Wykład IV. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej
|
|
- Alicja Zielińska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wykład IV Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik
2 Systemy z kluczem publicznym
3 Klasyczne systemy kryptograficzne W klasycznych systemach znając odwzorowanie szyfrujące: f : P C oraz klucz szyfrujący, można łatwo obliczyć klucz deszyfrujący oraz funkcję odwrotną f 1 : C P. Zatem zarówno klucz szyfrujący jak i deszyfrujący muszą być tajne.
4 Funkcja progowa Istnieją metody, które mają tę własność, że jeśli ktoś zna klucz szyfrujący, to może łatwo obliczyć wartość przekształcenia szyfrującego f : P C jednakże bardzo trudno jest mu obliczyć na podstawie tej wiedzy wartości funkcji odwrotnej f 1 : C P. Zatem z punktu widzenia obliczalności praktycznej f nie jest funkcją odwracalną (bez dodatkowej informacji - klucza rozszyfrowującego). Takie funkcje nazywamy funkcjami progowymi lub funkcjami jednokierunkowymi z kluczem (trapdoor functions).
5 Uwaga Pojęcie praktycznej obliczalności nie jest precyzyjne z matematycznego punktu widzenia. Jest to pojęcie czysto empiryczne, zależne od postępów technologii komputerowej oraz odkryć nowych algorytmów.
6 Systemy z kluczem publicznym Osoba A tworzy poufnie dwa klucze (matematycznie powiązane). Jeden z nich nazywany jest kluczem publicznym, a drugi kluczem prywatnym. Obliczenie klucza prywatnego na podstawie klucza publicznego jest praktycznie niewykonalne. Klucz publiczny może być swobodnie rozpowszechniany (np. publikowany w książce telefonicznej), natomiast odpowiadający mu klucz prywatny musi zostać zachowany w sekrecie. Osoba B chcąc wysłać do A wiadomość używa do jej zaszyfrowania ogólnego algorytmu szyfrującego wykorzystującego klucz publiczny jako parametr. Osoba A otrzymany od B szyfrogram odszyfrowuje przy użyciu klucza tajnego.
7 Elementy teorii liczb
8 Funkcja Eulera Definicja Niech n będzie liczbą naturalną. Funkcja Eulera jest określona jako liczba ϕ(n) = {0 a < n ; NWD(a, n) = 1}. Zatem ilość elementów odwracalnych pierścienia Z n możemy wyrazić jako ϕ(n).
9 Właśności n ϕ(n)
10 Właśności n ϕ(n) Ogólnie: ϕ(1) = 1 ϕ(p) = p 1 ϕ(p α ) = p α ( 1 1 p )
11 Właśności Lemat Funkcja Eulera jest multyplikatywna, tzn. jeśli tylko NWD(m, n) = 1, to ϕ(mn) = ϕ(m)ϕ(n).
12 Właśności Lemat Funkcja Eulera jest multyplikatywna, tzn. jeśli tylko NWD(m, n) = 1, to ϕ(mn) = ϕ(m)ϕ(n). Wniosek Niech n = p α 1 1 pα 2 2 pαs s ϕ(n) = wtedy s i=1 p α i i (1 1 pi ).
13 Własności Twierdzenie Przypuśćmy, że o liczbie naturalnej n wiadomo, że jest ona iloczynem dwóch różnych liczb pierwszych. Wtedy znajomość oby czynników pierwszych p i q jest równoważna znajomości ϕ(n).
14 Własności Twierdzenie Przypuśćmy, że o liczbie naturalnej n wiadomo, że jest ona iloczynem dwóch różnych liczb pierwszych. Wtedy znajomość oby czynników pierwszych p i q jest równoważna znajomości ϕ(n). Dowód. Jeżeli znam p i q, to ϕ(n) = (p 1)(q 1).
15 Własności Twierdzenie Przypuśćmy, że o liczbie naturalnej n wiadomo, że jest ona iloczynem dwóch różnych liczb pierwszych. Wtedy znajomość oby czynników pierwszych p i q jest równoważna znajomości ϕ(n). Dowód. Jeżeli znam p i q, to ϕ(n) = (p 1)(q 1). W drugą stronę: jeśli znam n i ϕ(n) to rozwiązujemy układ równań { ϕ(n) = (p 1)(q 1) = n + 1 (p + q) n = pq
16 Twierdzenie Eulera Twierdzenie Jeśli NWD(a, n) = 1, to a ϕ(n) 1 (mod n).
17 Twierdzenie Eulera Twierdzenie Jeśli NWD(a, n) = 1, to a ϕ(n) 1 (mod n). Wniosek Jeśli NWD(a, n) = 1 i jeśli b b (mod ϕ(n)) to a b a b (mod n).
18 Małe twierdzenie Fermata Twierdzenie Eulera jest uogólnieniem małego twierdzenie Fermata. Małe twierdzenie Fermata jest szczególnym przypadkiem twierdzenia Eulera. Jeśli NWD(a, n) = 1, to a ϕ(n) 1 (mod n). Jeśli p a, to a p 1 1 (mod p).
19 Przykład Znajdź ostatnią cyfrę liczby w systemie o podstawie 7.
20 Przykład Znajdź ostatnią cyfrę liczby w systemie o podstawie Niech p = 7. Wtedy z małego twierdzenia Fermata otrzymujemy, że jeśli 7 a, to a (mod 7). Zatem = = ( ) (mod 7).
21 Podstawowe twierdzenie dla RSA Twierdzenie Jeśli n = pq, p q oraz de 1 (mod ϕ(n)), to dla dowolnego a N mamy a de a (mod n).
22 Kryptosystem RSA
23 Podstawy matematyczne istnieją efektywne algorytmy testowania pierwszości liczb efektywne znajdowanie dzielników pierwszych danej liczby jest zadaniem trudnym
24 Algorytm RSA RSA - zaprojektowany w 1977 przez Rona Rivesta, Adi Shamira oraz Leonarda Adlemana W latach obowiązywał na niego patent na terenie Stanów Zjednoczonych. Opublikowany w: Rivest R.L., Shamir A., Adleman L., A method for obtaining digital signatures and public-key cryptosystems, Comm. ACM, Feb. 1978, vol. 2(1), s
25 Kryptosystem RSA Osoba A - konstrukcja kluczy: - losuje dwie duże liczby pierwsze p i q, - oblicza n A = p q, oraz ϕ(n A ) = (p 1)(q 1), - losuje liczbę e A taką, że - oblicza d A = e 1 A 1 < e A < ϕ(n A ) i NWD(e A, ϕ(n A )) = 1, Klucz publiczny: (n A, e A ) Klucz prywatny: (n A, d A ) (mod ϕ(n A))
26 Kryptosystem RSA Szyfrowanie: Osoba B chce wysłać wiadomość do osoby A. Oblicza reprezentację liczbową P swojej wiadomości. Wykorzystując klucz publiczny oblicza C = P e A (mod n A ). Deszyfrowanie: Osoba A oblicza C d A (mod n A ) = P.
27 Szczegóły Szyfrowanie i deszyfrowanie RSA odbywa się zgodnie ze schematem P α Z na Z na β C gdzie P to blok tekstu jawnego, C to blok szyfrogramu, α przekształcenie tekstu na element pierścienia Z na, β przekształcenie elementy pierścienia Z na na tekst.
28 Szczegóły Jeżeli alfabet ma N liter, a jednostkami tekstu jawnego są k-gramy, to wobec różnowartościowości α mamy N k < n A. Podobnie, jeśli jednostkami kryptogramu są l-gramy, to wobec różnowartościowości β mamy n A < N l. W praktyce zakłada się, że wartości k i l są takie same dla wszystkich użytkowników systemu. Zatem każdy użytkownik musi wybrać liczby pierwsze p A i q A tak, by liczba n A = p A q A spełniała nierówności N k < n A < N l.
29 Przykład Przyjmijmy alfabet angielski N = 26, oraz k = 3, l = 4. Zatem jednostkami tekstu jawnego są trigramy, a jednostkami tekstu zaszyfrowanego są bloki czteroliterowe. Niech A będzie użytkownikiem systemu, którego kluczem szyfrującym podanym do publicznej wiadomości jest K E,A = (n A, e A ) = (46927, 39423). Tylko użytkownik A zna swój klucz deszyfrujący K D,A = (n A, d A ) = (46927, 26786).
30 Przesyłanie wiadomości YES do użytkownika A. Znajdujemy najpierw odpowiednik liczbowy trigramu YES: Następnie obliczamy YES = (16346) (mod 46927) = Wynik konwertujemy na tekst długości 4: = Przesłanym kryptogramem będzie BFIC.
31 Przykład c.d. Odszyfrowanie kryptogramu. Użytkownik A znajduje najpierw jego odpowiednik liczbowy dla kryptogramu BFIC: BFIC Następnie korzysta ze swojego tajnego klucza deszyfrującego i oblicza (mod 46927) = Wynik zapisuje jako trigram: = YES.
32 Założenie dotyczące klucza RSA 1 p i q powinny mieć co najmniej 512 bitów 2 p i q nie mogą być bliskie siebie, jedna powinna mieć kilka cyfr dziesiętnych więcej niż druga 3 p 1 i q 1 powinny mieć mały największy wspólny dzielnik 4 p i q powinny być silnymi liczbami pierwszymi
33 Metoda faktoryzacji Fermata Twierdzenie Niech n będzie dodatnią liczbą nieparzystą. Istnieje wzajemnie jednoznaczna odpowiedniość między rozkładami liczby n na iloczyn postaci n = ab, gdzie a b > 0, a rozkładami n na różnicę kwadratów postaci n = t 2 s 2, gdzie t i s są liczbami całkowitymi nieujemnymi. Tę odpowiedniość określają równości: t = a + b 2, s = a b, a = t + s, b = t s. 2
34 Metoda faktoryzacji Fermata Twierdzenie Niech n będzie dodatnią liczbą nieparzystą. Istnieje wzajemnie jednoznaczna odpowiedniość między rozkładami liczby n na iloczyn postaci n = ab, gdzie a b > 0, a rozkładami n na różnicę kwadratów postaci n = t 2 s 2, gdzie t i s są liczbami całkowitymi nieujemnymi. Tę odpowiedniość określają równości: t = a + b 2, s = a b, a = t + s, b = t s. 2 Dowód. ( ) 2 ( a + b a b n = ab = 2 2 n = t 2 s 2 = (t + s)(t s). ) 2
35 Metoda faktoryzacji Fermata Algorytm Jeżeli n = ab i liczby a i b są bliskie siebie, to liczba s = (a b)/2 jest mała, a więc t jest niewiele większa od n. W takim przypadku możemy znaleźć liczby a i b, próbując kolejnych t, począwszy od [ n] + 1, aż znajdziemy taką wartość, dla której t 2 n jest kwadratem.
36 Przykład Rozłóżmy liczbę na czynniki pierwsze.
37 Przykład Rozłóżmy liczbę na czynniki pierwsze. Mamy t = [ ] + 1 = 449. Liczba = 782 nie jest pełnym kwadratem.
38 Przykład Rozłóżmy liczbę na czynniki pierwsze. Mamy t = [ ] + 1 = 449. Liczba = 782 nie jest pełnym kwadratem. Weźmy zatem t = 450. Wtedy = 1681 = 41 2.
39 Przykład Rozłóżmy liczbę na czynniki pierwsze. Mamy t = [ ] + 1 = 449. Liczba = 782 nie jest pełnym kwadratem. Weźmy zatem t = 450. Wtedy = 1681 = Stąd = = ( )(450 41) =
40 Obecne klucze RSA Klucz RSA-768 o 232 cyfrach dziesiętnych (768 bitach) został złamany przez: Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen K. Lenstra, Emmanuel Thome, Pierrick Gaudry, Alexander Kruppa, Peter Montgomery, Joppe W. Bos, Dag Arne Osvik, Herman te Riele, Andrey Timofeev, oraz Paul Zimmermann. (źródło Wikipedia) RSA-768 = RSA-768 = *
41 RSA-1024 Klucz RSA-1024 posiada 309 cyfr dziesiętnych i 1024 bity. Klucze tego rozmiaru są obecnie stosowane w wielu algorytmach. RSA-1024 =
42 Ryzyko ataku na RSA (1) Zbiór możliwych wiadomości nie może być mały i znany. Atak brute-force : Dla małego zbioru wiadomości, np: { ATAK, CZEKAJ, WYCOFAJ } możemy obliczyć wszystkie możliwe szyfrogramy i je porównać z przechwyconym.
43 Ryzyko ataku na RSA (2) Przypuśćmy, że dwóch użytkowników pewnego systemu używa kluczy publicznych (n, e 1 ) i (n, e 2 ). Niedoskonałość generatora kluczy spowodowała, że pary te mają ten sam moduł. Jeśli ta sama wiadomość zostanie wysłana do obu użytkowników to Cezary może ją odszyfrować pod warunkiem, że e 1 i e 2 są względnie pierwsze. Z tego, że NWD(e 1, e 2 ) = 1 wynika, że istnieją liczby całkowite x i y takie, że e 1 x + e 2 y = 1. Zatem jeśli Cezary zna m e 1 (mod n) i m e 2 (mod n), to obliczy (m e 1 ) x (m e 2 ) y (mod n) = m e 1x+e 2 y (mod n) = m.
44 Ryzyko ataku na RSA (3) Posiadamy nasz klucz publiczny (n, e). Opublikowaliśmy go na liście kluczy publicznych wraz z milionem innych kluczy publicznych innych osób. Istnieje hipotetyczne ryzyko, że nasze n nie będzie względnie pierwsze z jakimś innym n. Wtedy możemy ustalić rozkład n. Teoretycznie jest to możliwe, w praktyce przy starannej implementacji procedur losowych jest to niemożliwe.
45 Szyfr Pohliga - Hellmana W roku 1978 Pohlig i Hellman opublikowali (niemal w tym samym czasie co Rivest, Shamir i Adleman) sposób szyfrowania oparty na potęgowaniu w ciele skończonym. Wybieramy dużą liczbę pierwszą p. Obliczenia prowadzone są w ciele Z p. Funkcje szyfrująca i deszyfrująca są określone wzorami: C = P e (mod p) P = C d (mod p) gdzie d e 1 (mod ϕ(p)).
46 Szyfr Pohliga - Hellmana W roku 1978 Pohlig i Hellman opublikowali (niemal w tym samym czasie co Rivest, Shamir i Adleman) sposób szyfrowania oparty na potęgowaniu w ciele skończonym. Wybieramy dużą liczbę pierwszą p. Obliczenia prowadzone są w ciele Z p. Funkcje szyfrująca i deszyfrująca są określone wzorami: C = P e (mod p) P = C d (mod p) gdzie d e 1 (mod ϕ(p)). Dlaczego ten system nie jest systemem z kluczem publicznym?
47 Szyfr Pohliga - Hellmana W roku 1978 Pohlig i Hellman opublikowali (niemal w tym samym czasie co Rivest, Shamir i Adleman) sposób szyfrowania oparty na potęgowaniu w ciele skończonym. Wybieramy dużą liczbę pierwszą p. Obliczenia prowadzone są w ciele Z p. Funkcje szyfrująca i deszyfrująca są określone wzorami: C = P e (mod p) P = C d (mod p) gdzie d e 1 (mod ϕ(p)). Dlaczego ten system nie jest systemem z kluczem publicznym? Znajomość klucza szyfrującego (p, e), pozwala wyznaczyć ϕ(p) = p 1, a więc i wartość d. Zatem jest to klasyczny system szyfrowania z tajnymi kluczami: szyfrującym (p, e) i deszyfrującym (p, d).
48 Pytania i zadania 1. Za pomocą algorytmu faktoryzacji Fermata dokonaj rozkładu liczby na iloczyn liczb pierwszych. 2. Złam szyfr RSA, którego kluczem publicznym jest (n A, e A ) = ( , ). Wykorzystaj komputer do wyznaczenia rozkładu liczby n A dowolną metodą. Rozszyfruj wiadomość BNBPPKZAVQZLBJ przy założeniu, że tekst jawny składa się 6-gramów, a szyfrogram z 7-gramów nad 26-literowym alfabetem angielskim. To zadanie pokazuje, że 29-bitowa liczba n A jest o wiele za mała.
49 Ciekawostka: szyfr cmentarny Szyfr cmentarny wygrawerowano na płycie grobowca na cmentarzu kościoła Świętej Trójcy w Nowym Jorku w 1794 roku. Klucz tego szyfru zadany jest za pomocą rysunków:
50 Koniec
Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA
Zastosowanie teorii liczb w kryptografii na przykładzie szyfru RSA Grzegorz Bobiński Uniwersytet Mikołaja Kopernika Toruń, 22.05.2010 Kodowanie a szyfrowanie kodowanie sposoby przesyłania danych tak, aby
Bardziej szczegółowoWykład VI. Programowanie III - semestr III Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej
Wykład VI - semestr III Kierunek Informatyka Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2013 c Copyright 2013 Janusz Słupik Podstawowe zasady bezpieczeństwa danych Bezpieczeństwo Obszary:
Bardziej szczegółowoKryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 5
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 5 Spis treści 9 Algorytmy asymetryczne RSA 3 9.1 Algorytm RSA................... 4 9.2 Szyfrowanie.....................
Bardziej szczegółowoWykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej
Wykład VII Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Problem pakowania plecaka System kryptograficzny Merklego-Hellmana
Bardziej szczegółowon = p q, (2.2) przy czym p i q losowe duże liczby pierwsze.
Wykład 2 Temat: Algorytm kryptograficzny RSA: schemat i opis algorytmu, procedura szyfrowania i odszyfrowania, aspekty bezpieczeństwa, stosowanie RSA jest algorytmem z kluczem publicznym i został opracowany
Bardziej szczegółowoLICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F.
Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Gauss (1777-1855) 14 marzec 2007 Zasadnicze twierdzenie teorii liczb Zasadnicze twierdzenie teorii liczb Ile jest liczb
Bardziej szczegółowoCopyright by K. Trybicka-Francik 1
Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (2) mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Szyfry wykładnicze Pohlig i Hellman 1978 r. Rivest, Shamir i Adleman
Bardziej szczegółowoZarys algorytmów kryptograficznych
Zarys algorytmów kryptograficznych Laboratorium: Algorytmy i struktury danych Spis treści 1 Wstęp 1 2 Szyfry 2 2.1 Algorytmy i szyfry........................ 2 2.2 Prosty algorytm XOR......................
Bardziej szczegółowoCopyright by K. Trybicka-Francik 1
Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (2) Szyfry wykładnicze Pohlig i Hellman 1978 r. Rivest, Shamir i Adleman metoda szyfrowania z kluczem jawnym DSA (Digital Signature Algorithm)
Bardziej szczegółowoWybrane zagadnienia teorii liczb
Wybrane zagadnienia teorii liczb Podzielność liczb NWW, NWD, Algorytm Euklidesa Arytmetyka modularna Potęgowanie modularne Małe twierdzenie Fermata Liczby pierwsze Kryptosystem RSA Podzielność liczb Relacja
Bardziej szczegółowoPodstawy systemów kryptograficznych z kluczem jawnym RSA
Podstawy systemów kryptograficznych z kluczem jawnym RSA RSA nazwa pochodząca od nazwisk twórców systemu (Rivest, Shamir, Adleman) Systemów z kluczem jawnym można używać do szyfrowania operacji przesyłanych
Bardziej szczegółowoDr inż. Robert Wójcik, p. 313, C-3, tel Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska
Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik
Bardziej szczegółowoSzyfrowanie RSA (Podróż do krainy kryptografii)
Szyfrowanie RSA (Podróż do krainy kryptografii) Nie bójmy się programować z wykorzystaniem filmów Academy Khana i innych dostępnych źródeł oprac. Piotr Maciej Jóźwik Wprowadzenie metodyczne Realizacja
Bardziej szczegółowoKodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, Kryptografia: algorytmy asymetryczne (RSA)
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 15, 19.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)
Bardziej szczegółowoKodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, Kryptografia: algorytmy asymetryczne (RSA)
Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 14, 7.06.2005 1 Kryptografia: algorytmy asymetryczne (RSA) Niech E K (x) oznacza szyfrowanie wiadomości x kluczem K (E od encrypt, D K (x)
Bardziej szczegółowoKryptografia systemy z kluczem publicznym. Kryptografia systemy z kluczem publicznym
Mieliśmy więc...... system kryptograficzny P = f C = f 1 P, gdzie funkcja f składała się z dwóch elementów: Algorytm (wzór) np. C = f(p) P + b mod N Parametry K E (enciphering key) tutaj: b oraz N. W dotychczasowej
Bardziej szczegółowoRSA. R.L.Rivest A. Shamir L. Adleman. Twórcy algorytmu RSA
RSA Symetryczny system szyfrowania to taki, w którym klucz szyfrujący pozwala zarówno szyfrować dane, jak również odszyfrowywać je. Opisane w poprzednich rozdziałach systemy były systemami symetrycznymi.
Bardziej szczegółowoZadanie 1: Protokół ślepych podpisów cyfrowych w oparciu o algorytm RSA
Informatyka, studia dzienne, inż. I st. semestr VI Podstawy Kryptografii - laboratorium 2010/2011 Prowadzący: prof. dr hab. Włodzimierz Jemec poniedziałek, 08:30 Data oddania: Ocena: Marcin Piekarski 150972
Bardziej szczegółowoAlgorytmy asymetryczne
Algorytmy asymetryczne Klucze występują w parach jeden do szyfrowania, drugi do deszyfrowania (niekiedy klucze mogą pracować zamiennie ) Opublikowanie jednego z kluczy nie zdradza drugiego, nawet gdy można
Bardziej szczegółowoMatematyka dyskretna. Wykład 11: Kryptografia z kluczem publicznym. Gniewomir Sarbicki
Matematyka dyskretna Wykład 11: Kryptografia z kluczem publicznym Gniewomir Sarbicki Idea kryptografii z kluczem publicznym: wiadomość f szyfrogram f 1 wiadomość Funkcja f (klucz publiczny) jest znana
Bardziej szczegółowoBezpieczeństwo systemów komputerowych
Bezpieczeństwo systemów komputerowych Szyfry asymetryczne Aleksy Schubert (Marcin Peczarski) Instytut Informatyki Uniwersytetu Warszawskiego 10 listopada 2015 Na podstawie wykładu Anny Kosieradzkiej z
Bardziej szczegółowoZałóżmy, że musimy zapakować plecak na wycieczkę. Plecak ma pojemność S. Przedmioty mają objętości,,...,, których suma jest większa od S.
Załóżmy, że musimy zapakować plecak na wycieczkę. Plecak ma pojemność S. Przedmioty mają objętości,,...,, których suma jest większa od S. Plecak ma być zapakowany optymalnie, tzn. bierzemy tylko te przedmioty,
Bardziej szczegółowoInformatyka kwantowa. Zaproszenie do fizyki. Zakład Optyki Nieliniowej. wykład z cyklu. Ryszard Tanaś. mailto:tanas@kielich.amu.edu.
Zakład Optyki Nieliniowej http://zon8.physd.amu.edu.pl 1/35 Informatyka kwantowa wykład z cyklu Zaproszenie do fizyki Ryszard Tanaś Umultowska 85, 61-614 Poznań mailto:tanas@kielich.amu.edu.pl Spis treści
Bardziej szczegółowoAtaki na RSA. Andrzej Chmielowiec. Centrum Modelowania Matematycznego Sigma. Ataki na RSA p. 1
Ataki na RSA Andrzej Chmielowiec andrzej.chmielowiec@cmmsigma.eu Centrum Modelowania Matematycznego Sigma Ataki na RSA p. 1 Plan prezentacji Wprowadzenie Ataki algebraiczne Ataki z kanałem pobocznym Podsumowanie
Bardziej szczegółowoKryptografia-0. przykład ze starożytności: około 489 r. p.n.e. niewidzialny atrament (pisze o nim Pliniusz Starszy I wiek n.e.)
Kryptografia-0 -zachowanie informacji dla osób wtajemniczonych -mimo że włamujący się ma dostęp do informacji zaszyfrowanej -mimo że włamujący się zna (?) stosowaną metodę szyfrowania -mimo że włamujący
Bardziej szczegółowoWykład VIII. Systemy kryptograficzne Kierunek Matematyka - semestr IV. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej
Wykład VIII Kierunek Matematyka - semestr IV Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Egzotyczne algorytmy z kluczem publicznym Przypomnienie Algorytm
Bardziej szczegółowoBezpieczeństwo systemów komputerowych. Kryptoanaliza. Metody łamania szyfrów. Cel BSK_2003. Copyright by K.Trybicka-Francik 1
Bezpieczeństwo systemów komputerowych mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Metody łamania szyfrów Łamanie z szyfrogramem Łamanie ze znanym tekstem jawnym Łamanie z wybranym
Bardziej szczegółowoBezpieczeństwo systemów komputerowych. Metody łamania szyfrów. Kryptoanaliza. Badane własności. Cel. Kryptoanaliza - szyfry przestawieniowe.
Bezpieczeństwo systemów komputerowych Metody łamania szyfrów Łamanie z szyfrogramem Łamanie ze znanym tekstem jawnym Łamanie z wybranym tekstem jawnym Łamanie z adaptacyjnie wybranym tekstem jawnym Łamanie
Bardziej szczegółowoBezpieczeństwo danych, zabezpieczanie safety, security
Bezpieczeństwo danych, zabezpieczanie safety, security Kryptologia Kryptologia, jako nauka ścisła, bazuje na zdobyczach matematyki, a w szczególności teorii liczb i matematyki dyskretnej. Kryptologia(zgr.κρυπτός
Bardziej szczegółowoSpis treści. Przedmowa... 9
Spis treści Przedmowa... 9 1. Algorytmy podstawowe... 13 1.1. Uwagi wstępne... 13 1.2. Dzielenie liczb całkowitych... 13 1.3. Algorytm Euklidesa... 20 1.4. Najmniejsza wspólna wielokrotność... 23 1.5.
Bardziej szczegółowoTeoria liczb. Magdalena Lemańska. Magdalena Lemańska,
Teoria liczb Magdalena Lemańska Literatura Matematyka Dyskretna Andrzej Szepietowski http://wazniak.mimuw.edu.pl/ Discrete Mathematics Seymour Lipschutz, Marc Lipson Wstęp Teoria liczb jest dziedziną matematyki,
Bardziej szczegółowoLICZBY PIERWSZE. Jan Ciurej Radosław Żak
LICZBY PIERWSZE Jan Ciurej Radosław Żak klasa IV a Katolicka Szkoła Podstawowa im. Świętej Rodziny z Nazaretu w Krakowie ul. Pędzichów 13, 31-152 Kraków opiekun - mgr Urszula Zacharska konsultacja informatyczna
Bardziej szczegółowoKryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 6a
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 6a Spis treści 10 Trochę matematyki (c.d.) 3 10.19 Reszty kwadratowe w Z p.............. 3 10.20
Bardziej szczegółowoElementy kryptografii Twierdzenie Halla. Pozostałe tematy. Barbara Przebieracz B. Przebieracz Pozostałe tematy
Pozostałe tematy Barbara Przebieracz 04.06.2016 Spis treści 1 2 Podstawowe pojęcia Kryptografia to nauka o metodach przesyłania wiadomości w zakamuflowanej postaci tak, aby tylko adresat mógł odrzucić
Bardziej szczegółowoKryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 9
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 9 Spis treści 14 Podpis cyfrowy 3 14.1 Przypomnienie................... 3 14.2 Cechy podpisu...................
Bardziej szczegółowoKryptografia systemy z kluczem tajnym. Kryptografia systemy z kluczem tajnym
Krótkie vademecum (słabego) szyfranta Podstawowe pojęcia: tekst jawny (otwarty) = tekst zaszyfrowany (kryptogram) alfabet obu tekstów (zwykle różny) jednostki tekstu: na przykład pojedyncza litera, digram,
Bardziej szczegółowoMatematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod
Bardziej szczegółowoSzyfrowanie informacji
Szyfrowanie informacji Szyfrowanie jest sposobem ochrony informacji przed zinterpretowaniem ich przez osoby niepowołane, lecz nie chroni przed ich odczytaniem lub skasowaniem. Informacje niezaszyfrowane
Bardziej szczegółowoWSIZ Copernicus we Wrocławiu
Bezpieczeństwo sieci komputerowych Wykład 4. Robert Wójcik Wyższa Szkoła Informatyki i Zarządzania Copernicus we Wrocławiu Plan wykładu Sylabus - punkty: 4. Usługi ochrony: poufność, integralność, dostępność,
Bardziej szczegółowoParametry systemów klucza publicznego
Parametry systemów klucza publicznego Andrzej Chmielowiec Instytut Podstawowych Problemów Techniki Polskiej Akademii Nauk 24 marca 2010 Algorytmy klucza publicznego Zastosowania algorytmów klucza publicznego
Bardziej szczegółowoKryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 7
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 7 Spis treści 11 Algorytm ElGamala 3 11.1 Wybór klucza.................... 3 11.2 Szyfrowanie.....................
Bardziej szczegółowoMatematyka dyskretna
Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 2 marca 2017 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod m)),
Bardziej szczegółowoKryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 1
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8physdamuedupl/~tanas Wykład 1 Spis treści 1 Kryptografia klasyczna wstęp 4 11 Literatura 4 12 Terminologia 6 13 Główne postacie
Bardziej szczegółowoMetoda Lenstry-Shora faktoryzacji dużych liczb całkowitych
Metoda Lenstry-Shora faktoryzacji dużych liczb całkowitych Tomasz Stroiński 23.06.2014 Po co faktoryzować tak duże liczby? System RSA Działanie systemu RSA Każdy użytkownik wybiera duże liczby pierwsze
Bardziej szczegółowoKRYPTOGRAFIA ASYMETRYCZNA I JEJ ZASTOSOWANIE
KRYPTOGRAFIA ASYMETRYCZNA I JEJ ZASTOSOWANIE W ALGORYTMACH KOMUNIKACJI Krzysztof Bartyzel Wydział Matematyki Fizyki i Informatyki, Uniwersytet Marii Curii-Skłodowskiej w Lublinie Streszczenie: Komunikacja
Bardziej szczegółowoTwierdzenie Eulera. Kongruencje wykład 6. Twierdzenie Eulera
Kongruencje wykład 6 ... Euler, 1760, Sankt Petersburg Dla każdego a m zachodzi kongruencja a φ(m) 1 (mod m). Przypomnijmy: φ(m) to liczba reszt modulo m względnie pierwszych z m; φ(m) = m(1 1/p 1 )...
Bardziej szczegółowoKryptologia przykład metody RSA
Kryptologia przykład metody RSA przygotowanie: - niech p=11, q=23 n= p*q = 253 - funkcja Eulera phi(n)=(p-1)*(q-1)=220 - teraz potrzebne jest e które nie jest podzielnikiem phi; na przykład liczba pierwsza
Bardziej szczegółowoMatematyka Dyskretna. Andrzej Szepietowski. 25 marca 2004 roku
Matematyka Dyskretna Andrzej Szepietowski 25 marca 2004 roku Rozdział 1 Teoria liczb 1.1 Dzielenie całkowitoliczbowe Zacznijmy od przypomnienia szkolnego algorytmu dzielenia liczb naturalnych. Podzielmy
Bardziej szczegółowo2.1. System kryptograficzny symetryczny (z kluczem tajnym) 2.2. System kryptograficzny asymetryczny (z kluczem publicznym)
Dr inż. Robert Wójcik, p. 313, C-3, tel. 320-27-40 Katedra Informatyki Technicznej (K-9) Wydział Elektroniki (W-4) Politechnika Wrocławska E-mail: Strona internetowa: robert.wojcik@pwr.edu.pl google: Wójcik
Bardziej szczegółowoKryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś Wykład 8
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 8 Spis treści 13 Szyfrowanie strumieniowe i generatory ciągów pseudolosowych 3 13.1 Synchroniczne
Bardziej szczegółowourządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania
Bezpieczeństwo systemów komputerowych urządzenia: awaria układów ochronnych, spowodowanie awarii oprogramowania Słabe punkty sieci komputerowych zbiory: kradzież, kopiowanie, nieupoważniony dostęp emisja
Bardziej szczegółowoRozdział 4. Macierze szyfrujące. 4.1 Algebra liniowa modulo 26
Rozdział 4 Macierze szyfrujące Opiszemy system kryptograficzny oparty o rachunek macierzowy. W dalszym ciągu przypuszczamy, że dany jest 26 literowy alfabet, w którym utożsamiamy litery i liczby tak, jak
Bardziej szczegółowoElementy teorii liczb. Matematyka dyskretna
Elementy teorii liczb Matematyka dyskretna Teoria liczb dziedzina matematyki, zajmująca się badaniem własności liczb (początkowo tylko naturalnych). Jej początki sięgają starożytności. Zajmowali się nią
Bardziej szczegółowoZamiana porcji informacji w taki sposób, iż jest ona niemożliwa do odczytania dla osoby postronnej. Tak zmienione dane nazywamy zaszyfrowanymi.
Spis treści: Czym jest szyfrowanie Po co nam szyfrowanie Szyfrowanie symetryczne Szyfrowanie asymetryczne Szyfrowanie DES Szyfrowanie 3DES Szyfrowanie IDEA Szyfrowanie RSA Podpis cyfrowy Szyfrowanie MD5
Bardziej szczegółowoKryptografia. z elementami kryptografii kwantowej. Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas. Wykład 11
Kryptografia z elementami kryptografii kwantowej Ryszard Tanaś http://zon8.physd.amu.edu.pl/~tanas Wykład 11 Spis treści 16 Zarządzanie kluczami 3 16.1 Generowanie kluczy................. 3 16.2 Przesyłanie
Bardziej szczegółowoSCHEMAT ZABEZPIECZENIA WYMIANY INFORMACJI POMIĘDZY TRZEMA UŻYTKOWNIKAMI KRYPTOGRAFICZNYM SYSTEMEM RSA
PRACE NAUKOWE Akademii im. Jana Długosza w Częstochowie SERIA: Edukacja Techniczna i Informatyczna 2012 z. VII Mikhail Selianinau, Piotr Kamiński Akademia im. Jana Długosza w Częstochowie SCHEMAT ZABEZPIECZENIA
Bardziej szczegółowoPrzykładowe zadania z teorii liczb
Przykładowe zadania z teorii liczb I. Podzielność liczb całkowitych. Liczba a = 346 przy dzieleniu przez pewną liczbę dodatnią całkowitą b daje iloraz k = 85 i resztę r. Znaleźć dzielnik b oraz resztę
Bardziej szczegółowoKONGRUENCJE. 1. a a (mod m) a b (mod m) b a (mod m) a b (mod m) b c (mod m) a c (mod m) Zatem relacja kongruencji jest relacją równoważności.
KONGRUENCJE Dla a, b, m Z mówimy, że liczba a przystaje do liczby b modulo m a b (mod m) m (a b) (a b (mod m) można też zapisać jako: a = km + b, k Z). Liczbę m nazywamy modułem kongruencji. Własności:
Bardziej szczegółowoBezpieczeństwo systemów komputerowych
Bezpieczeństwo systemów komputerowych Wprowadzenie do kryptologii Aleksy Schubert (Marcin Peczarski) Instytut Informatyki Uniwersytetu Warszawskiego 16 listopada 2016 Jak ta dziedzina powinna się nazywać?
Bardziej szczegółowoScenariusz lekcji. wymienić różnice pomiędzy kryptologią, kryptografią i kryptoanalizą;
Scenariusz lekcji Scenariusz lekcji 1 TEMAT LEKCJI: Kryptografia i kryptoanaliza. 2 CELE LEKCJI: 2.1 Wiadomości: Uczeń potrafi: podać definicje pojęć: kryptologia, kryptografia i kryptoanaliza; wymienić
Bardziej szczegółowoPuTTY. Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP. Inne interesujące programy pakietu PuTTY. Kryptografia symetryczna
PuTTY Systemy Operacyjne zaawansowane uŝytkowanie pakietu PuTTY, WinSCP Marcin Pilarski PuTTY emuluje terminal tekstowy łączący się z serwerem za pomocą protokołu Telnet, Rlogin oraz SSH1 i SSH2. Implementuje
Bardziej szczegółowoKongruencje i ich zastosowania
Kongruencje i ich zastosowania Andrzej Sładek sladek@ux2.math.us.edu.pl Instytut Matematyki, Uniwersytet Śląski w Katowicach Poznamy nowe fakty matematyczne, które pozwolą nam w łatwy sposób rozwiązać
Bardziej szczegółowoZegar ten przedstawia reszty z dzielenia przez 6. Obrazuje on jak kolejne liczby można przyporządkować do odpowiednich pokazanych na zegarze grup.
Rozgrzewka (Ci, którzy znają pojęcie kongruencji niech przejdą do zadania 3 bc i 4, jeśli i te zadania są za proste to proponuje zadanie 5): Zad.1 a) Marek wyjechał pociągiem do Warszawy o godzinie 21
Bardziej szczegółowoProjekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego
Projekt AS KOMPETENCJI jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki 2007-2013 CZŁOWIEK NAJLEPSZA INWESTYCJA Publikacja
Bardziej szczegółowoLiczby pierwsze na straży tajemnic
Liczby pierwsze na straży tajemnic Barbara Roszkowska-Lech MATEMATYKA DLA CIEKAWYCH ŚWIATA Liczby rzadzą światem Ile włosów na głowie? Dowód z wiedzą zerową Reszty kwadratowe Dzielenie sekretu Ile włosów
Bardziej szczegółowoMADE IN CHINA czyli SYSTEM RESZTOWY
MADE IN CHINA czyli SYSTEM RESZTOWY System ten oznaczmy skrótem RNS (residue number system czyli po prostu resztowy system liczbowy). Wartość liczby w tym systemie reprezentuje wektor (zbiór) reszt z dzielenia
Bardziej szczegółowo2 Kryptografia: algorytmy symetryczne
1 Kryptografia: wstęp Wyróżniamy algorytmy: Kodowanie i kompresja Streszczenie Wieczorowe Studia Licencjackie Wykład 14, 12.06.2007 symetryczne: ten sam klucz jest stosowany do szyfrowania i deszyfrowania;
Bardziej szczegółowoBSK. Copyright by Katarzyna Trybicka-Fancik 1. Bezpieczeństwo systemów komputerowych. Podpis cyfrowy. Podpisy cyfrowe i inne protokoły pośrednie
Bezpieczeństwo systemów komputerowych Podpis cyfrowy Podpisy cyfrowe i inne protokoły pośrednie Polski Komitet Normalizacyjny w grudniu 1997 ustanowił pierwszą polską normę określającą schemat podpisu
Bardziej szczegółowoWykład 4. Określimy teraz pewną ważną klasę pierścieni.
Wykład 4 Określimy teraz pewną ważną klasę pierścieni. Twierdzenie 1 Niech m, n Z. Jeśli n > 0 to istnieje dokładnie jedna para licz q, r, że: m = qn + r, 0 r < n. Liczbę r nazywamy resztą z dzielenia
Bardziej szczegółowoMarcin Szeliga Dane
Marcin Szeliga marcin@wss.pl Dane Agenda Kryptologia Szyfrowanie symetryczne Tryby szyfrów blokowych Szyfrowanie asymetryczne Systemy hybrydowe Podpis cyfrowy Kontrola dostępu do danych Kryptologia Model
Bardziej szczegółowoSieci komputerowe. Wykład 9: Elementy kryptografii. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski
Sieci komputerowe Wykład 9: Elementy kryptografii Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 9 1 / 32 Do tej pory chcieliśmy komunikować się efektywnie,
Bardziej szczegółowoKRYPTOGRAFIA Z KLUCZEM PUBLICZNYM (Ellis 1970)
1 [Wybrane materiały do ćwiczeń 3-7 z podstaw klasycznej kryptografii z elementami kryptografii kwantowej dla studentów IV roku (semestr letni 2008)] KRYPTOGRAFIA Z KLUCZEM PUBLICZNYM (Ellis 1970) (ang.
Bardziej szczegółowoRozdział 1. Zadania. 1.1 Liczby pierwsze. 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200.
Rozdział 1 Zadania 1.1 Liczby pierwsze 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200. 2. Wyliczyć największy wspólny dzielnik d liczb n i m oraz znaleźć liczby
Bardziej szczegółowoGrzegorz Bobiński. Matematyka Dyskretna
Grzegorz Bobiński Matematyka Dyskretna Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu 2016 Spis treści 1 Elementy teorii liczb 1 1.1 Twierdzenie o dzieleniu z resztą.................
Bardziej szczegółowoSeminarium Ochrony Danych
Opole, dn. 15 listopada 2005 Politechnika Opolska Wydział Elektrotechniki i Automatyki Kierunek: Informatyka Seminarium Ochrony Danych Temat: Nowoczesne metody kryptograficzne Autor: Prowadzący: Nitner
Bardziej szczegółowoLiczby pierwsze. Jacek Nowicki Wersja 1.0
Liczby pierwsze Jacek Nowicki Wersja 1.0 Wprowadzenie do liczb pierwszych www.liczbypierwsze.com Wiele liczb naturalnych daje się rozłożyć na czynniki mniejsze np. 10=5*2 lub 111=3*37. Jednak istnieją
Bardziej szczegółowoPierwiastki pierwotne, logarytmy dyskretne
Kongruencje wykład 7 Definicja Jeżeli rząd elementu a modulo n (dla n będącego liczba naturalną i całkowitego a, a n) wynosi φ(n) to a nazywamy pierwiastkiem pierwotnym modulo n. Przykład Czy 7 jest pierwiastkiem
Bardziej szczegółowoLiczby pierwsze. Jacek Nowicki Wersja 0.92
Jacek Nowicki Wersja 0.92 Wprowadzenie do liczb pierwszych Wiele liczb naturalnych daje się rozłożyć na czynniki mniejsze np. 10=5*2 lub 111=3*37. Jednak istnieją liczby, które nie mogą być rozłożone w
Bardziej szczegółowoZastosowania informatyki w gospodarce Wykład 5
Instytut Informatyki, Automatyki i Robotyki Zastosowania informatyki w gospodarce Wykład 5 Podstawowe mechanizmy bezpieczeństwa transakcji dr inż. Dariusz Caban dr inż. Jacek Jarnicki dr inż. Tomasz Walkowiak
Bardziej szczegółowoZestaw 2. Definicje i oznaczenia. inne grupy V 4 grupa czwórkowa Kleina D n grupa dihedralna S n grupa symetryczna A n grupa alternująca.
Zestaw 2 Definicja grupy Definicje i oznaczenia grupa zbiór z działaniem łącznym, posiadającym element neutralny, w którym każdy element posiada element odwrotny grupa abelowa (przemienna) grupa, w której
Bardziej szczegółowoGrzegorz Bobiński. Matematyka Dyskretna
Grzegorz Bobiński Matematyka Dyskretna Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu 2013 Spis treści 1 Elementy teorii liczb 1 1.1 Twierdzenie o dzieleniu z resztą.................
Bardziej szczegółowoAlgebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań
Algebra Liniowa 2 (INF, TIN), MAP1152 Lista zadań Przekształcenia liniowe, diagonalizacja macierzy 1. Podano współrzędne wektora v w bazie B. Znaleźć współrzędne tego wektora w bazie B, gdy: a) v = (1,
Bardziej szczegółowoStatystyka i eksploracja danych
Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,
Bardziej szczegółowoLaboratorium nr 3 Podpis elektroniczny i certyfikaty
Laboratorium nr 3 Podpis elektroniczny i certyfikaty Wprowadzenie W roku 2001 Prezydent RP podpisał ustawę o podpisie elektronicznym, w która stanowi że podpis elektroniczny jest równoprawny podpisowi
Bardziej szczegółowoZadania do samodzielnego rozwiązania
Zadania do samodzielnego rozwiązania I. Podzielność liczb całkowitych 1. Pewna liczba sześciocyfrowa a kończy się cyfrą 5. Jeśli tę cyfrę przestawimy na miejsce pierwsze ze strony lewej, to otrzymamy nową
Bardziej szczegółowoBezpieczeństwo danych i systemów informatycznych. Wykład 5
Bezpieczeństwo danych i systemów informatycznych Wykład 5 Kryptoanaliza Atak na tekst zaszyfrowany dostępny tylko szyfrogram Atak poprzez tekst częściowo znany istnieją słowa, których prawdopodobnie użyto
Bardziej szczegółowoAlgebra liniowa z geometrią analityczną
WYKŁAD. Własności zbiorów liczbowych. Podzielność liczb całowitych, relacja przystawania modulo, twierdzenie chińsie o resztach. Liczby całowite Liczby 0,±,±,±3,... nazywamy liczbami całowitymi. Zbiór
Bardziej szczegółowoMatematyka dyskretna
Matematyka dyskretna Wykład 10: Algorytmy teorii liczb Gniewomir Sarbicki Literatura A. Chrzęszczyk Algorytmy teorii liczb i kryptografii w przykładach Wydawnictwo BTC 2010 N. Koblitz Wykład z teorii liczb
Bardziej szczegółowoMatematyka dyskretna
Matematyka dyskretna Wykład 10: Algorytmy teorii liczb Gniewomir Sarbicki Literatura A. Chrzęszczyk Algorytmy teorii liczb i kryptografii w przykładach Wydawnictwo BTC 2010 N. Koblitz Wykład z teorii liczb
Bardziej szczegółowoBezpieczeństwo w sieci I. a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp.
Bezpieczeństwo w sieci I a raczej: zabezpieczenia wiarygodnosć, uwierzytelnianie itp. Kontrola dostępu Sprawdzanie tożsamości Zabezpieczenie danych przed podsłuchem Zabezpieczenie danych przed kradzieżą
Bardziej szczegółowoMatematyka dyskretna
Matematyka dyskretna Wykład 12: Krzywe eliptyczne Gniewomir Sarbicki Rozważać będziemy przestrzeń K n Definicja: x y λ K x = λy. Relację nazywamy różnieniem się o skalar Przykład: [4, 10, 6, 14] [6, 15,
Bardziej szczegółowoKongruencje oraz przykłady ich zastosowań
Strona 1 z 25 Kongruencje oraz przykłady ich zastosowań Andrzej Sładek, Instytut Matematyki UŚl sladek@ux2.math.us.edu.pl Spotkanie w LO im. Powstańców Śl w Bieruniu Starym 27 października 2005 Strona
Bardziej szczegółowoII klasa informatyka rozszerzona SZYFROWANIE INFORMACJI
II klasa informatyka rozszerzona SZYFROWANIE INFORMACJI STEGANOGRAFIA Steganografia jest nauką o komunikacji w taki sposób by obecność komunikatu nie mogła zostać wykryta. W odróżnieniu od kryptografii
Bardziej szczegółowoWprowadzenie do technologii VPN
Sieci komputerowe są powszechnie wykorzystywane do realizacji transakcji handlowych i prowadzenia działalności gospodarczej. Ich zaletą jest błyskawiczny dostęp do ludzi, którzy potrzebują informacji.
Bardziej szczegółowoKryptografia publiczna (asymetryczna) Szyfrowanie publiczne (asym) Problem klucza publicznego. Podpisujemy cyfrowo. Jak zweryfikować klucz publiczny?
Kryptografia publiczna (asymetryczna) Wykład 7 Systemy kryptograficzne z kluczem publicznym Wiedza o kluczu szyfrującym nie pozwala odgadnąć klucza deszyfrującego Odbiorca informacji generuje parę kluczy
Bardziej szczegółowoTajemnice szyfrów. Barbara Roszkowska Lech. MATEMATYKA DLA CIEKAWYCH ŚWIATA marzec 2017
Tajemnice szyfrów Barbara Roszkowska Lech MATEMATYKA DLA CIEKAWYCH ŚWIATA marzec 2017 Dążenie do odkrywania tajemnic tkwi głęboko w naturze człowieka, a nadzieja dotarcia tam, dokąd inni nie dotarli, pociąga
Bardziej szczegółowoBezpieczeństwo systemów komputerowych. Algorytmy kryptograficzne (1) Algorytmy kryptograficzne. Algorytmy kryptograficzne BSK_2003
Bezpieczeństwo systemów komputerowych Algorytmy kryptograficzne (1) mgr Katarzyna Trybicka-Francik kasiat@zeus.polsl.gliwice.pl pok. 503 Algorytmy kryptograficzne Przestawieniowe zmieniają porządek znaków
Bardziej szczegółowoJeśli lubisz matematykę
Witold Bednarek Jeśli lubisz matematykę Część 3 Opole 011 1 Wielokąt wypukły i kąty proste Pewien wielokąt wypukły ma cztery kąty proste. Czy wielokąt ten musi być prostokątem? Niech n oznacza liczbę wierzchołków
Bardziej szczegółowoPrzewodnik użytkownika
STOWARZYSZENIE PEMI Przewodnik użytkownika wstęp do podpisu elektronicznego kryptografia asymetryczna Stowarzyszenie PEMI Podpis elektroniczny Mobile Internet 2005 1. Dlaczego podpis elektroniczny? Podpis
Bardziej szczegółowoAtaki na algorytm RSA
Ataki na algorytm RSA Andrzej Chmielowiec 29 lipca 2009 Streszczenie Przedmiotem referatu są ataki na mechanizm klucza publicznego RSA. Wieloletnia historia wykorzystywania tego algorytmu naznaczona jest
Bardziej szczegółowo