funkcji czy też rozwiązywanie równań różniczkowych i całkowych. Na przykład, w matematyce finansowej często całkujemy funkcje o 360 zmiennych. Dopóki d jest stosunkowo małe, wynik mówiący o tym, że złożoność jest co najmniej proporcjonalna do 2 d jest nieistotny. Jednak, gdy d jest duże, powiedzmy tak jak w matematyce finansowej d = 360, to wykonanie 2 d = działań jest niemożliwe ani dziś, ani nawet w przyszłości na jeszcze szybszych komputerach. I ta wykładnicza zależność złożoności obliczeniowej od d nosi nazwę przekleństwa wymiaru. Zwrot ten został po raz pierwszy użyty przez Richarda Bellmana już w 1957 roku. Co więc robić z takimi zadaniami? Nie możemy dla tych zadań znaleźć lepszego algorytmu, bo już udowodniliśmy, że nawet najlepszy algorytm rozwiąże zadanie wykonując wykładniczo dużo działań. Jest jednak chyba coś w naturze ludzkiej, aby nigdy się nie poddawać. A więc i teraz chcielibyśmy jakoś klątwę wymiaru przezwyciężyć. Okazuje się, że w wielu wypadkach można to rzeczywiście zrobić poprzez pewną modyfikację problemu lub bardziej elastyczne definicje przybliżenia rozwiązania lub poprzez rozszerzenie klasy algorytmów dopuszczając na przykład algorytmy losowe czy też kwantowe. Nie czas i miejsce, aby o tym dłużej tu mówić. Zainteresowane osoby, trochę w ramach autoreklamy, chcę odesłać do trzytomowej książki Tractability of Multivariate Problems napisanej wspólnie z moim przyjacielem Erichem Novakiem z Uniwersytetu w Jenie. Chciałem też dodać, że dwa pierwsze tomy tej książki są dedykowane mojej synowej Agnieszce i synowi Arturowi oraz moim wnukom Filipowi i Mateuszowi. Wyraziliśmy też z Erichem nadzieję, że jak Filip i Mateusz dorosną, to zaangażują się w tę tematykę
6 i rozwiążą co najmniej kilka pozostałych, otwartych problemów w tej dziedzinie. Jeszcze raz serdecznie dziękuję za nadanie mi zaszczytnego tytułu doctora honoris causa Uniwersytetu Kardynała Stefana Wyszyńskiego i za możliwość wygłoszenia kilku słów o sobie i mojej matematycznej pasji.
Jak trudne jest numeryczne całkowanie (O złożoności zadań ciągłych)
Jak trudne jest numeryczne całkowanie (O złożoności zadań ciągłych) Uniwersytet Warszawski Wydział Matematyki, Informatyki i Mechaniki leszekp@mimuw.edu.pl Horyzonty 2014 17-03-2014 Będlewo Zadania numeryczne
XXI Konferencja SNM UKŁADY RÓWNAŃ. Kilka słów o układach równań.
1 XXI Konferencja SNM UKŁADY RÓWNAŃ Piotr Drozdowski (Józefów), piotr.trufla@wp.pl Krzysztof Mostowski (Siedlce), kmostows@o.pl Kilka słów o układach równań. Streszczenie. 100 układów równań w 5 min, jak
Spis Treści AKTUALNOŚCI
2/2017 Spis Treści AKTUALNOŚCI 1. Doktorat honoris causa UKSW dla profesora Henryka Woźniakowskiego 2. Wiele inicjatyw. Jeden cel. 1% dla rozwoju UKSW 3. VI Noc Biologów na UKSW 4. Wydział Teologiczny
Zastosowania metod analitycznej złożoności obliczeniowej do przetwarzania sygnałów cyfrowych oraz w metodach numerycznych teorii aproksymacji
Zastosowania metod analitycznej złożoności obliczeniowej do przetwarzania sygnałów cyfrowych oraz w metodach numerycznych teorii aproksymacji Marek A. Kowalski Uniwersytet Kardynała Stefana Wyszyńskiego
Układy dynamiczne na miarach. Wykłady
Układy dynamiczne na miarach Wykłady nr 95 Andrzej Lasota Układy dynamiczne na miarach Wykłady Wydawnictwo Uniwersytetu Śląskiego Katowice 2008 Redaktor serii: Matematyka Roman Ger Recenzent Józef Myjak
Czym jest liczba π? O liczbie π. Paweł Zwoleński. Studenckie Koło Naukowe Matematyków Wydział Matematyczno-Fizyczny Politechnika Śląska
Studenckie Koło Naukowe Matematyków Wydział Matematyczno-Fizyczny Politechnika Śląska 200.03.4 Motywacja wprowadzenia π Kluczowym momentem w historii liczby π było zauważenie przez starożytnych Babilończyków
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 6 Model matematyczny elementu naprawialnego Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia:
Krzyżówka na lekcji o logarytmie liczby dodatniej i nie tylko
Krzyżówka na lekcji o arytmie liczby dodatniej i nie tylko Kiedy zaczęłam uczyć matematyki w szkole średniej i zastanawiałam się wjaki sposób można uatrakcyjnić lekcje, aby nie były zbyt monotonne, dochodziłam
Dzięki ćwiczeniom z panią Suzuki w szkole Hagukumi oraz z moją mamą nauczyłem się komunikować za pomocą pisma. Teraz umiem nawet pisać na komputerze.
Przedmowa Kiedy byłem mały, nawet nie wiedziałem, że jestem dzieckiem specjalnej troski. Jak się o tym dowiedziałem? Ludzie powiedzieli mi, że jestem inny niż wszyscy i że to jest problem. To była prawda.
Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e.
Uniwersyteckie Koło Matematyczne - Tajemnicza liczba e. Filip Piękniewski Wydział Matematyki i Informatyki Uniwersytetu Mikołaja Kopernika http://www.mat.umk.pl/ philip 17 grudnia 2009 Filip Piękniewski,
Modelowanie wybranych pojęć matematycznych. semestr letni, 2016/2017 Wykład 10 Własności funkcji cd.
Modelowanie wybranych pojęć matematycznych semestr letni, 206/207 Wykład 0 Własności funkcji cd. Ciągłość funkcji zastosowania Przybliżone rozwiązywanie równań Znajdziemy przybliżone rozwiązanie równania
13. Równania różniczkowe - portrety fazowe
13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam
2. Układy równań liniowych
2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /
Funkcje wymierne. Jerzy Rutkowski. Teoria. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych. Definicja. Funkcją wymierną jednej zmiennej nazywamy
Równania Pitagorasa i Fermata
Równania Pitagorasa i Fermata Oliwia Jarzęcka, Kajetan Grzybacz, Paweł Jarosz 7 lutego 18 1 Wstęp Punktem wyjścia dla naszych rozważań jest klasyczne równanie Pitagorasa związane z trójkątem prostokątnym
MISTRZÓW. Niezwykłe spotkanie
1 Niezwykłe spotkanie MISTRZÓW Andrzej Fogtt to malarz wizjoner, niezwykle aktywny i dynamiczny. Jego prace intrygują, inspirują. Artystę odwiedziłam w nowej, klimatycznej pracowni na warszawskiej Pradze,
Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L
Tydzień nr 9-10 (16 maja - 29 maja) Równania różniczkowe wartości własne funkcja wykładnicza od operatora - Matematyka II 2010/2011L Wszelkie pytania oraz uwagi o błędach proszę kierować na przemek.majewski@gmail.com
Opis wymagań do programu Matematyka klasa VI
Opis wymagań do programu Matematyka 2001- klasa VI Cele ogólne wytyczają kierunki pracy z uczniami, zaś cele szczegółowe są opisem osiągnięć uczniów w wyniku kształcenia na danym przedmiocie i etapie edukacji.
komputery? Andrzej Skowron, Hung Son Nguyen Instytut Matematyki, Wydział MIM, UW
Czego moga się nauczyć komputery? Andrzej Skowron, Hung Son Nguyen son@mimuw.edu.pl; skowron@mimuw.edu.pl Instytut Matematyki, Wydział MIM, UW colt.tex Czego mogą się nauczyć komputery? Andrzej Skowron,
Podstawianie zmiennej pomocniczej w równaniach i nie tylko
Tomasz Grębski Matematyka Podstawianie zmiennej pomocniczej w równaniach i nie tylko Zadania z rozwiązaniami Spis treści Wstęp... Typowe podstawienia... 6 Symbole używane w zbiorze... 7. Podstawienie zmiennej
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 7/15 Rachunek różnicowy Dobrym narzędziem do obliczania skończonych sum jest rachunek różnicowy. W rachunku tym odpowiednikiem operatora
Metody numeryczne w przykładach
Metody numeryczne w przykładach Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń Regionalne Koło Matematyczne 8 kwietnia 2010 r. Bartosz Ziemkiewicz (WMiI UMK) Metody numeryczne w przykładach
Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl
System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy
W planie dydaktycznym założono 172 godziny w ciągu roku. Treści podstawy programowej. Propozycje środków dydaktycznych. Temat (rozumiany jako lekcja)
Ramowy plan nauczania (roczny plan dydaktyczny) dla przedmiotu matematyka w zakresie rozszerzonym dla klasy I liceum ogólnokształcącego uwzględniający kształcone i treści podstawy programowej W planie
Programowanie w Baltie klasa VII
Programowanie w Baltie klasa VII Zadania z podręcznika strona 127 i 128 Zadanie 1/127 Zadanie 2/127 Zadanie 3/127 Zadanie 4/127 Zadanie 5/127 Zadanie 6/127 Ten sposób pisania programu nie ma sensu!!!.
Liczby zmiennoprzecinkowe i błędy
i błędy Elementy metod numerycznych i błędy Kontakt pokój B3-10 tel.: 829 53 62 http://golinski.faculty.wmi.amu.edu.pl/ golinski@amu.edu.pl i błędy Plan wykładu 1 i błędy Plan wykładu 1 2 i błędy Plan
Zajęcia nr. 6: Równania i układy równań liniowych
Zajęcia nr. 6: Równania i układy równań liniowych 13 maja 2005 1 Podstawowe pojęcia. Definicja 1.1 (równanie liniowe). Równaniem liniowym będziemy nazwyać równanie postaci: ax = b, gdzie x oznacza niewiadomą,
Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.
Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy
Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu
Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu P. Strzelecki pawelst@mimuw.edu.pl Instytut Matematyki, Uniwersytet Warszawski MISH UW, semestr zimowy 2011-12 P.
Matematyka dyskretna dla informatyków
Matematyka dyskretna dla informatyków Część I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szymański Uniwersytet im. Adama Mickiewicza Poznań 2007 4 Zależności rekurencyjne Wiele zależności
Rachunek prawdopodobieństwa projekt Ilustracja metody Monte Carlo obliczania całek oznaczonych
Rachunek prawdopodobieństwa projekt Ilustracja metody Monte Carlo obliczania całek oznaczonych Autorzy: Marta Rotkiel, Anna Konik, Bartłomiej Parowicz, Robert Rudak, Piotr Otręba Spis treści: Wstęp Cel
PRZEMÓWIENIE AMBASADORA WIELKIEGO KSIĘSTWA LUKSEMBURGA J.E.P. CONRADA BRUCH NA OFICJALNYM OTWARCIU KONSULATU HONOROWEGO LUKSEMBURGA W KATOWICACH
Katowice, 28 listopada 2018 r. PRZEMÓWIENIE AMBASADORA WIELKIEGO KSIĘSTWA LUKSEMBURGA J.E.P. CONRADA BRUCH NA OFICJALNYM OTWARCIU KONSULATU HONOROWEGO LUKSEMBURGA W KATOWICACH Drogi Mikołaju, Szanowni
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych
Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej
Wymagania edukacyjne z matematyki dla uczniów klasy VII szkoły podstawowej Ocenę dopuszczającą otrzymuje uczeń, który: rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne,
UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych
Arytmetyka. Działania na liczbach, potęga, pierwiastek, logarytm
Arytmetyka Działania na liczbach, potęga, pierwiastek, logarytm Zbiory liczbowe Zbiór liczb naturalnych N = {1,2,3,4, }. Zbiór liczb całkowitych Z = {, 3, 2, 1,0,1,2,3, }. Zbiory liczbowe Zbiór liczb wymiernych
SCENARIUSZ LEKCJI. Autorzy scenariusza: Krzysztof Sauter (informatyka), Marzena Wierzchowska (matematyka)
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Moduł interdyscyplinarny:
SCENARIUSZ LEKCJI. Miejsca zerowe funkcji kwadratowej i ich graficzna prezentacja
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
Jednostajna słaba podatność zadań wielowymiarowych
Jednostajna słaba podatność zadań wielowymiarowych (Uniform Weak Tractability of Multivariate Problems) Autoreferat rozprawy doktorskiej Paweł Siedlecki Wydział Matematyki, Informatyki i Mechaniki Uniwersytet
Opis wymagań do programu Matematyka klasa VI
Opis wymagań do programu Matematyka 2001 - klasa VI Cele ogólne wytyczają kierunki pracy z uczniami, zaś cele szczegółowe są opisem osiągnięć uczniów w wyniku kształcenia na danym przedmiocie i etapie
KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM
KRYTERIA OCEN Z MATEMATYKI DLA KLASY I GIMNAZJUM DZIAŁ: LICZBY WYMIERNE (DODATNIE I UJEMNE) Otrzymuje uczeń, który nie spełnia kryteriów oceny dopuszczającej, nie jest w stanie na pojęcie liczby naturalnej,
3.Funkcje elementarne - przypomnienie
3.Funkcje elementarne - przypomnienie Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny3.Funkcje w Krakowie) elementarne - przypomnienie 1 / 51 1 Funkcje
Matematyka. Wzornictwo Przemysłowe I stopień ogólno akademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Matematyka Nazwa modułu w języku angielskim Mathematics Obowiązuje od roku
Przekształcenia całkowe. Wykład 1
Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015
Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
Za pierwszy niebanalny algorytm uważa się algorytm Euklidesa wyszukiwanie NWD dwóch liczb (400 a 300 rok przed narodzeniem Chrystusa).
Algorytmy definicja, cechy, złożoność. Algorytmy napotykamy wszędzie, gdziekolwiek się zwrócimy. Rządzą one wieloma codziennymi czynnościami, jak np. wymiana przedziurawionej dętki, montowanie szafy z
KARTA KURSU. Mathematics
KARTA KURSU Nazwa Nazwa w j. ang. Matematyka Mathematics Kod Punktacja ECTS* 4 Koordynator Dr Maria Robaszewska Zespół dydaktyczny dr Maria Robaszewska Opis kursu (cele kształcenia) Celem kursu jest zapoznanie
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt
Ekonometria - ćwiczenia 10
Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na
Wymagania edukacyjne z matematyki dla klasy VII
Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby
Zaawansowane metody numeryczne
Wykład 1 Zadanie Definicja 1.1. (zadanie) Zadaniem nazywamy zagadnienie znalezienia rozwiązania x spełniającego równanie F (x, d) = 0, gdzie d jest zbiorem danych (od których zależy rozwiązanie x), a F
Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.
ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach
Weronika Łabaj. Geometria Bolyaia-Łobaczewskiego
Weronika Łabaj Geometria Bolyaia-Łobaczewskiego Tematem mojej pracy jest geometria hiperboliczna, od nazwisk jej twórców nazywana też geometrią Bolyaia-Łobaczewskiego. Mimo, że odkryto ją dopiero w XIX
Zbiór zadań z matematyki dla studentów chemii
Zbiór zadań z matematyki dla studentów chemii NR 142 Justyna Sikorska Zbiór zadań z matematyki dla studentów chemii Wydanie piąte Wydawnictwo Uniwersytetu Śląskiego Katowice 2013 Redaktor serii: Matematyka
Lista 6. Kamil Matuszewski 13 kwietnia D n =
Lista 6 Kamil Matuszewski 3 kwietnia 6 3 4 5 6 7 8 9 Zadanie Mamy Pokaż, że det(d n ) = n.... D n =.... Dowód. Okej. Dla n =, n = trywialne. Załóżmy, że dla n jest ok, sprawdzę dla n. Aby to zrobić skorzystam
Piaski, r. Witajcie!
Piszemy listy Witajcie! Na początek pozdrawiam Was serdecznie. Niestety nie znamy się osobiście ale jestem waszą siostrą. Bardzo się cieszę, że rodzice Was adoptowali. Mieszkam w Polsce i dzieli nas ocean.
Wstęp do równań różniczkowych
Wstęp do równań różniczkowych Wykład 1 Lech Sławik Instytut Matematyki PK Literatura 1. Arnold W.I., Równania różniczkowe zwyczajne, PWN, Warszawa, 1975. 2. Matwiejew N.M., Metody całkowania równań różniczkowych
Układy stochastyczne
Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.
Szczęść Boże, wujku! odpowiedział weselszy już Marcin, a wujek serdecznie uściskał chłopca.
Sposób na wszystkie kłopoty Marcin wracał ze szkoły w bardzo złym humorze. Wprawdzie wyjątkowo skończył dziś lekcje trochę wcześniej niż zwykle, ale klasówka z matematyki nie poszła mu najlepiej, a rano
Metody numeryczne. Postać zmiennoprzecinkowa liczby. dr Artur Woike. Arytmetyka zmiennoprzecinkowa. Uwarunkowanie zadania.
Ćwiczenia nr 1 Postać zmiennoprzecinkowa liczby Niech będzie dana liczba x R Mówimy, że x jest liczbą zmiennoprzecinkową jeżeli x = S M B E, gdzie: B N, B 2 (ustalona podstawa systemu liczbowego); S {
SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI. Wymagania na poszczególne oceny klasa VII Matematyka z kluczem
SZKOŁA PODSTAWOWA NR 1 IM. ŚW. JANA KANTEGO W ŻOŁYNI Wymagania na poszczególne oceny klasa VII Matematyka z kluczem I. Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające
Wymagania edukacyjne z matematyki klasa II technikum
Wymagania edukacyjne z matematyki klasa II technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: 1. JĘZYK MATEMATYKI I FUNKCJE LICZBOWE Uczeń otrzymuje ocenę dopuszczającą
PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:
Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11
7. ILE TO KOSZTUJE CZYLI OD ZAGADKI DO ZADANIA TEKSTOWEGO, CZ. IV
7. ILE TO KOSZTUJE CZYLI OD ZAGADKI DO ZADANIA TEKSTOWEGO, CZ. IV 35 Mirosław Dąbrowski 7. ILE TO KOSZTUJE CZYLI OD ZAGADKI DO ZADANIA TEKSTOWEGO, CZ. IV Cele ogólne na III etapie kształcenia: zdobycie
Wymagania programowe w porządku związanym z realizacją programu
Wymagania programowe w porządku związanym z realizacją programu Nazwa umiejętności UCZEŃ POTRAFI: Poziom wymagań Kategoria celu 1. Porównać dwie liczby całkowite. K C 2. Uporządkować liczby całkowite.
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie
Kryteria oceniania z matematyki Klasa III poziom podstawowy
Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V
MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać
Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Wykład nr 11: Funkcje w matematyce szkolnej Semestr zimowy 2018/2019
Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Wykład nr 11: Funkcje w matematyce szkolnej Semestr zimowy 2018/2019 Funkcje uwagi historyczne Wprowadzenie liczb rzeczywistych i liczb zespolonych
Wymagania edukacyjne z matematyki Klasa III zakres podstawowy
Wymagania edukacyjne z matematyki Klasa III zakres podstawowy Program nauczania zgodny z: Kurczab M., Kurczab E., Świda E., Program nauczania w liceach i technikach. Zakres podstawowy., Oficyna Edukacyjna
2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.
ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)
dr inż. Ryszard Rębowski 1 WPROWADZENIE
dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
Ankieta dla ucznia klasy I- III
Ankieta dla ucznia klasy I- III 1. Uważam, że jestem dobry w matematyce zdecydowanie się zgadzam 46% raczej się zgadzam 18% raczej się nie zgadzam 30% zdecydowanie się nie zgadzam 6% 2. Jak często w czasie
ALGEBRA Z GEOMETRIĄ MACIERZE ODWZOROWAŃ LINIOWYCH
ALGEBRA Z GEOMETRIĄ 1/10 MACIERZE ODWZOROWAŃ LINIOWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 12, 08.01.2014 Typeset by Jakub Szczepanik. Motywacje 2/10 W celu wykonania obliczeń numerycznych w zagadnieniach
Uroczystość nadania sali 28 D-1 imienia prof. Mariana Cegielskiego
Uroczystość nadania sali 28 D-1 imienia prof. Mariana Cegielskiego Powitanie Gości Serdecznie witamy na uroczystości nadania imienia profesora Mariana Cegielskiego sali wykładowej nr 28 w bud. D-1 Córkę
SPIS TREŚCI PRZEDMOWA... 13
SPIS TREŚCI PRZEDMOWA... 13 CZĘŚĆ I. ALGEBRA ZBIORÓW... 15 ROZDZIAŁ 1. ZBIORY... 15 1.1. Oznaczenia i określenia... 15 1.2. Działania na zbiorach... 17 1.3. Klasa zbiorów. Iloczyn kartezjański zbiorów...
Złożoność informacyjna Kołmogorowa. Paweł Parys
Złożoność informacyjna Kołmogorowa Paweł Parys Serock 2012 niektóre liczby łatwiej zapamiętać niż inne... (to zależy nie tylko od wielkości liczby) 100...0 100 100... 100 100 100 25839496603316858921 31415926535897932384
Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.
Z5: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania zagadnienie brzegowe Dyskretne operatory różniczkowania Numeryczne obliczanie pochodnych oraz rozwiązywanie
Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 2
Funkcje: wielomianowa, wykładnicza, logarytmiczna wykład 2 dr Mariusz Grządziel semestr zimowy 2013 Potęgowanie Dla dowolnej liczby dodatniej a oraz liczy wymiernej w = p/q definiujemy: a w (a 1/q ) p.
Układy równań liniowych
Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum. w roku szkolnym 2012/2013
Próbny egzamin z matematyki dla uczniów klas II LO i III Technikum w roku szkolnym 2012/2013 I. Zakres materiału do próbnego egzaminu maturalnego z matematyki: 1) liczby rzeczywiste 2) wyrażenia algebraiczne
O MACIERZACH I UKŁADACH RÓWNAŃ
O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a
UKŁADY RÓWNAŃ LINIOWYCH
Wykłady z matematyki inżynierskiej JJ, 08 DEFINICJA Układ m równań liniowych z n niewiadomymi to: ( ) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 +
1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych
Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci
Kształcenie w zakresie podstawowym. Klasa 1
Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
Wykład 7 Macierze i wyznaczniki
Wykład 7 Macierze i wyznaczniki Andrzej Sładek sladek@ux2mathusedupl Instytut Matematyki, Uniwersytet Śląski w Katowicach Andrzej Sładek (Instytut Matematyki, Uniwersytet Śląski Wykład w Katowicach) 7
PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika
PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika METODY NUMERYCZNE WYKŁAD Andrzej M. Dąbrowski amd@agh.edu.pl Paw.C p.100e Konsultacje: środa 14 45-15 30 czwartek 14 45 - Wykład 2 godz. lekcyjne.
Wykład 4. Określimy teraz pewną ważną klasę pierścieni.
Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia
Analiza wyników egzaminu maturalnego z matematyki 2014/2015. Poziom podstawowy
Analiza wyników egzaminu maturalnego z matematyki 2014/2015 Poziom podstawowy Analiza wyników egzaminu maturalnego z matematyki na poziomie podstawowym. Do egzaminu maturalnego w Technikum Zawodowym w
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE V Uczeń na ocenę dopuszczającą potrafi: - Oszacować wyniki obliczeń na liczbach dziesiętnych w kontekście zakupów. - Korzystać z gotowego planu. - Narysować prostokąt
SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa
Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH
Geogebra jak pomóc uczniowi pokonywać trudności pojęciowe przy pomocy technologii
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Geogebra jak pomóc uczniowi pokonywać trudności pojęciowe przy pomocy technologii Przemysław Kajetanowicz Projekt
Iteracyjne rozwiązywanie równań
Elementy metod numerycznych Plan wykładu 1 Wprowadzenie Plan wykładu 1 Wprowadzenie 2 Plan wykładu 1 Wprowadzenie 2 3 Wprowadzenie Metoda bisekcji Metoda siecznych Metoda stycznych Plan wykładu 1 Wprowadzenie
Liczby całkowite są dane od Boga, wszystkie inne wymyślili ludzie.
Leopold Kronecker Kinga Zaręba 11 czerwca 2019 Liczby całkowite są dane od Boga, wszystkie inne wymyślili ludzie. 1 1 Historia 7 XII 1823 - urodził się w Legnicy 1841r.- Kronecker podjął studia na uniwersytecie
Ataki na RSA. Andrzej Chmielowiec. Centrum Modelowania Matematycznego Sigma. Ataki na RSA p. 1
Ataki na RSA Andrzej Chmielowiec andrzej.chmielowiec@cmmsigma.eu Centrum Modelowania Matematycznego Sigma Ataki na RSA p. 1 Plan prezentacji Wprowadzenie Ataki algebraiczne Ataki z kanałem pobocznym Podsumowanie
Matematyka liczby zespolone. Wykład 1
Matematyka liczby zespolone Wykład 1 Siedlce 5.10.015 Liczby rzeczywiste Zbiór N ={0,1,,3,4,5, } nazywamy zbiorem Liczb naturalnych, a zbiór N + ={1,,3,4, } nazywamy zbiorem liczb naturalnych dodatnich.