ĆWICZENIE 7 DYFRAKTOMETR PROSZKOWY I BAZY PROSZKOWE. IDENTYFIKACJA SUBSTANCJI NA PODSTAWIE DYFRAKTOGRAMÓW PROSZKOWYCH
|
|
- Błażej Turek
- 8 lat temu
- Przeglądów:
Transkrypt
1 ĆWICZENIE 7 DYFRAKTOMETR PROSZKOWY I BAZY PROSZKOWE. IDENTYFIKACJA SUBSTANCJI NA PODSTAWIE DYFRAKTOGRAMÓW PROSZKOWYCH I. Wprowadzenie Minęło uż ponad sto lat, odkąd Wilhelm Konrad Röntgen odkrył promieniowanie X. Niewidzialne promienie, zdolne do przenikania przez ludzkie ciało i pozostawiaące edynie swó ślad na kliszy fotograficzne bardzo szybko znalazły praktyczne zastosowanie. Obecnie prawie każda przychodnia lekarska wyposażona est w aparat rentgenowski, codziennie wykonuąc przy ego pomocy dziesiątki prześwietleń, co w większości wypadków umożliwia lekarzom prawidłowe postawienie diagnoz. Promienie Röntgena znalazły także liczne zastosowania w badaniu struktury ciał stałych, głównie kryształów. Promieniowanie rentgenowskie to fale elektromagnetyczne o długości m. W widmie fal elektromagnetycznych zamuą miesce pomiędzy promieniowaniem UV i gamma. Obecnie promieniowanie X możemy wytwarzać za pomocą lampy rentgenowskie lub synchrotronu. 1. Lampa rentgenowska 1.1. Budowa i działanie lampy rentgenowskie Nabardzie istotnymi elementami lampy rentgenowskie są dwie elektrody - katoda i anoda. Elektrody te znaduą się w szklane bańce próżniowe. Napięcie pomiędzy nimi est rzędu kilkudziesięciu kilowoltów. Katoda dodatkowo wchodzi w skład drugiego obwodu, zwanego obwodem żarzenia (rys. 1). Płynący przezeń prąd ma stosunkowo duże natężenie (rzędu A), przez co katoda rozgrzana est do wysokie temperatury. Energia drgań termicznych atomów katody est tak duża, że swobodne elektrony (z pasma przewodnictwa) opuszczaą katodę. W wyniku działania pola elektrycznego są one przyspieszane w kierunku anody. Rys. 1. Ideowy schemat oraz fotografia lampy rentgenowskie. Na drodze pomiędzy elektrodami elektrony zyskuą energię kinetyczną równą pracy pola elektrycznego: 1
2 E k = m ev = eu (1) e = C ładunek elektronu (ładunek elementarny) me = g - masa spoczynkowa elektronu U napięcie pomiędzy katodą i anodą Elektron po dotarciu do anody est hamowany w e materiale. Z teorii Maxwella wynika, że ładunek poruszaący się ruchem przyspieszonym stae się źródłem promieniowania elektromagnetycznego. W ten sposób w przestrzeni rozchodzi się fala elektromagnetyczna, w tym wypadku promieniowanie X. 1.. Widmo promieniowania lampy rentgenowskie Widmo promieniowania est to zależność natężenia promieniowania od długości fali. Widmo promieniowania lampy rentgenowskie ma dwie składowe: widmo ciągłe oraz widmo liniowe. Widmo ciągłe est wynikiem hamowania elektronów w materiale anody, natomiast widmo liniowe pochodzi od promieniowania charakterystycznego materiału anody. Mechanizm powstawania widma charakterystycznego est następuący: rozpędzony elektron, eżeli posiada dostatecznie dużą energię, est zdolny onizować atomy, tzn. wybiać z ich powłok inne elektrony. Wolne miesce po wybitym elektronie zamue elektron z wyższe powłoki, czemu towarzyszy emisa kwantu promieniowania charakterystycznego o energii równe różnicy energii elektronów na powłokach, pomiędzy którymi nastąpiło przeście. W zależności od tego, z które powłoki został wybity elektron, w widmie charakterystycznym wyróżniamy serie K, L, M itd. W seriach tych występuą linie α, β, γ itd., odpowiadaące powłokom, z których nastąpił przeskok (rys. ). W przypadku wybicia elektronu z powłoki K nabardzie prawdopodobnym est przeskok elektronu z powłoki L (linia Kα). Powstały w wyniku tego prześcia foton ma energię hν = E L E K () gdzie h = J s to stała Plancka, ν - częstotliwość promieniowania, a EK i EL są to energie elektronu na powłokach K i L. Energie elektronów na powłokach są ściśle określone, zatem energie kwantów promieniowania charakterystycznego także maą pewne ściśle określone wartości i w widmie lampy poawiaą się w postaci wąskich pików. Energie możliwych prześć elektronowych są charakterystyczne dla danego pierwiastka, stąd promieniowanie powstałe w wyniku tych prześć nazywa się charakterystycznym.
3 Rys.. Powstawanie promieniowania charakterystycznego. Rysunek 3 przedstawia przykładowe widmo lampy rentgenowskie. Na tle widma ciągłego widać linie Kα oraz Kβ promieniowania charakterystycznego materiału anody. Linia Kα odpowiada promieniowaniu o mniesze energii (przeskok elektronu tylko o edną powłokę), czyli o większe długości fali. Z kolei intensywność linii Kα (wysokość piku) est większa, gdyż prawdopodobieństwo przeskoku elektronu na powłokę K z powłoki L est większe niż z powłoki M, stąd ilość fotonów powstałych w wyniku prześcia Kα będzie większa. Rys. 3. Widmo lampy rentgenowskie. Natężenie promieniowania zwiększa się ze wzrostem napięcia anodowego oraz ze wzrostem natężenia prądu anodowego. Zależność ta dana est wzorem: I natężenie promieniowania C stała Z liczba atomowa materiału anody i natężenie prądu anodowego U napięcie anodowe I = CZiU (3) 3
4 1.3. Krótkofalowa granica promieniowania Widma rentgenowskie charakteryzuą się istnieniem pewnego progu długości fal, określanego ako krótkofalowa granica widma λmin, poniże którego natężenie promieniowania est równe zero (rys. 3). Oznacza to, że nie powstaą żadne fotony o energii większe od pewne wartości progowe Emax c m/s - prędkość światła w próżni. E max = hν max = h C λ min (4) Efekt ten można wyaśnić w oparciu o korpuskularną naturę promieniowania. Elektron rozpędzony w polu elektrycznym nabywa energię kinetyczną zdefiniowaną wzorem (1). W wyniku hamowania w materiale anody energia ta zamienia się po części na energię hν powstałego kwantu promieniowania. Naczęście ednak zanim elektron zostanie całkowicie wyhamowany, przebywa w materiale anody pewną drogę tracąc w wyniku oddziaływań z atomami część swoe energii. Energia ta przekazywana est atomom wprawiaąc e w drgania termiczne i rozchodzi się w materiale anody w postaci ciepła. Należy zaznaczyć, że zaledwie 1% energii elektronów zamienia się na promieniowanie rentgenowskie. Pozostałe 99% powodue edynie rozgrzanie anody, przez co musi ona być intensywnie chłodzona. W przeciwnym wypadku bardzo szybko nastąpiłoby e uszkodzenie. Anoda musi być zatem wykonana z materiału charakteryzuącego się wysoką temperaturą topnienia oraz dobrym przewodnictwem cieplnym. Oprócz tego w lampach rentgenowskich stosowane są urządzenia odprowadzaące ciepło anody. Mogą to być np. układy złożone z radiatora i wentylatora, ak to ma miesce w lampie przedstawione na fotografii (rys. 1), bądź też chłodzenie obiegiem wody, ak w dyfraktometrze D8 Advance firmy Bruker na naszym Wydziale.. Krystalografia rentgenowska Promienie Röntgena odgrywaą kluczową rolę w badaniach krystalograficznych. Przenikliwość promieni X i ich długość fali porównywalna z odległościami międzyatomowymi w ciele stałym sprawiaą, że dzięki falowe naturze promieniowania możemy się bardzo wiele dowiedzieć o wewnętrzne budowie ciał krystalicznych. Wszystkie ciała stałe możemy podzielić na krystaliczne i amorficzne. W ciałach amorficznych rozmieszczenie atomów est przypadkowe. W monokryształach i materiałach polikrystalicznych natomiast atomy tworzą uporządkowaną strukturę, tzw. sieć krystaliczną. Podstawy fizyczne dyfraktometrii rentgenowskie U podstaw metod dyfraktometrycznych leży fakt, że większość spotykanych w przyrodzie substanci ma strukturę krystaliczną, czyli składa się z atomów ułożonych w regularny i ściśle uporządkowany sposób określony przez strukturę sieci krystaliczne. Wielkość poedynczych kryształów, czyli obszarów materiału, w których zachowane est określone uporządkowanie atomów, może być przy tym bardzo różna; mogą to być zarówno poedyncze monokryształy o rozmiarach rzędu centymetrów ak też ziarna materiałów 4
5 polikrystalicznych o rozmiarach rzędu mikrometrów. Typowe materiały techniczne (metale, ceramika) są polikryształami składaącymi się z wielkie liczby krystalitów ułożonych w sposób przypadkowy w obętości materiału. Techniki stosowane w dyfraktometrii rentgenowskie są w pewnym stopniu zależne od tego czy badany obiekt ma formę poedynczego monokryształu czy też próbki polikrystaliczne, ednak podstawowa idea dyfrakci est taka sama. Na rysunku 4 przedstawiono schemat ułożenia atomów w sieci krystaliczne. Rys. 4. Przykładowy schemat ułożenia atomów w sieci krystaliczne z oznaczeniem różnych grup (rodzin) wzaemnie równoległych płaszczyzn sieciowych. Przez atomy sieci poprowadzić można wiele różnych, wzaemnie równoległych grup płaszczyzn sieciowych. Niektóre grupy płaszczyzn są gęsto upakowane atomami ak np. grupa (010) inne zaś, ak np. (310) zawieraą znacznie mnie atomów. Można sobie wyobrazić, że każda płaszczyzna atomów stanowi dla padaących promieni rentgenowskich rodza półprzepuszczalnego zwierciadła, które częściowo odbia te promienie zgodnie z prawami optyki geometryczne (kąt odbicia = kątowi padania). Schemat takiego odbicia pokazano na rysunku 5. Rys. 5. Schemat odbicia promieni rentgenowskich od dwóch równoległych płaszczyzn atomowych. Odbicie promieni rentgenowskich (czyli fal elekromagnetycznych o długościach fali porównywalnych z odległościami międzyatomowymi) od poedyncze płaszczyzny atomów est o wiele za słabe, aby mogło zostać zaobserwowane doświadczalnie. Jednak w przypadku gdy odbicia od, 3 i kilkuset następnych równoległych płaszczyzn sieciowych nałożą się na siebie w zgodne fazie sumaryczna fala odbita będzie na tyle silna, że spowodue wyraźnie mierzalny efekt nazywany odbiciem interferencynym lub odbiciem Braggów. Warunki akie 5
6 muszą być spełnione aby efekt ten wystąpił zostały po raz pierwszy podane przez Braggów w 1913 roku i noszą nazwę równania Braggów: gdzie: d odległość między sąsiednimi płaszczyznami atomowymi θ - kąt dyfrakci (patrz rys. 5) λ - długość fali promieniowania rentgenowskiego n liczba naturalna nλ = d sin θ (5) Dyfrakca na płaszczyznach sieciowych występue tylko wtedy, gdy spełniony est warunek Braggów. Dlatego nie mamy tu widma tylko dyfraktogram, na którym w miescach dyfrakci próbki zareestrowane są refleksy. Należy ednak pamiętać o tym, że promieniowanie rentgenowskie nie odbia się w sensie dosłownym. Fotony rozpraszaą się na atomach sprężyście we wszystkich kierunkach, lecz przy zadane długości fali i kącie padania promieniowania wzmocnienie interferencyne nastąpi tylko dla pewnych ściśle określonych kątów odbicia. Równanie (5) wyraża w prosty sposób warunek odbicia interferencynego, mówiący że różnice dróg promieni odbitych od płaszczyzn atomowych należących do te same rodziny muszą być dokładnie równe wielokrotności długości fali (patrz rys. 5). Jednym z ważnych wniosków wynikaących z tego równania est ogólny warunek na długość fali promieniowania rentgenowskiego, aka może być stosowana w badaniach dyfraktometrycznych. Ponieważ sinθ est zawsze 1 zaś n 1, aby uzyskać akiekolwiek odbicie dyfrakcyne od kryształu, długość fali musi spełniać warunek: λ d max (6) gdzie dmax oznacza nawiększą odległość między sąsiaduącymi płaszczyznami sieciowymi badanego kryształu. Ponieważ wymiary komórek elementarnych kryształów są rzędu angstremów (1Å =10-10 m), tego samego rzędu muszą być również stosowane długości fal rentgenowskich. Zależność między długością fali promieniowania rentgenowskiego a ego energią wyrażoną w kev określa przybliżony wzór: E[keV] = 1.4 λ[å] (7) W dyfraktometrii proszkowe mamy do czynienia z badaniami materiałów polikrystalicznych składaących się z wielkie liczby drobnych, przypadkowo zorientowanych kryształów. Odnosi sie to zarówno do sproszkowanych substanci, ak też do typowych materiałów polikrystalicznych, ak stal czy ceramika. Zasadę badania dyfraktometrycznego tego rodzau materiałów wyaśnia rysunek 6. 6
7 Rys. 6. Odbicia dyfrakcyne od próbki polikrystaliczne (proszkowe) składaące się z duże liczby drobnych, przypadkowo zorientowanych krystalitów. Wśród duże liczby przypadkowo zorientowanych krystalitów zawsze znadą się takie, których orientaca pozwala na spełnienie warunku (5) dla określonych grup płaszczyzn sieciowych. Spełnienie tego warunku przy ustalone długości fali λ oraz odległości międzypłaszczyznowe d oznacza, że kąt między kierunkiem wiązki padaące a odbite musi mieć ściśle określoną wartość θ wyznaczoną z równania (5). Tym samym odbicia dyfrakcyne pochodzące z różnych krystalitów (ale od te same rodziny płaszczyzn sieciowych) muszą zawsze leżeć na ednym stożku wyznaczonym przez promienie odbite pod kątem θ w stosunku do promienia padaącego (patrz rys 6). Oczywiście odbicia pochodzące od różnych rodzin płaszczyzn sieciowych, maących inne odległości międzypłaszczyznowe d, będą tworzyć osobne stożki o innych wartościach kąta θ (patrz rys. 6). W czasie badania reestrue się położenia kątowe oraz natężenia odbić dyfrakcynych od różnych grup płaszczyzn sieciowych. Przykład dyfraktogramu sproszkowanego KBr pokazano na rys (stopień) Rys. 7. Dyfraktogram sproszkowanego KBr pokazuący położenia kątowe oraz natężenia odbić dyfrakcynych (linii dyfrakcynych) pochodzących od różnych rodzin płaszczyzn sieciowych. 7
8 Na kształt dyfraktogramu wpływ ma wielkość krystalitów tworzących badany materiał. Im mniesza est wielkość krystalitów tym refleksy są szersze i bardzie rozmyte. Należy w tym miescu pamiętać, że wielkość krystalitów nie zawsze est równa wielkości ziaren. Ziarna mogą i naczęście są zbudowane z domen krystalicznych i dlatego wielkość krystalitów bywa mniesza niż wielkość ziaren. Rysunek 8 przedstawia dyfraktogramy proszku o krystalitach rzędu kilku nanometrów wraz z proszkiem tworzonym przez krystality o wielkości mikrometrów Intensywność (stopień) Rys. 8. Zestawienie dyfraktogramu proszków: nanorozmiarowego (góra) i mikrorozmiarowego (dół). Natężene wiązki promieni rentgenowskich odbitych od płaszczyzny () I = I 0 λ 3 N C F T A L p H (8) I Io λ N C F T A Lp - natężenie wiązki odbite - natężenie wiązki pierwotne - długość fali - liczba komórek elementarnych w ednostce obętości - czynnik uwzględniaący natężenie promieniowania odbitego/rozproszonego przez elektron - czynnik struktury - czynnik temperaturowy uwzględnia wpływ drgań termicznych atomów w materiale na natężenie wiązki odbite - czynnik absorpcyny uwzględnia osłabienie wiązki promieniowania wskutek absorpci - czynnik Lorentza - polaryzacyny - uwzględnia zależność natężenia wiązek ugiętych od ich częściowe polaryzaci osłabiaące natężenie promieniowania oraz fakt, że promieniowanie rentgenowskie padaące na badane ciało krystaliczne nie są zwykle ściśle monochromatyczne 8
9 L p = 1+cos θ sin θ cos θ (9) H - czynnik krotności płaszczyzn sieciowych - sumowanie się natężeń wiązek ugiętych na płaszczyznach o te same odległości międzypłaszczyznowe d; czyli ilość płaszczyzn biorących udział w tworzeniu danego refleksu; np. w układzie regularnym 6 płaszczyzn: (100), (010), (001), (-100), (0-10), (00-1) Czynnik struktury F Czynnik struktury F wyraża wpływ rozmieszczenia atomów w komórce elementarne kryształu oraz zdolności rozpraszania przez nie promieniowania wyrażane przez atomowy czynnik rozpraszania f. Inacze, czynnik rozpraszania atomowego f est miarą amplitudy fali rozproszone przez poszczególne atomy, a czynnik struktury F sumą fal rozproszonych na wszystkich atomach komórki elementarne. Rysunek 9 przedstawia zależność czynnika atomowego f dla węgla od wartości sinθ/λ. 6 f C ,0 0,5 1,0 1,5,0 sin/ Rys. 9. Zależność czynnika atomowego f od wartości sinθ/λ dla węgla. Ogólny wzór na czynnik struktury wyrażony est wzorem: F f hx ky lz i f sin hx ky lz cos f - czynnik atomowy -tego atomu w komórce x, y, z współrzędne atomu w komórce h k l wskaźniki Millera (10) Dla komórek centrosymetrycznych (ze środkiem symetrii): np. dla komórki elementarne przestrzennie centrowane typu I istnieą dwa atomy A tego samego rodzau o współrzędnych x, y, z oraz ½+x, ½+y, ½+z; wtedy F (1) f A cos h 0 k 0 l 0 f A cos h k l (13) F f A F f cos 0 cos h k l f 1 cos h k l Więc eśli h+k+l est parzyste F = fa eśli h+k+l est nieparzyste F = fa[1-1] = 0 cos hx ky lz A (11) 9
10 Dla komórki elementarne typu F istnieą cztery atomy A tego samego rodzau: (000), (½ ½ 0), (½ 0 ½), (0 ½ ½); wtedy podstawiaąc położenia do wzoru (11) otrzymuemy: 1 1 F f A cos h 0 k 0 l 0 cos h k l 0 cos 1 1 cos h0 k l f A1 cos h k cos h l cos k l Czyli zgodnie z prostymi zasadami matematycznymi: Jeśli h+k, h+l, k+l est parzyste F = fa[ ] = 4fA Jeśli h+k, h+l, k+l est nieparzyste F = fa[ ] = h k 0 l II. Budowa dyfraktometru proszkowego Badania dyfraktometryczne wykonywane są przy użyciu urządzeń zwanych dyfraktometrami. Każdy taki dyfraktometr zbudowany est z lampy rentgenowskie, monochromatora lub filtrów, stolika do mocowania próbek, detektora, generatora wysokiego napięcia i komputera steruącego pracą dyfraktometru. Podstawowy schemat kształtowania wiązki przedstawia rysunek 10. Ponieważ promieniowanie użyte do pomiaru musi być monochromatyczne, stąd konieczność zastosowania monochromatorów lub filtrów wycinaących/absorbuących niepożądany fragment widma i pozostawienie edne, ściśle określone długości fali. Jest to naczęście linia Kα promieniowania charakterystycznego stosowane anody. Przykład działania filtrów przedstawia rysunek 11. Rys. 10. Źródło promieniowania rentgenowskiego z monochromatorem; 1 ognisko lampy rentgenowskie, kryształ monochromatora, 3 punkt weścia wiązki promieni do licznika. Rys. 11. Porównanie widma anody miedziowe a) przed i b) po prześciu przez filtr niklowy. Linia przerywana masowy współczynnik absorpci niklu. 10
11 Nasz wydział posiada dyfraktometr firmy Bruker D8 Advance (rysunek 1a) zaopatrzony w szybki detektor Super Speed Vantec-1 (rysunek 1b). 1a 1b Rys. 1. Dyfraktometr proszkowy D8 Advance (a), detektor Vantec-1 (b). III. Dyfraktometria proszkowa w praktyce Dyfraktometria rentgenowska est techniką badawczą znaną i szeroko stosowaną w dziedzinie fizyki ciała stałego, krystalografii oraz badań materiałowych. Przez wiele lat była to ednak technika stosowana głównie do badań naukowych związanych z określaniem struktury sieci krystalicznych różnych substanci, wyznaczaniem ich komórek elementarnych oraz stałych sieciowych. Do typowych zastosowań obecnie należy: Jakościowa i ilościowa krystalograficzna analiza fazowa Wskaźnikowanie oraz określenie parametrów sieci krystaliczne Określenie struktury krystaliczne Wielkość krystalitu Mikronaprężenia Stopień krystalizaci Cienkie warstwy preferowana orientaca Badania tekstury 11
12 Aby uzyskać wyniki nawyższe akości należy przed wykonaniem badania dyfrakcynego postawić pytania, na które poszukue się odpowiedzi. Jest to konieczne ze względu na zoptymalizowanie pomiaru. Inny typ pomiaru est wymagany dla potrzeb identyfikaci faz, analizy ilościowe i określenia wielkości krystalitów, udokładnienia struktury czy określenia tekstury materiału. Ponadto czas pomiaru zależy od zdolności dyfrakcynych próbki, e ilości, a także kształtu (np. w przypadku minerałów). Identyfikaca faz polega na wykonaniu dyfraktogramu proszkowego o takie akości by refleksy o bardzo słabe intensywności były łatwo rozróżnialne. Im więce est zareestrowanych refleksów o dobre rozdzielczości tym identyfikaca badane substanci est łatwiesza i dokładniesza. Identyfikacę fazową wykonue się w oparciu o położenie refleksu i ego intensywność. Podczas identyfikaci fazowe należy zidentyfikować wszystkie refleksy. Analiza danych polega na porównaniu obrazów dyfraktometrycznych badane próbki z obrazami ednofazowych materiałów wzorcowych uzyskanymi drogą obliczeń teoretycznych lub badań doświadczalnych. Porównanie takie może dotyczyć pełnych zapisów dyfraktometrycznych lub też edynie tzw. zredukowanych zbiorów danych w postaci listy odległości międzypłaszczyznowych charakterystycznych dla danego kryształu d i odpowiadaących im natężeń linii dyfrakcynych Imax. Zestawy tego rodzau, zwane listami (d, Imax) stanowią rodza krystalograficznego odcisku palca poszczególnych materiałów i są gromadzone w międzynarodowych bazach danych stale uzupełnianych i aktualizowanych. Przykładowe dyfraktogramy przedstawiaą rysunki 13 i 14. Rys. 13. Dyfraktogram proszkowy fazy krystaliczne o składzie wymienionym powyże. Dyfraktogramy wykonane z bardzo małym krokiem pomiarowym na dokładnie skalibrowanym dyfraktometrze nadaą się do określenia parametrów sieci. Wielkość kroku i dokładność pomiarowa sprzętu wyznaczaą dokładność parametrów sieci. Podczas planowania pomiarów należy pamiętać, że zmnieszenie kroku pomiaru wymaga wydłużenia czasu reestraci, a więc wydłużenia czasu pomiarowego. 1
13 Rys. 14. Dyfraktogram substanci amorficzne. Intensity (counts) Analiza ilościowa polega na określeniu wzaemnego stosunku wagowego faz w mieszaninie na podstawie krzywe wzorcowe lub dodatku standardu wewnętrznego. Dokładność wyniku zależy od akości zareestrowanego dyfraktogramu, dokładności przygotowania wzorców, zastosowane metody obliczeń (intensywność refleksu lub powierzchnia refleksu). Krystalograficzne bazy proszkowe Istotnym czynnikiem wpływaącym na zwiększenie wykorzystania technik dyfraktometrycznych w laboratoriach est postęp w dziedzinie budowy dyfraktometrów rentgenowskich (budowa urządzeń przenośnych) oraz stworzenie specalistycznych baz danych oraz programów komputerowych ułatwiaących stosunkowo skomplikowaną analizę danych dyfraktometrycznych. Przykładową kartę z bazy przedstawia rysunek 15. Bazy pozwalaą nie tylko zidentyfikowac związek, lecz również mieszaninę czy minerał. Napopularniesze bazy danych: Theta ( ) JCPDS ICDD (Join Committee for Powder Diffraction Standards International Centre For Diffraction Data) ICSD (Inorganic Crystal Structure Database) CSD (Cambridge Structural Database) ASTM (American Society for Testing Materials) 13
14 Rys. 15. Karta krystalograficzna z bazy ICDD dla α-alo3. Do obróbki i analizy zareestrowanych danych na dyfraktometrze D8 Advance służy dedykowane oprogramowanie DIFFRAC Plus wraz z programami stowarzyszonymi: EVA - program do wizualizaci danych, wstępne obróbki, identyfikaci, dyfraktogramów 3D, itp. File Exchange - oprogramowanie do konwersi danych. Dane pomiarowe są zachowane w formacie pliku *.raw i ten format odczytuą programy firmy Bruker. Ponadto oprogramowanie DIFFRAC+ może być przydatne do wykonania analizy z danych zmierzonych na innym dyfraktometrze. Oprogramowanie do konwersi danych z formatu dyfraktometru D8 *.raw do danych liczbowych w różnych formatach i odwrotnie est przydatne przy transferze danych. PDF Maint - Program firmy Bruker do przeszukiwnaia bazy danych ICDD. TOPAS 3 - program w oparciu o różne metody dopasowania profilu refleksu; umożliwia wykonanie analiz ilościowych, akościowych, rozwiązywania struktur itp. IV. Przebieg ćwiczenia Identyfikaca substanci 1. Wykonanie pomiaru metodą proszkową (utarcie substanci, naniesienie na kuwetę, umocowanie na stoliku, zareestrowanie dyfraktogramu próbki) program XRD Commander 14
15 . Identyfikaca proszku na podstawie zmierzonego dyfraktogramu z wykorzystaniem programu EVA i bazy ICDD PDF- Release 008 Wskaźnikowanie substanci i policzenie czynnika rozbieżności struktury R 1. Identyfikaca związku na podstawie otrzymanego od prowadzącego dyfraktogramu z użyciem tablic wyznaczenie położeń kątowych linii dyfrakcynych θ; przeliczenie wartości kątów na wielkość d/n korzystaąc z wzoru Braggów przymuąc znaną wartość długości fali λ (CuKα1) = Å; określenie intensywności zareestrowanych linii (pomiar wysokości intensywność nasilniesze obserwowane linii przyąć ako 100%); na podstawie stabelaryzowanych wyliczonych wartości d/n oraz I znaduemy odpowiednią grupę wartości d w skorowidzu liczbowym; każda substanca scharakteryzowana est przez podanie wartości d/n dla kilku nasilnieszych linii dyfrakcynych, a mianowicie: d1 - linia nasilniesza, d druga co do natężenia, d3 - trzecia co do natężenia; przeglądamy drugą kolumnę wartości d w celu znalezienia nalepie pasuące wartości d; eżeli znadziemy dobrą zgodność dla kilku nasilnieszych linii wymienionych w skorowidzu, wyszukuemy właściwą kartę w kartotece i porównuemy wartości d/n i I wszystkich obserwowanych linii z wartościami podanymi w karcie; eśli otrzymamy pełną zgodność, wówczas identyfikaca est zakończona; należy potwierdzić identyfikacę w bazie krystalograficzne.. Przeprowadzić wskaźnikowanie linii dyfrakcynych i obliczyć stałą sieciową komórki a dla preparatu krystalizuącego w układzie regularnym. Koleność przeprowadzonych obliczeń (tabela): sinθ Δsin θ z uśrednionych namnieszych wartości wyliczyć Δsin θmin stała sieciowa a (porównać z wartością tablicową) sin min a 4a 4sin min N N = sin /k, K = /4a na podstawie N (= h +k +l ) rozkład na sumę kwadratów wskaźników - wywskaźnikowanie linii dyfrakcynych (tabela 5..) przyporządkowanie poszczególnym refleksom odpowiednich wartości czynnika krotności płaszczyzn H (tab. 5.3) Lp Fexp F exp I L H p 15
16 z wykreślonego wykresu zależności teoretycznego czynnika atomowego f od sinθ/λ odczytać wartości eksperymentalne czynników f znaąc położenia atomów w komórce (x,y,z) oraz wskaźniki () wyliczyć Fobl F f cos hx ky lz po zsumowaniu Fobl oraz zsumowaniu Fexp wyliczyć współczynnik skali K przeskalować Fexp tzn. pomnożyć Fexp przez K otrzymuemy Fexp w skali Fobl czyli Fexp wyliczyć wskaźnik rozbieżności struktury Fexp ' Fobl R F ' F obl F exp exp V. Opracowanie wyników i sprawozdanie Sprawozdanie powinno zawierać: zestawienie otrzymanych wyników w postaci tabeli (włącznie z danymi literaturowymi oraz stałą sieciową a literaturową i eksperymentalną) tok obliczeń wykonanych do wywskaźnikowania dyfraktogramu i wyliczenia wskaźnika rozbieżności struktury R θ I sinθ sin θ Δsin θ N h k l H Lp Fexp f Fobl Fexp F exp F obl Przykładowe obliczenia: Substanca zidentyfikowana: NaCl (typ F) Na (000), (½ ½ 0), (½ 0 ½), (0 ½ ½) Cl (½ ½ ½), (0 0 ½), (0 ½ 0), (½ 0 0) Np. dla N = 4 h k l = 0 0 H = 6 Np. dla N = 19 h k l = H = 4 Fobl F f Cl f Na 1 cos h k cos h l cos k l cos h 1 k l cos l cos k cos h 16
17 F f f cos h k l 1 cos h k cos h l cos k l Na Cl Ponieważ np. dla wynoszących (00) h+k oraz k+l oraz h+l są liczbami parzystymi: F f f cos h k l 4 Na I dale, ponieważ h+k+l est parzyste, to F 4 f 4 f Ponieważ dla refleksu (331) analogicznie h+k oraz k+l oraz h+l są liczbami parzystymi: F Jednak h+k+l est nieparzyste, to: F 4 f 4 f Cl Na f f cos h k l 4 Na Cl Na Cl Cl Uwagi odnośnie bezpieczeństwa pracy z dyfraktometrem D8 Advance Dla zabezpieczenia osób przebywaących w Pracowni przed promieniowaniem X komora pomiarowa dyfraktometru osłonięta est płytami ze szkła ołowiowego. Dzięki te osłonie natężenie wiązki wychodzące na zewnątrz est porównywalne z poziomem naturalnego tła. Dyfraktometr posiada zabezpieczenia uniemożliwiaące otwarcie komory podczas pomiaru oraz uruchomienie pomiaru przy otwartych/niezablokowanych drzwiach od komory. W trakcie pracy z dyfraktometrem należy przestrzegać następuących reguł: 1. Włączanie i wyłączanie dyfraktometru est możliwe tylko po otrzymaniu zezwolenia i pod kontrolą prowadzącego ćwiczenia.. W trakcie pomiarów zabrania się dokonywania zmian połączeń elektrycznych lub parametrów poszczególnych układów elektronicznych dyfraktometru. 3. Nie manipulować włącznikami i przyciskami na przednim panelu dyfraktometru za wyątkiem przycisku OPEN DOOR, który umożliwia otwarcie komory dyfraktometru. Zagadnienia do kolokwium podstawy krystalografii strukturalne, podstawowe typy struktur krystalicznych, układy krystalograficzne, promieniowanie rentgenowskie, ego otrzymywanie i podstawy dyfrakci, widmo ciągłe i charakterystyczne, filtry rentgenowskie, promieniowanie monochromatyczne, ego właściwości; prawo Braggów, intensywność refleksów, schemat budowy dyfraktometru proszkowego, wpływ struktury krystaliczne na postać dyfraktogramu. 17
18 Literatura 1. Z. Boarski, E. Łągiewka, Rentgenowska analiza strukturalna, PWN, Warszawa, Z. Boarski, M. Gigla, K. Stróż, M. Surowiec, Krystalografia, Wydanie III, PWN, Warszawa, B.D. Cullity, Podstawy dyfrakci promieni rentgenowskich, PWN, Warszawa, C. Kittel, Wstęp do fizyki ciała stałego, PWN, Warszawa, Z. Kosturkiewicz, Metody krystalografii, Wydawnictwo Naukowe UAM, Poznań, P. Luger, Rentgenografia strukturalna monokryształów, PWN, Warszawa, T. Penkala, Zarys Krystalografii, Wydanie III, PWN, Warszawa, M. Van Meerssche, J. Feneau-Dupont, Krystalografia i chemia strukturalna, PWN, Warszawa,
Budowa dyfraktometru proszkowego i bazy proszkowe. Identyfikacja substancji na postawie dyfraktogramów proszkowych
ĆWICZENIE 6 Budowa dyfraktometru proszkowego i bazy proszkowe. Identyfikaca substanci na postawie dyfraktogramów proszkowych I. Wprowadzenie Minęło uż prawie sto dwadzieścia lat, odkąd Wilhelm Konrad Röntgen
10. Analiza dyfraktogramów proszkowych
10. Analiza dyfraktogramów proszkowych Celem ćwiczenia jest zapoznanie się zasadą analizy dyfraktogramów uzyskiwanych z próbek polikrystalicznych (proszków). Zwykle dyfraktometry wyposażone są w oprogramowanie
Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej
Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40 006 Katowice tel. (032)359 1503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii
Laboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Kα i Kβ promieniowania charakterystycznego X emitowanego przez anodę
Rejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40006 Katowice tel. 0323591503, email: izajen@wp.pl opracowanie: dr hab. Izabela Jendrzejewska Laboratorium z Krystalografii
Natęż. ężenie refleksu dyfrakcyjnego
Natęż ężenie refleksu dyfrakcyjnego Wskaźnikowanie dyfraktogramów 1. Natężenie refleksu dyfrakcyjnego - od czego i jak zależy 1. Wskaźnikowanie dyfraktogramów -metoda różnic 3. Wygaszenia systematyczne
Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne
Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub
Laboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Ka i Kb promieniowania charakterystycznego X emitowanego przez anodę
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium specjalizacyjne
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium specjalizacyjne Opracowanie: dr hab. Izabela Jendrzejewska Specjalność: chemia sądowa Zastosowanie dyfrakcji rentgenowskiej do badania
DYFRAKTOMETRIA RENTGENOWSKA W BADANIACH NIENISZCZĄCYCH - NOWE NORMY EUROPEJSKIE
Sławomir Mackiewicz IPPT PAN DYFRAKTOMETRIA RENTGENOWSKA W BADANIACH NIENISZCZĄCYCH - NOWE NORMY EUROPEJSKIE 1. Wstęp Dyfraktometria rentgenowska jest techniką badawczą znaną i szeroko stosowaną w dziedzinie
Charakterystyka promieniowania molibdenowej lampy rentgenowskiej
Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40 006 Katowice tel. 0323591503, e-mail: izajen@wp.pl, opracowanie: dr hab. Izabela Jendrzejewska Laboratorium z Krystalografii
Charakterystyka promieniowania miedziowej lampy rentgenowskiej.
Uniwersytet Śląski - Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii
Rejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40006 Katowice tel. 0323591503, email: izajen@wp.pl opracowanie: dr hab. Izabela Jendrzejewska Laboratorium z Krystalografii
Uniwersytet Śląski w Katowicach str. 1 Wydział
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Krystalografia (024) Nazwa wariantu modułu (opcjonalnie): _wariantu ( wariantu) 1. Informacje ogólne koordynator
Metoda DSH. Dyfraktometria rentgenowska. 2. Dyfraktometr rentgenowski: - budowa anie - zastosowanie
Metoda DSH. Dyfraktometria rentgenowska 1. Teoria Braggów-Wulfa 2. Dyfraktometr rentgenowski: - budowa - działanie anie - zastosowanie Promieniowanie elektromagnetyczne radiowe mikrofale IR UV/VIS X γ
Rentgenografia - teorie dyfrakcji
Rentgenografia - teorie dyfrakcji widmo promieniowania rentgenowskiego Widmo emisyjne promieniowania rentgenowskiego: -promieniowanie charakterystyczne -promieniowanie ciągłe (białe) Efekt naświetlenia
Laboratorium z Krystalografii specjalizacja: Fizykochemia związków nieorganicznych
Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591197, e-mail: izajen@wp.pl opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii
Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X
Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie
Dyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 5
Dyfrakcja rentgenowska () w analizie fazowej Wykład 5 1. Co to jest rentgenogram? Ogólna charakterystyka rentgenogramów substancji amorficznych i krystalicznych. 2. Parametry pomiarowe; jaki jest wpływ
PROMIENIOWANIE RENTGENOWSKIE
PROMIENIOWANIE RENTGENOWSKIE 1. Zagadnienia teoretyczne Promieniowanie rentgenowskie, poziomy energetyczne w atomie, stała Planck a i metody wyznaczania jej wartości, struktura krystalograficzna, dyfrakcyjne
Metody dyfrakcyjne do wyznaczania struktury krystalicznej materiałów
Metody dyfrakcyjne do wyznaczania struktury krystalicznej materiałów prowadzący : dr inŝ. Marcin Małys (malys@mech.pw.edu.pl) dr inŝ. Wojciech Wróbel (wrobel@mech.pw.edu.pl) gdzie nas szykać: pok. 333
Instrukcja do ćwiczenia. Analiza rentgenostrukturalna materiałów polikrystalicznych
nstrukcja do ćwiczenia naliza rentgenostrukturalna materiałów polikrystalicznych Katedra Chemii Nieorganicznej i Technologii Ciała Stałego Wydział Chemiczny Politechnika Warszawska Warszawa, 2007 Promieniowanie
DYFRAKCYJNE METODY BADANIA STRUKTURY CIAŁ STAŁYCH
LABORATORIUM INŻYNIERII MATERIAŁOWEJ W ENERGETYCE Ćwiczenie 7 DYFRAKCYJNE METODY BADANIA STRUKTURY CIAŁ STAŁYCH Instrukcja zawiera: 1. Cel ćwiczenia 2. Wprowadzenie teoretyczne; definicje i wzory 3. Opis
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Rentgenografia Rok akademicki: 2015/2016 Kod: OWT-1-302-s Punkty ECTS: 2 Wydział: Odlewnictwa Kierunek: Wirtotechnologia Specjalność: - Poziom studiów: Studia I stopnia Forma i tryb studiów:
Zaawansowane Metody Badań Strukturalnych. Badania strukturalne materiałów Badania właściwości materiałów
Zaawansowane Metody Badań Strukturalnych Badania strukturalne materiałów Badania właściwości materiałów Zaawansowane Metody Badań Strukturalnych 1. Struktura próbki a metoda badań strukturalnych 2. Podział
Absorpcja promieni rentgenowskich 2 godz.
Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. (032)3591627, e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion-Gazda Laboratorium
RENTGENOWSKA ANALIZA STRUKTURALNA
LABORATORIUM INŻYNIERII MATERIAŁOWEJ W ENERGETYCE Ćwiczenie 5 Instrukcja zawiera: RENTGENOWSKA ANALIZA STRUKTURALNA 1. Cel ćwiczenia 2. Wprowadzenie teoretyczne; definicje i wzory 3. Sposób przygotowania
Bezpośredni opiekunowie laboratorium: Prof. dr hab. Marek Szafrański. Prof. dr hab. Maciej Kozak, dr Marceli Kaczmarski.
Bezpośredni opiekunowie laboratorium: Prof. dr hab. Marek Szafrański Prof. dr hab. Maciej Kozak, dr Marceli Kaczmarski. Ćwiczenia w tym laboratorium polegają na analizie obrazu dyfrakcyjnego promieni rentgenowskich.
Analiza struktury kompozytów polimerowych za pomocą dyfraktometru rentgenowskiego (SAXS)
Nanomateriały ĆWICZENIE 4 5 Analiza struktury kompozytów polimerowych za pomocą dyfraktometru rentgenowskiego (SAXS) Charakterystyka właściwości polimerów bezpostaciowych, krystalicznych i kryształów molekularnych.
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Otrzymywanie promieni rentgenowskich. 2. Budowa lampy rentgenowskiej. 3. Własności
Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)
Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około
I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona
r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A
Wyznaczanie struktury krystalicznej i molekularnej wybranego związku koordynacyjnego w oparciu o rentgenowską analizę strukturalną
INSTRUKCJA DO ĆWICZEŃ Wyznaczanie struktury krystalicznej i molekularnej wybranego związku koordynacyjnego w oparciu o rentgenowską analizę strukturalną I. Cel ćwiczenia Wyznaczenie struktury krystalicznej
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Otrzymywanie promieni rentgenowskich. 2. Budowa lampy rentgenowskiej. 3. Własności
Krystalografia. Dyfrakcja
Krystalografia Dyfrakcja Podstawowe zagadnienia Rodzaje promieniowania używane w dyfrakcyjnych metodach badań struktur krystalicznych, ich źródła Fizyczne podstawy i warunki dyfrakcji Równania dyfrakcji:
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Otrzymywanie promieni rentgenowskich. 2. Budowa lampy rentgenowskiej. 3. Własności
Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
Ćwiczenie nr 5 BADANIE PROMIENIOWANIA RENTGENOWSKIEGO. I. Podstawy fizyczne
Politechnika Warszawska Do użytku wewnętrznego Wydział Fizyki Laboratorium Fizyki II p. Piotr Kurek, Marek Wasiucionek Ćwiczenie nr 5 BADANIE PROMIENIOWANIA RENTGENOWSKIEGO I. Podstawy fizyczne 1. Wstęp
RENTGENOGRAFIA. Poziom przedmiotu Studia I stopnia niestacjonarne Liczba godzin/zjazd 1W e, 2L PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Inżynieria materiałowa Rodzaj przedmiotu Kierunkowy obowiązkowy Rodzaj zajęć Wykład, laboratorium RENTGENOGRAFIA Poziom przedmiotu Studia I stopnia niestacjonarne Liczba godzin/zjazd
Laboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40-006 Katowice tel. 0323591627, e-mail: ewa.malicka@us.edu.pl opracowanie: dr Ewa Malicka Laboratorium z Krystalografii
ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA
POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 4 Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników I. Cześć doświadczalna. 1. Uruchomić Spekol
Dyfrakcja promieniowania rentgenowskiego
010-04-11 Dyfrakcja promieniowania rentgenowskiego Podstawowa metoda badania struktury ciał krystalicznych. Dyfrakcja Dyfrakcja: ugięcie fali na przeszkodzie małej w porównaniu z długością fali. Fala ugięta
Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami.
Ciała stałe Ciała krystaliczne Ciała amorficzne Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. r T = Kryształy rosną przez regularne powtarzanie się identycznych
Korpuskularna natura światła i materii
Podręcznik zeszyt ćwiczeń dla uczniów Korpuskularna natura światła i materii Politechnika Gdańska, Wydział Fizyki Technicznej i Matematyki Stosowanej ul. Narutowicza 11/12, 80-233 Gdańsk, tel. +48 58 348
Dyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia
Dyfrakcja 1 Dyfrakcja Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia uginanie na szczelinie uginanie na krawędziach przedmiotów
Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X
Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Oskar Gawlik, Jacek Grela 16 lutego 2009 1 Podstawy teoretyczne 1.1 Liczniki proporcjonalne Wydajność detekcji promieniowania elektromagnetycznego
S P R A W O Z D A N I E D O ĆWICZENIA X 1 D E B Y E A SCHERRERA W Y Z N A C Z A N I E S T A Ł E J S I E C I M E T O DĄ.
S P R A W O Z D A N I E D O ĆWICZENIA X 1 W Y Z N A C Z A N I E S T A Ł E J S I E C I M E T O DĄ D E B Y E A SCHERRERA Wyznaczanie stałej sieci metodą Debey a Scherrera, 9 listopada 004 r. Celem doświadczenia
SPEKTROSKOPIA RENTGENOWSKA. Demonstracja instrukcja wykonawcza. goniometr
ĆWICZENIE 105 SPEKTROSKOPIA RENTGENOWSKA Demonstracja instrukcja wykonawcza 1 Wykaz przyrządów a. Urządzenie RTG z anodą wolframową. b. Goniometr z kryształem analizującym LiF. c. Detektor promieniowania
Rozwiązanie: Zadanie 2
Podstawowe pojęcia. Definicja kryształu. Sieć przestrzenna i sieć krystaliczna. Osie krystalograficzne i jednostki osiowe. Ściana jednostkowa i stosunek osiowy. Położenie węzłów, prostych i płaszczyzn
Dyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 2 i 3
Dyfrakcja rentgenowska () w analizie fazowej Wykład 2 i 3 1. Historia odkrycie promieniowania X i pierwsze eksperymenty z jego zastosowaniem. 2. Fale elektromagnetyczne. 3. Źródła promieniowania X, promieniowanie
WFiIS. Wstęp teoretyczny:
WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1. 2. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA Data wykonania: Data oddania: Zwrot do poprawy: Data oddania: Data zliczenia: OCENA Cel ćwiczenia: Wyznaczenie
Krystalografia. Dyfrakcja na monokryształach. Analiza dyfraktogramów
Krystalografia Dyfrakcja na monokryształach. Analiza dyfraktogramów Wyznaczanie struktury Pomiar obrazów dyfrakcyjnych Stworzenie modelu niezdeformowanej sieci odwrotnej refleksów Wybór komórki elementarnej
Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 6 Elektronowy mikroskop transmisyjny w badaniach struktury metali metodą elektronograficzną Cel ćwiczenia: Celem ćwiczenia jest zbadanie struktury
PODSTAWY MECHANIKI KWANTOWEJ
PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie
Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT
Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)
Wskaźnikowanie rentgenogramów i wyznaczanie parametrów sieciowych Wykład 8
Wskaźnikowanie rentgenogramów i wyznaczanie parametrów sieciowych Wykład 8 1. Wskaźnikowanie rentgenogramów. 2. Metoda róŝnic wskaźnikowania rentgenogramów substancji z układu regularnego. 3. Metoda ilorazów
OPTYKA. Leszek Błaszkieiwcz
OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii. Laboratorium z Krystalografii. 2 godz. Komórki Bravais go
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Komórki Bravais go Cel ćwiczenia: kształtowanie umiejętności: przyporządkowywania komórek translacyjnych Bravais
Strukturalne i termiczne metody charakteryzacji materiałów
Strukturalne i termiczne metody charakteryzacji materiałów prowadzący : dr inż. Marcin Małys (malys@if.pw.edu.pl) dr inż. Marzena Leszczyńska-Redek (leszczynska@if.pw.edu.pl) gdzie nas szukać: pok. 333
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Otrzymywanie promieni rentgenowskich. 2. Budowa lampy rentgenowskiej. 3. Własności
Metody badań monokryształów metoda Lauego
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40 006 Katowice, Tel. 0323591627 e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion Gazda Laboratorium z Krystalografii
SPEKTROSKOPIA RENTGENOWSKA
Intensywność ĆWICZENIE 105 SPEKTROSKOPIA RENTGENOWSKA Cel ćwiczenia: obserwacja ciągłego i charakterystycznego promieniowania rentgenowskiego, którego źródłem jest wolfram; wyznaczenie energii promieniowania
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Ćwiczenie nr 5 BADANIE PROMIENIOWANIA RENTGENOWSKIEGO. I. Podstawy fizyczne
Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki II p. Piotr Kurek, Marek Wasiucionek Do użytku wewnętrznego Ćwiczenie nr 5 BADANIE PROMIENIOWANIA RENTGENOWSKIEGO I. Podstawy fizyczne 1. Wstęp
S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach. Dyfrakcja na kryształach
S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach Dyfrakcja na kryształach Warunki dyfrakcji źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 2, rys. 6, str. 49 Konstrukcja Ewalda
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Rok akademicki: 2013/2014 Kod: JFT s Punkty ECTS: 4. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Struktury i symetrie ciała stałego Rok akademicki: 2013/2014 Kod: JFT-2-011-s Punkty ECTS: 4 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Techniczna Specjalność: Poziom studiów:
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej
Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej Wprowadzenie Światło widzialne jest to promieniowanie elektromagnetyczne (zaburzenie poła elektromagnetycznego rozchodzące
Aby opisać strukturę krystaliczną, konieczne jest określenie jej części składowych: sieci przestrzennej oraz bazy atomowej.
2. Podstawy krystalografii Podczas naszych zajęć skupimy się przede wszystkim na strukturach krystalicznych. Kryształem nazywamy (def. strukturalna) substancję stałą zbudowaną z atomów, jonów lub cząsteczek
Krystalografia. Wykład VIII
Krystalografia Wykład VIII Plan wykładu Otrzymywanie i właściwow ciwości promieni rentgenowskich Sieć odwrotna Warunki dyfrakcji promieniowania rentgenowskiego 2 NajwaŜniejsze daty w analizie strukturalnej
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne
TEORIA PASMOWA CIAŁ STAŁYCH
TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny
Rodzina i pas płaszczyzn sieciowych
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Rodzina i pas płaszczyzn sieciowych Cel ćwiczenia: kształtowanie umiejętności posługiwania się modelami komórek
L1 Pomiar naprężeń mikroskopowych w metalach i stopach z wykorzystaniem dyfrakcji rentgenowskiej
FIZYKA METALI - LABORATORIUM 1 Pomiar naprężeo mikroskopowych w metalach i stopach z wykorzystaniem dyfrakcji rentgenowskiej 1. CEL ĆWICZENIA Celem dwiczenia jest identyfikacja naprężeo mikroskopowych
Zaawansowane Metody Badań Materiałów. Badania strukturalne materiałów Badania właściwości materiałów
Zaawansowane Metody Badań Materiałów Badania strukturalne materiałów Badania właściwości materiałów Grafik zajęć wykłady i seminaria Wydział Inżynierii Materiałowej i Ceramiki Katedra Chemii Krzemianów
Fizyka Ciała Stałego
Wykład III Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć krystaliczną. Amorficzne, brak uporządkowania,
SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa. Cele kształcenia wymagania ogólne:
SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:
Efekt fotoelektryczny
Ćwiczenie 82 Efekt fotoelektryczny Cel ćwiczenia Celem ćwiczenia jest obserwacja efektu fotoelektrycznego: wybijania elektronów z metalu przez światło o różnej częstości (barwie). Pomiar energii kinetycznej
Promieniowanie cieplne ciał.
Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych
12. WYBRANE METODY STOSOWANE W ANALIZACH GEOCHEMICZNYCH. Atomowa spektroskopia absorpcyjna
12. WYBRANE METODY TOOWANE W ANALIZACH EOCHEMICZNYCH Atomowa spektroskopia absorpcyjna (AA - atomic absorption spectroscopy) Atomowa spektroskopia absorpcyjna jest bardzo czułą metodą analityczną umożliwiającą
Zaawansowane Metody Badań Materiałów. Badania strukturalne materiałów Badania właściwości materiałów
Zaawansowane Metody Badań Materiałów Badania strukturalne materiałów Badania właściwości materiałów Grafik zajęć wykłady i seminaria Wydział Inżynierii Materiałowej i Ceramiki Katedra Chemii Krzemianów
Światło fala, czy strumień cząstek?
1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie
Ćwiczenie nr 2. Pomiar energii promieniowania gamma metodą absorpcji
Ćwiczenie nr (wersja_05) Pomiar energii gamma metodą absorpcji Student winien wykazać się znajomością następujących zagadnień:. Promieniowanie gamma i jego własności.. Absorpcja gamma. 3. Oddziaływanie
ZADANIE RTG1 WYZNACZANIE STAŁEJ SIECI KRYSZTAŁU LiF METODĄ DYFRAKCJI RENTGENOWSKIEJ
ZADANIE RTG1 WYZNACZANIE STAŁEJ SIECI KRYSZTAŁU LiF METODĄ DYFRAKCJI RENTGENOWSKIEJ Wytyczne do ćwiczenia Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą pomiaru dyfrakcji rentgenowskiej za
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Krystalografia i rentgenografia Rok akademicki: 2012/2013 Kod: MIM-1-505-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Materiałowa Specjalność:
Zaawansowane Metody Badań Strukturalnych. Dyfrakcja rentgenowska cz.2 Mikroskopia Sił Atomowych AFM
Zaawansowane Metody Badań Strukturalnych Dyfrakcja rentgenowska cz.2 Mikroskopia Sił Atomowych AFM Rentgenowska fazowa analiza ilościowa Parametry komórki elementarnej Wielkości krystalitów Budowa mikroskopu
LABORATORIUM DYFRAKCJI RENTGENOWSKIEJ (L-3)
LABORATORIUM DYFRAKCJI RENTGENOWSKIEJ (L-3) Posiadane uprawnienia: ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO NR AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 5 z 18 lipca 2007 r. Kierownik
Model Bohra budowy atomu wodoru - opis matematyczny
Model Bohra budowy atomu wodoru - opis matematyczny Uwzględniając postulaty kwantowe Bohra, można obliczyć promienie orbit dozwolonych, energie elektronu na tych orbitach, wartość prędkości elektronu na
Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
BUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale
BUDOWA KRYSTALICZNA CIAŁ STAŁYCH Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale na: kryształy ciała o okresowym regularnym uporządkowaniu atomów, cząsteczek w całej swojej
STRUKTURA CIAŁA STAŁEGO
STRUKTURA CIAŁA STAŁEGO Podział ciał stałych Ciała - bezpostaciowe (amorficzne) Szkła, żywice, tłuszcze, niektóre proszki. Nie wykazują żadnych regularnych płaszczyzn ograniczających, nie można w nich
Układy krystalograficzne
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Układy krystalograficzne Cel ćwiczenia: kształtowanie umiejętności wyboru komórki elementarnej i przyporządkowywania
Kwantowa natura promieniowania
Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała
Uniwersytet Warszawski Wydział Fizyki. Badanie efektu Faraday a w kryształach CdTe i CdMnTe
Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Badanie efektu Faraday a w kryształach CdTe i CdMnTe Pracownia Fizyczna dla Zaawansowanych ćwiczenie F8 w zakresie Fizyki Ciała Stałego Streszczenie
VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale.
VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. Światło wykazuje zjawisko dyfrakcyjne. Rys.VII.1.Światło padające na