Algorytmy koewolucyjne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Algorytmy koewolucyjne"

Transkrypt

1 Wydział Elektroniki Politechniki Wrocławskiej Wrocław, Kierunek: Informatyka Algorytmy koewolucyjne Praca zaliczeniowa z kursu: INE 3802 Informatyka systemów autonomicznych Autor: Michał Buraczyński Prowadzący: Dr inŝ. Marek Piasecki 1. Koewolucja w biologii W biologii koewolucja oznacza współzaleŝną ewolucję dwóch lub większej liczby gatunków. KaŜdy z tych gatunków w pewien sposób wywiera nacisk na pozostałe, przyczyniając się do ich ewolucji. Ewolucja będąca wynikiem oddziaływania takiego jak np. klimat, nie jest koewolucja, poniewaŝ klimat nie jest Ŝywy i nie podlega ewolucji biologicznej. Koewolucją jest ewolucja będąca wynikiem oddziaływania jeden na jednego, takiego jakie zachodzi np. między owadami a roślinami przez nie zapylanymi, między drapieŝnikiem a ofiarą (z jednej strony następowały przystosowania drapieŝników do zdobywania ofiar, z drugiej przystosowania ofiar do uniknięcia drapieŝnika). Przykładami koewolucji w układzie drapieŝnik ofiara są [6]: a) mimikra przystosowanie ochronne występujące u zwierząt (zwłaszcza owadów), polegające na tym, Ŝe zwierzęta bezbronne upodabniają się do zwierząt zdolnych do obrony przybierając ich kształt lub barwy. Mogą teŝ przybierać kształty i barwy otoczenia tak, Ŝeby być trudnym do wykrycia przez naturalnych wrogów; b) mimikra agresywna przybieranie z przez drapieŝcę formy atrakcyjnej dla ofiary; c) mimetyzm naśladownictwo upodabnianie się do otoczenia w celu ukrycia się przed wrogiem lub przed potencjalna ofiarą. W nauce funkcjonuje równieŝ pojęcie: mimikra kulturowa. W memetyce polega na tym, iŝ pewne socjotypy ewoluują w ten sposób, aby upodabniać się do innych, podobnie jak 1

2 w biologii na zasadzie mimikry cechy fenotypowe pewnych organizmów upodabniają się do innych, dając tym organizmom lepsze moŝliwości dostosowawcze. Efektem mimikry kulturowej jest pojawianie się np. nowych idei mających wywoływać odpowiednie reakcje poprzez włączenie w nie memów utrwalonych w kulturze ideologii. 2. Algorytmy genetyczne Algorytmy genetyczne (GA) opierają się na modelu ewolucji Darwina oraz genetyce. Ewolucja następuje dzięki selekcji osobników na podstawie ich funkcji oceny oraz stosowaniu prostych operatorów krzyŝowania oraz mutacji. Algorytmy genetyczne znajdują zastosowanie tam, gdzie nie jest dobrze określony lub poznany sposób rozwiązania problemu, ale znany jest sposób oceny jakości rozwiązania. GA są z powodzeniem stosowane w problemach optymalizacji czy uczeniu maszynowym. Nie kaŝdy problem, moŝe by jednak w łatwy sposób przekształcony na problem rozwiązywalny przez GA. Podejście oparte na koewolucji jest rozwinięciem tradycyjnych GA i wydaje się mieć większe zastosowanie w rozwiązywaniu złoŝonych problemów. 3. Model koewolucyjny W podejściu koewolucyjny modelowane jest środowisko składające się z dwóch lub więcej gatunków, których ewolucja częściowo zaleŝy od ich wzajemnych związków. Podobnie jak w naturze, gatunki są genetycznie izolowane, tj. osobniki z dwóch róŝnych gatunków nie mogą się krzyŝować. WyróŜnia się dwa rodzaje algorytmów koewolucyjnych (CEA): a) konkurujące (ang. competitive coevolutionary algorithms) Prawdopodobieństwo przeŝycia gatunku zaleŝy od zachowania innych gatunków. W najprostszym scenariuszu istnieją tylko dwa gatunki, np. drapieŝnik i ofiara, Ŝywiciel i pasoŝyt. Klasycznym przykładem jest eksperyment zaproponowany przez Hillis a [3], w którym rozróŝniane były dwie populacje: algorytmów sortujących oraz zbiorów liczb do posortowania. Funkcja oceny algorytmu sortującego zaleŝała od ilości zbiorów, które potrafił poprawnie posortować. Funkcja oceny problemu zaleŝała od liczby algorytmów, które sobie z nim nie poradziły. b) współpracujące (ang. cooperative coevolutionary algorithms - CCEA) Gatunki są zachęcane do kooperacji przez nagradzanie za wspólne rozwiązywanie problemów. Karze się je natomiast, za duŝą samodzielność. 2

3 [4]: W ogólności działanie algorytmów kooperacyjnych moŝna opisać następującym kodem t = 0 FOR EACH gatunek S Zainicjalizuj P t losowymi osobnikami FOR EACH gatunek S Oblicz funkcję oceny dla kaŝdego osobnika w P t WHILE warunek zakończenia == FALSE BEGIN FOR EACH gatunek S BEGIN Wybierz osobniki do reprodukcji z populacji P t END END t = t +1 Zastosuj operatory genetyczne Oblicz funkcję oceny Zastąp osobniki z P t potomkami w celu otrzymania populacji P t+ 1 Rysunek 1 ogólna postać działania algorytmów koewolucyjnych. Początkowo tworzona jest określona liczba populacji, kaŝda odpowiada jednemu gatunkowi. Populację wypełnia się osobnikami. Oblicz się wartość funkcji celu dla kaŝdego osobnika w kaŝdej populacji. Jeśli zadowalające rozwiązanie nie zostało znalezione, kontynuuje się ewolucję osobników. NaleŜy wybrać osobniki do reprodukcji, bazując na ich funkcji oceny - moŝna stosować metody znane z GA, tj. ruletka, wybór proporcjonalny. Dla wybranych osobników stosuje się operatory takie jak krzyŝowanie i mutacja, w wyniku czego powstają potomkowie. Stara populacja zastępowana jest nowymi osobnikami. PowyŜszy algorytm praktycznie nie róŝni się od klasycznych algorytmów ewolucyjnych. Istotnym elementem jest sposób oceniania osobników. Nie są one oceniane w odosobnieniu. Przed dokonaniem oceny danego osobnika, łączy się go z osobnikami (reprezentantami) pozostałych gatunków. Dla takiego związku ostatecznie oblicza się funkcję celu, jej wartość zostaje przypisana do osobnika dla którego była liczona (nie do reprezentantów) rys. 3. Sposób w jaki dobiera się reprezentantów zaleŝy od dziedziny problemu. Jedną z metod jest wybieranie najlepszych osobników w populacji. Stosowane jest równieŝ wybieranie losowe. 3

4 Wybierz reprezentantów z pozostałych populacji FOR EACH osobnik i w P t BEGIN Stwórz związek i z reprezentantami pozostałych gatunków Oblicz funkcję oceny dla związku Przypisz wartość funkcji do i END Rysunek 2 metoda oceniania osobników. Rysunek 3 [4] funkcja oceny kaŝdego osobnika (fitness) w danym gatunku, obliczana jest przy wykorzystaniu reprezentantów (representative) z pozostałych gatunków. 4

5 4. Zastosowanie Wydaje się, Ŝe algorytmy koewolucyjne mogą znaleźć zastosowanie w obszarach, w których klasyczne algorytmy ewolucyjne byłyby skazane na niepowodzenie. Pierwszą grupę takich problemów, stanowią te o duŝej złoŝoności i wyraźnej strukturalizacji. Zakładając, Ŝe podział problemu na części zostanie przeprowadzony prawidłowo, zastosowanie CCEA w takich przypadkach jest bardzo intuicyjne. Poszczególne gatunki mogą koewoluować, kaŝdy zajmując się własną częścią problemu. Takie podejście jest bardziej efektywne niŝ tradycyjne EA, które traktowałyby problem jako całość. Ponadto dzięki stosowaniu izolacji genetycznej, obliczenia wykonywane przez CCEA mogą być w prosty sposób rozpraszane na wiele maszyn (np. kaŝdy gatunek na innej maszynie). Nie istnieje problem współdzielenia zasobów, poniewaŝ kaŝdy gatunek szuka rozwiązania w lokalnej przestrzeni rozwiązań. Kolejny obszar zastosowań, to problemy optymalizacyjne, których przestrzeń argumentów jest bardzo duŝa, a w szczególności nieskończona. W literaturze często spotyka się przykład sortowania ciągów liczb: naleŝy znaleźć taki algorytm, który potrafi posortować kaŝdy (skończony) ciąg liczb. Oczywistym jest, Ŝe testowanie algorytmów dla wszystkich moŝliwych ciągów jest niewykonalne. W klasycznych EA prawdopodobnie wybrano by klika ciągów (zadań) i dla nich przeprowadzano testy. Istnieje jednak prawdopodobieństwo, Ŝe algorytm otrzymany w ten sposób byłby zoptymalizowany dla konkretnych ciągów. MoŜna równieŝ losować zadania. Takie podejście utrudnia jednak proces uczenia się. Zastosowanie konkurującego algorytmu koewolucyjnego (zaproponowane przez Hillis a [3]) pozwala na stopniowe ewoluowanie zadań i rozwiązań, eliminując wady EA. Istnieją dziedziny, dla których koewolucja jest wręcz stworzona. Są to problemy z natury interaktywne, np. gry. ZałóŜmy, Ŝe naszym zadaniem jest znalezienie strategii gry w warcaby. W jaki sposób dokonać pomiaru jakości strategii? MoŜna wyobrazić sobie statyczne metody pomiaru: uŝyć wszystkich moŝliwych strategii dla przeciwnika; uŝyć losowych strategii; uŝyć najlepszych strategii. Wszystkie te metody mają te same wady, które wykazano w poprzednim przykładzie. MoŜna równieŝ zastosować koewolucję, czyli testy adaptacyjne. Zakładając, Ŝe strategia testująca i testowana, rozwijają się w dwóch róŝnych populacjach, naszym celem jest doskonalenie obu z nich. 5

6 5. Patologie W idealnym środowisku, w kaŝdej iteracji powinno powstawać coraz lepsze rozwiązanie. Wyścig zbrojeń między zadaniem a rozwiązaniem, powinien kierować algorytm po przestrzeni rozwiązań, unikając przy tym ekstremów lokalnych. Badania nad CEA wykazały jednak, Ŝe czasem pojawiają się niepoŝądane zachowania. W literaturze określa się je mianem patologii. NajwaŜniejsze z nich to [2][4][6]: a) Utrata gradientu zachodzi w algorytmach konkurujących, gdy jedna z populacji uzyskuje nagle tak wysoki poziom rozwoju, Ŝe pozostałe nie są w stanie się od niej niczego nauczyć. Klasycznym przykładem jest gra w szachy między arcymistrzem, a początkującym graczem. Jeśli początkujący gracz nie uzyskuje Ŝadnych informacji poza tymi, które wynikają bezpośrednio z gry, jest mało prawdopodobne, Ŝe poprawi swoje umiejętności. b) Zapętlenie występuje gdy struktura związki między strategiami są nieprzechodnie, tzn. strategia A wygrywa z B, strategia B z C, C z D, a D z A. Powstaje obieg zamknięty w którym przemieszczają się kolejne populacje gatunków. c) Stabilizacja wartość funkcji oceny nie zmienia się pomimo postępującej koewolucji d) Red Queen poniewaŝ pomiaru przystosowania populacji często dokonuje się na podstawie innej populacji (algorytmy konkurujące), otrzymywany wynik jest względny. Nie zawsze więc moŝna ocenić, czy między populacjami dokonuje się wyścig zbrojeń, czy nastąpiła stagnacja. 6. Podsumowanie Pomimo wielu zalet algorytmów koewolucyjnych i ich częstej przewagi nad algorytmami ewolucyjnymi, są one wciąŝ rzadko stosowane. DuŜe nadzieje pokładane w CEA zostały szybko rozwiane, przez pierwsze eksperymenty. WciąŜ uboga wiedza teoretyczna na temat CEA często mija się z praktyką. To co w przyrodzie sprawdza się doskonale, nie zawsze działa tak samo w informatyce. Wydaje się, Ŝe w przypadku CCEA sposób dekompozycji problemu jest kluczowy dla jego działania. Dlatego poznanie i udokumentowanie poprawnych praktyk dekomponowania zadań jest istotne dla rozwoju CCEA. Prace nad tym zagadnieniem przyniosły pierwsze rozwiązania automatyzujące dekompozycję [5]. Część patologicznych zachowań CEA nie została jeszcze wyjaśniona. Znalezienie mechanizmów ich rozwiązania moŝe przyczynić się do zwiększenia obszaru zastosowań. 6

7 Literatura [1] Konrad Falkowski, Paweł Wnuk-Lipiński, Marcin śybura, Niszowanie i koewolucja, [2] Sevan Gregory Ficici, Solution Concepts in Coevolutionary Algorithms, 2004 [3] D. Hillis. Co-evolving parasites improves simulated evolution as an optimization Procedure, [4] Mitchell A. Potter, The Design and Analysis of a Computational Model of Cooperative Coevolution, 1997 [5] Risto Miikkulainen, Kenneth O. Stanley, Competitive Coevolution through Evolutionary Complexification, 2004 [6] R. Paul Wiegand, An Analysis of Cooperative Coevolutionary Algorithms, 2003 [7] 7

ZASTOSOWANIE ALGORYTMU KOEWOLUCYJNEGO DO STEROWANIA PALNIKIEM ENERGETYCZNYM CONTROLLING POWER BURNER USING COEVOLUTIONARY ALGORITHM

ZASTOSOWANIE ALGORYTMU KOEWOLUCYJNEGO DO STEROWANIA PALNIKIEM ENERGETYCZNYM CONTROLLING POWER BURNER USING COEVOLUTIONARY ALGORITHM ZASTOSOWANIE ALGORYTMU KOEWOLUCYJNEGO DO STEROWANIA PALNIKIEM ENERGETYCZNYM CONTROLLING POWER BURNER USING COEVOLUTIONARY ALGORITHM Waldemar Wójcik, Mariusz Kalita, Andrzej Smolarz Wydział Elektrotechniki

Bardziej szczegółowo

Katedra Informatyki Stosowanej. Algorytmy ewolucyjne. Inteligencja obliczeniowa

Katedra Informatyki Stosowanej. Algorytmy ewolucyjne. Inteligencja obliczeniowa Wydział Zarządzania AGH Katedra Informatyki Stosowanej Algorytmy ewolucyjne Treść wykładu Wprowadzenie Zasada działania Podział EA Cechy EA Algorytm genetyczny 2 EA - wprowadzenie Algorytmy ewolucyjne

Bardziej szczegółowo

Algorytm genetyczny (genetic algorithm)-

Algorytm genetyczny (genetic algorithm)- Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58 Anna LANDOWSKA ROZWIĄZANIE PROBLEMU OPTYMALNEGO PRZYDZIAŁU ZA POMOCĄ KLASYCZNEGO

Bardziej szczegółowo

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne 9 listopada 2010 y ewolucyjne - zbiór metod optymalizacji inspirowanych analogiami biologicznymi (ewolucja naturalna). Pojęcia odwzorowujące naturalne zjawiska: Osobnik Populacja Genotyp Fenotyp Gen Chromosom

Bardziej szczegółowo

Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie:

Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: Rekurencje Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: T(n) = Θ(1) (dla n = 1) T(n) = 2 T(n/2) + Θ(n) (dla n

Bardziej szczegółowo

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia niestacjonarne Algorytmy genetyczne Materiały do laboratorium PSI Studia niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki, pojęć

Bardziej szczegółowo

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009 Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.

Bardziej szczegółowo

ALGORYTMY GENETYCZNE (wykład + ćwiczenia)

ALGORYTMY GENETYCZNE (wykład + ćwiczenia) ALGORYTMY GENETYCZNE (wykład + ćwiczenia) Prof. dr hab. Krzysztof Dems Treści programowe: 1. Metody rozwiązywania problemów matematycznych i informatycznych.. Elementarny algorytm genetyczny: definicja

Bardziej szczegółowo

Algorytmy ewolucyjne 1

Algorytmy ewolucyjne 1 Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz

Bardziej szczegółowo

Rachunek prawdopodobieństwa projekt Ilustracja metody Monte Carlo obliczania całek oznaczonych

Rachunek prawdopodobieństwa projekt Ilustracja metody Monte Carlo obliczania całek oznaczonych Rachunek prawdopodobieństwa projekt Ilustracja metody Monte Carlo obliczania całek oznaczonych Autorzy: Marta Rotkiel, Anna Konik, Bartłomiej Parowicz, Robert Rudak, Piotr Otręba Spis treści: Wstęp Cel

Bardziej szczegółowo

Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki

Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Obliczenia ewolucyjne (EC evolutionary computing) lub algorytmy ewolucyjne (EA evolutionary algorithms) to ogólne określenia używane

Bardziej szczegółowo

Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba

Algorytmy ewolucyjne - algorytmy genetyczne. I. Karcz-Dulęba Algorytmy ewolucyjne - algorytmy genetyczne I. Karcz-Dulęba Algorytmy klasyczne a algorytmy ewolucyjne Przeszukiwanie przestrzeni przez jeden punkt bazowy Przeszukiwanie przestrzeni przez zbiór punktów

Bardziej szczegółowo

Efektywna metoda sortowania sortowanie przez scalanie

Efektywna metoda sortowania sortowanie przez scalanie Efektywna metoda sortowania sortowanie przez scalanie Rekurencja Dla rozwiązania danego problemu, algorytm wywołuje sam siebie przy rozwiązywaniu podobnych podproblemów. Metoda dziel i zwycięŝaj Dzielimy

Bardziej szczegółowo

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne

Algorytmy genetyczne. Materiały do laboratorium PSI. Studia stacjonarne i niestacjonarne Algorytmy genetyczne Materiały do laboratorium PSI Studia stacjonarne i niestacjonarne Podstawowy algorytm genetyczny (PAG) Schemat blokowy algorytmu genetycznego Znaczenia, pochodzących z biologii i genetyki,

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą

Bardziej szczegółowo

Strategie ewolucyjne (ang. evolu4on strategies)

Strategie ewolucyjne (ang. evolu4on strategies) Strategie ewolucyjne (ang. evolu4on strategies) Strategia ewolucyjna (1+1) W Strategii Ewolucyjnej(1 + 1), populacja złożona z jednego osobnika generuje jednego potomka. Kolejne (jednoelementowe) populacje

Bardziej szczegółowo

6. Klasyczny algorytm genetyczny. 1

6. Klasyczny algorytm genetyczny. 1 6. Klasyczny algorytm genetyczny. 1 Idea algorytmu genetycznego została zaczerpnięta z nauk przyrodniczych opisujących zjawiska doboru naturalnego i dziedziczenia. Mechanizmy te polegają na przetrwaniu

Bardziej szczegółowo

Dobór parametrów algorytmu ewolucyjnego

Dobór parametrów algorytmu ewolucyjnego Dobór parametrów algorytmu ewolucyjnego 1 2 Wstęp Algorytm ewolucyjny posiada wiele parametrów. Przykładowo dla algorytmu genetycznego są to: prawdopodobieństwa stosowania operatorów mutacji i krzyżowania.

Bardziej szczegółowo

Programowanie genetyczne, gra SNAKE

Programowanie genetyczne, gra SNAKE STUDENCKA PRACOWNIA ALGORYTMÓW EWOLUCYJNYCH Tomasz Kupczyk, Tomasz Urbański Programowanie genetyczne, gra SNAKE II UWr Wrocław 2009 Spis treści 1. Wstęp 3 1.1. Ogólny opis.....................................

Bardziej szczegółowo

ALGORYTMY GENETYCZNE ćwiczenia

ALGORYTMY GENETYCZNE ćwiczenia ćwiczenia Wykorzystaj algorytmy genetyczne do wyznaczenia minimum globalnego funkcji testowej: 1. Wylosuj dwuwymiarową tablicę 100x2 liczb 8-bitowych z zakresu [-100; +100] reprezentujących inicjalną populację

Bardziej szczegółowo

A B. Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych B: 1. da dt. A v. v t

A B. Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych B: 1. da dt. A v. v t B: 1 Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych 1. ZałóŜmy, Ŝe zmienna A oznacza stęŝenie substratu, a zmienna B stęŝenie produktu reakcji chemicznej

Bardziej szczegółowo

Obliczenia ewolucyjne - plan wykładu

Obliczenia ewolucyjne - plan wykładu Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja

Bardziej szczegółowo

Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS

Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS Algorytmy ewolucyjne Łukasz Przybyłek Studenckie Koło Naukowe BRAINS 1 Wprowadzenie Algorytmy ewolucyjne ogólne algorytmy optymalizacji operujące na populacji rozwiązań, inspirowane biologicznymi zjawiskami,

Bardziej szczegółowo

Instrukcja warunkowa i złoŝona.

Instrukcja warunkowa i złoŝona. Instrukcja warunkowa i złoŝona. Budowa pętli warunkowej. JeŜeli mielibyśmy przetłumaczyć instrukcję warunkową to brzmiałoby to mniej więcej tak: jeŝeli warunek jest spełniony, to wykonaj jakąś operację

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

PSO Rój cząsteczek - Particle Swarm Optimization. Michał Szopiak

PSO Rój cząsteczek - Particle Swarm Optimization. Michał Szopiak PSO Rój cząsteczek - Particle Swarm Optimization Michał Szopiak Inspiracje biologiczne Algorytm PSO wywodzą się z obserwacji gróp zwierzą tworzony przez członków ptasich stad, czy ławic ryb, który umożliwia

Bardziej szczegółowo

Strategie ewolucyjne. Gnypowicz Damian Staniszczak Łukasz Woźniak Marek

Strategie ewolucyjne. Gnypowicz Damian Staniszczak Łukasz Woźniak Marek Strategie ewolucyjne Gnypowicz Damian Staniszczak Łukasz Woźniak Marek Strategie ewolucyjne, a algorytmy genetyczne Podobieństwa: Oba działają na populacjach rozwiązań Korzystają z zasad selecji i przetwarzania

Bardziej szczegółowo

Ewolucjonizm NEODARWINIZM. Dr Jacek Francikowski Uniwersyteckie Towarzystwo Naukowe Uniwersytet Śląski w Katowicach

Ewolucjonizm NEODARWINIZM. Dr Jacek Francikowski Uniwersyteckie Towarzystwo Naukowe Uniwersytet Śląski w Katowicach Ewolucjonizm NEODARWINIZM Dr Jacek Francikowski Uniwersyteckie Towarzystwo Naukowe Uniwersytet Śląski w Katowicach Główne paradygmaty biologii Wspólne początki życia Komórka jako podstawowo jednostka funkcjonalna

Bardziej szczegółowo

Równoważność algorytmów optymalizacji

Równoważność algorytmów optymalizacji Równoważność algorytmów optymalizacji Reguła nie ma nic za darmo (ang. no free lunch theory): efektywność różnych typowych algorytmów szukania uśredniona po wszystkich możliwych problemach optymalizacyjnych

Bardziej szczegółowo

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań

Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Algorytm indukcji klasyfikatora za pomocą EA z automatycznym przełączaniem ukierunkowań Anna Manerowska, Michal Kozakiewicz 2.12.2009 1 Wstęp Jako projekt na przedmiot MEUM (Metody Ewolucyjne Uczenia Maszyn)

Bardziej szczegółowo

Algorytmy stochastyczne, wykład 02 Algorytmy genetyczne

Algorytmy stochastyczne, wykład 02 Algorytmy genetyczne Algorytmy stochastyczne, wykład 02 Algorytmy genetyczne J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-27 1 Mutacje algorytmu genetycznego 2 Dziedzina niewypukła abstrakcyjna

Bardziej szczegółowo

Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek

Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę

Bardziej szczegółowo

Sortowanie. Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania:

Sortowanie. Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania: Sortowanie Kolejki priorytetowe i algorytm Heapsort Dynamiczny problem sortowania: podać strukturę danych dla elementów dynamicznego skończonego multi-zbioru S, względem którego są wykonywane następujące

Bardziej szczegółowo

Algorytm memetyczny w grach wielokryterialnych z odroczoną preferencją celów. Adam Żychowski

Algorytm memetyczny w grach wielokryterialnych z odroczoną preferencją celów. Adam Żychowski Algorytm memetyczny w grach wielokryterialnych z odroczoną preferencją celów Adam Żychowski Definicja problemu dwóch graczy: P 1 (minimalizator) oraz P 2 (maksymalizator) S 1, S 2 zbiory strategii graczy

Bardziej szczegółowo

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych. Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą

Bardziej szczegółowo

ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ

ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar

Bardziej szczegółowo

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis

Bardziej szczegółowo

Teoria algorytmów ewolucyjnych

Teoria algorytmów ewolucyjnych Teoria algorytmów ewolucyjnych 1 2 Dlaczego teoria Wynik analiza teoretycznej może pokazać jakie warunki należy spełnić, aby osiągnąć zbieżność do minimum globalnego. Np. sukcesja elitarystyczna. Może

Bardziej szczegółowo

Algorytmy ewolucyjne NAZEWNICTWO

Algorytmy ewolucyjne NAZEWNICTWO Algorytmy ewolucyjne http://zajecia.jakubw.pl/nai NAZEWNICTWO Algorytmy ewolucyjne nazwa ogólna, obejmująca metody szczegółowe, jak np.: algorytmy genetyczne programowanie genetyczne strategie ewolucyjne

Bardziej szczegółowo

Metody Rozmyte i Algorytmy Ewolucyjne

Metody Rozmyte i Algorytmy Ewolucyjne mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb

Bardziej szczegółowo

Jak rozgrywać turnieje tenisowe?

Jak rozgrywać turnieje tenisowe? Jak rozgrywać turnieje tenisowe? Kamila Agnieszka Baten Kamila Agnieszka Baten Strona 1 008-10-16 ISTOTA PROBLEMU Będziemy zajmować się problemem, który został sformułowany w 199 roku przez prof. Hugona

Bardziej szczegółowo

Runda 5: zmiana planszy: < < i 6 rzutów.

Runda 5: zmiana planszy: < < i 6 rzutów. 1. Gry dotyczące systemu dziesiętnego Pomoce: kostka dziesięciościenna i/albo karty z cyframi. KaŜdy rywalizuje z kaŝdym. KaŜdy gracz rysuje planszę: Prowadzący rzuca dziesięciościenną kostką albo losuje

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej

Bardziej szczegółowo

Automatyczny dobór parametrów algorytmu genetycznego

Automatyczny dobór parametrów algorytmu genetycznego Automatyczny dobór parametrów algorytmu genetycznego Remigiusz Modrzejewski 22 grudnia 2008 Plan prezentacji Wstęp Atrakcyjność Pułapki Klasyfikacja Wstęp Atrakcyjność Pułapki Klasyfikacja Konstrukcja

Bardziej szczegółowo

METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne

METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz: MSI - algorytmy ewolucyjne

Bardziej szczegółowo

Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I

Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:

Bardziej szczegółowo

Ekologia wyk. 1. wiedza z zakresu zarówno matematyki, biologii, fizyki, chemii, rozumienia modeli matematycznych

Ekologia wyk. 1. wiedza z zakresu zarówno matematyki, biologii, fizyki, chemii, rozumienia modeli matematycznych Ekologia wyk. 1 wiedza z zakresu zarówno matematyki, biologii, fizyki, chemii, rozumienia modeli matematycznych Ochrona środowiska Ekologia jako dziedzina nauki jest nauką o zależnościach decydujących

Bardziej szczegółowo

O badaniach nad SZTUCZNĄ INTELIGENCJĄ

O badaniach nad SZTUCZNĄ INTELIGENCJĄ O badaniach nad SZTUCZNĄ INTELIGENCJĄ Jak określa się inteligencję naturalną? Jak określa się inteligencję naturalną? Inteligencja wg psychologów to: Przyrodzona, choć rozwijana w toku dojrzewania i uczenia

Bardziej szczegółowo

Problem Komiwojażera - algorytmy metaheurystyczne

Problem Komiwojażera - algorytmy metaheurystyczne Problem Komiwojażera - algorytmy metaheurystyczne algorytm mrówkowy algorytm genetyczny by Bartosz Tomeczko. All rights reserved. 2010. TSP dlaczego metaheurystyki i heurystyki? TSP Travelling Salesman

Bardziej szczegółowo

Laboratorium Programowanie Obrabiarek CNC. Nr H04

Laboratorium Programowanie Obrabiarek CNC. Nr H04 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Programowanie Obrabiarek CNC Nr H04 Programowanie zarysów swobodnych FK Opracował: Dr inŝ. Wojciech Ptaszyński Poznań, 06 stycznia

Bardziej szczegółowo

DOBÓR PRÓBY. Czyli kogo badać?

DOBÓR PRÓBY. Czyli kogo badać? DOBÓR PRÓBY Czyli kogo badać? DZISIAJ METODĄ PRACY Z TEKSTEM I INNYMI Po co dobieramy próbę? Czym róŝni się próba od populacji? Na czym polega reprezentatywność statystyczna? Podstawowe zasady doboru próby

Bardziej szczegółowo

Krzysztof Jakubczyk. Zadanie 2

Krzysztof Jakubczyk. Zadanie 2 Zadanie 2 Krzysztof Jakubczyk Moje rozwiązanie nie znajduje strategii pozycyjnej w znaczeniu zdefiniowanym na wykładzie (niezaleŝnie od pozycji startowej), gdyŝ takowa nie istnieje. Przykład: 1 1 0 Środkowa

Bardziej szczegółowo

Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych

Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 10 listopada 2016 Proseminarium licencjackie

Bardziej szczegółowo

przetworzonego sygnału

przetworzonego sygnału Synteza falek ortogonalnych na podstawie oceny przetworzonego sygnału Instytut Informatyki Politechnika Łódzka 28 lutego 2012 Plan prezentacji 1 Sformułowanie problemu 2 3 4 Historia przekształcenia falkowego

Bardziej szczegółowo

Algorytmy ewolucyjne Część II

Algorytmy ewolucyjne Część II Wydział Zarządzania AGH Katedra Informatyki Stosowanej Algorytmy ewolucyjne Część II Metaheurystyki Treść wykładu Zastosowania Praktyczne aspekty GA Reprezentacja Funkcja dopasowania Zróżnicowanie dopasowania

Bardziej szczegółowo

Algorytmy ewolucyjne. wprowadzenie

Algorytmy ewolucyjne. wprowadzenie Algorytmy ewolucyjne wprowadzenie Gracjan Wilczewski, www.mat.uni.torun.pl/~gracjan Toruń, 2005 Historia Podstawowy algorytm genetyczny został wprowadzony przez Johna Hollanda (Uniwersytet Michigan) i

Bardziej szczegółowo

Testy De Jonga. Problemy. 1 Optymalizacja dyskretna i ciągła

Testy De Jonga. Problemy. 1 Optymalizacja dyskretna i ciągła Problemy 1 Optymalizacja dyskretna i ciągła Problemy 1 Optymalizacja dyskretna i ciągła 2 Środowisko pomiarowe De Jonga Problemy 1 Optymalizacja dyskretna i ciągła 2 Środowisko pomiarowe De Jonga 3 Ocena

Bardziej szczegółowo

Edukacja informatyczna w gimnazjum i w liceum w Nowej Podstawie Programowej

Edukacja informatyczna w gimnazjum i w liceum w Nowej Podstawie Programowej Edukacja informatyczna w gimnazjum i w liceum w Nowej Podstawie Programowej Maciej M. Sysło WMiI, UMK Plan Podstawa Edukacja informatyczna w Podstawie Informatyka a TIK Rozwój kształcenia informatycznego:

Bardziej szczegółowo

Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach

Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Adam Stawowy Algorytm hybrydowy dla alokacji portfela inwestycyjnego przy ograniczonych zasobach Summary: We present a meta-heuristic to combine Monte Carlo simulation with genetic algorithm for Capital

Bardziej szczegółowo

ROZWÓJ ALGORYTMU EWOLUCJI RÓŻNICOWEJ. Konrad Wypchło

ROZWÓJ ALGORYTMU EWOLUCJI RÓŻNICOWEJ. Konrad Wypchło ROZWÓJ ALGORYTMU EWOLUCJI RÓŻNICOWEJ Konrad Wypchło Plan prezentacji 2 Elementy klasycznego algorytmu ewolucyjnego Ewolucja różnicowa DMEA i inne modyfikacje Adaptacja zasięgu mutacji (AHDMEA, SaHDMEA)

Bardziej szczegółowo

Algorytmy stochastyczne, wykład 01 Podstawowy algorytm genetyczny

Algorytmy stochastyczne, wykład 01 Podstawowy algorytm genetyczny Algorytmy stochastyczne, wykład 01 J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2014-02-21 In memoriam prof. dr hab. Tomasz Schreiber (1975-2010) 1 2 3 Różne Orientacyjny

Bardziej szczegółowo

LABORATORIUM 5: Wpływ reprodukcji na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch

LABORATORIUM 5: Wpływ reprodukcji na skuteczność poszukiwań AE. opracował: dr inż. Witold Beluch OBLICZENIA EWOLUCYJNE LABORATORIUM 5: Wpływ reprodukcji na skuteczność poszukiwań AE opracował: dr inż. Witold Beluch witold.beluch@polsl.pl Gliwice 2012 OBLICZENIA EWOLUCYJNE LABORATORIUM 5 2 Cel ćwiczenia

Bardziej szczegółowo

Wpływ drapieżników na populacje zwierzyny. Henryk Okarma Instytut Ochrony Przyrody PAN Kraków fot. Zenon Wojtas

Wpływ drapieżników na populacje zwierzyny. Henryk Okarma Instytut Ochrony Przyrody PAN Kraków fot. Zenon Wojtas Wpływ drapieżników na populacje zwierzyny Henryk Okarma Instytut Ochrony Przyrody PAN Kraków fot. Zenon Wojtas DuŜe drapieŝniki DuŜe drapieŝniki DuŜe drapieŝniki oddziaływają bezpośrednio na populacje

Bardziej szczegółowo

ALGORYTM HYBRYDOWY W PROJEKTOWANIU FILTRÓW CYFROWYCH

ALGORYTM HYBRYDOWY W PROJEKTOWANIU FILTRÓW CYFROWYCH Katarzyna RUTCZYŃSKA-WDOWIAK Algorytm hybrydowy, projektowanie filtrów ALGORYTM HYBRYDOWY W PROJEKTOWANIU FILTRÓW CYFROWYCH W pracy przedstawiono rezultaty wykorzystania algorytmu hybrydowego w problemie

Bardziej szczegółowo

Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny

Inspiracje soft computing. Soft computing. Terminy genetyczne i ich odpowiedniki w algorytmach genetycznych. Elementarny algorytm genetyczny Soft computing Soft computing tym róŝni się od klasycznych obliczeń (hard computing), Ŝe jest odporny na brak precyzji i niepewność danych wejściowych. Obliczenia soft computing mają inspiracje ze świata

Bardziej szczegółowo

Teoria i metody optymalizacji

Teoria i metody optymalizacji II. Optymalizacja globalna Idea: generuj i testuj Do tej grupy naleŝą stochastyczne iteracyjne algorytmy przeszukiwania przestrzeni rozwiązań : metody przeszukiwania lokalnego metody przeszukiwania populacyjnego.

Bardziej szczegółowo

Wymagania edukacyjne

Wymagania edukacyjne Rok szkolny 2018/2019 Wymagania edukacyjne Przedmiot Klasa Nauczyciel uczący Poziom biologia 1t Edyta Nowak podstawowy Ocena dopuszczająca Ocenę dopuszczającą otrzymuje uczeń, który: przyswoił treści konieczne,

Bardziej szczegółowo

Jak powstają nowe gatunki. Katarzyna Gontek

Jak powstają nowe gatunki. Katarzyna Gontek Jak powstają nowe gatunki Katarzyna Gontek Powstawanie gatunków (specjacja) to proces biologiczny, w wyniku którego powstają nowe gatunki organizmów. Zachodzi na skutek wytworzenia się bariery rozrodczej

Bardziej szczegółowo

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego

Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,

Bardziej szczegółowo

Algorytmy i struktury danych Matematyka III sem.

Algorytmy i struktury danych Matematyka III sem. Algorytmy i struktury danych Matematyka III sem. 30 godz. wykł. / 15 godz. ćw. / 15 godz. projekt dr inŝ. Paweł Syty, 413GB, sylas@mif.pg.gda.pl, http://sylas.info Literatura T.H. Cormen i inni, Wprowadzenie

Bardziej szczegółowo

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH Ćwiczenie 14 aria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYATYCZNYCH Zagadnienia: Podstawowe pojęcia kinetyki chemicznej (szybkość reakcji, reakcje elementarne, rząd reakcji). Równania kinetyczne prostych

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne 1 Nazwa modułu kształcenia Sztuczna inteligencja 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

O badaniach nad SZTUCZNĄ INTELIGENCJĄ

O badaniach nad SZTUCZNĄ INTELIGENCJĄ O badaniach nad SZTUCZNĄ INTELIGENCJĄ Wykład 7. O badaniach nad sztuczną inteligencją Co nazywamy SZTUCZNĄ INTELIGENCJĄ? szczególny rodzaj programów komputerowych, a niekiedy maszyn. SI szczególną własność

Bardziej szczegółowo

Generowanie i optymalizacja harmonogramu za pomoca

Generowanie i optymalizacja harmonogramu za pomoca Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska

Bardziej szczegółowo

Teoria ewolucji. Podstawowe pojęcia. Wspólne pochodzenie.

Teoria ewolucji. Podstawowe pojęcia. Wspólne pochodzenie. Teoria ewolucji Podstawowe pojęcia. Wspólne pochodzenie. Informacje Kontakt: Paweł Golik Instytut Genetyki i Biotechnologii, Pawińskiego 5A pgolik@igib.uw.edu.pl Informacje, materiały: http://www.igib.uw.edu.pl/

Bardziej szczegółowo

Wstęp do Sztucznej Inteligencji

Wstęp do Sztucznej Inteligencji Wstęp do Sztucznej Inteligencji Algorytmy Genetyczne Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Metody heurystyczne Algorytm efektywny: koszt zastosowania (mierzony

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki INFORMATYKA SYSTEMÓW AUTONOMICZNYCH. Heurystyka, co to jest, potencjalne zastosowania

Politechnika Wrocławska Wydział Elektroniki INFORMATYKA SYSTEMÓW AUTONOMICZNYCH. Heurystyka, co to jest, potencjalne zastosowania Politechnika Wrocławska Wydział Elektroniki INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Autor: Łukasz Patyra indeks: 133325 Prowadzący zajęcia: dr inż. Marek Piasecki Ocena pracy: Wrocław 2007 Spis treści 1 Wstęp

Bardziej szczegółowo

{( ) ( ) ( ) ( )( ) ( )( ) ( RRR)

{( ) ( ) ( ) ( )( ) ( )( ) ( RRR) .. KLASYCZNA DEFINICJA PRAWDOPODOBIEŃSTWA Klasyczna definicja prawdopodobieństwa JeŜeli jest skończonym zbiorem zdarzeń elementarnych jednakowo prawdopodobnych i A, to liczbę A nazywamy prawdopodobieństwem

Bardziej szczegółowo

lekcja 8a Gry komputerowe MasterMind

lekcja 8a Gry komputerowe MasterMind lekcja 8a Gry komputerowe MasterMind Posiadamy już elementarną wiedzę w zakresie programowania. Pora więc zabrać się za rozwiązywanie problemów bardziej złożonych, które wymagają zastosowania typowych

Bardziej szczegółowo

WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego

WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego WAE Jarosław Arabas Pełny schemat algorytmu ewolucyjnego Algorytm ewolucyjny algorytm ewolucyjny inicjuj P 0 {P 0 1, P 0 2... P 0 μ } t 0 H P 0 while! stop for (i 1: λ) if (a< p c ) O t i mutation(crossover

Bardziej szczegółowo

Mrówka Pachycondyla apicalis

Mrówka Pachycondyla apicalis Mrówka Pachycondyla apicalis Mrówki Pachycondyla apicalis wystepują w lasach południowego Meksyku, północnej Argentyny i Kostaryki. Wystepuja zarówno w lasach wilgotnych jak i suchych. Mrówki te polują

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych Algorytmy i struktury danych Proste algorytmy sortowania Witold Marańda maranda@dmcs.p.lodz.pl 1 Pojęcie sortowania Sortowaniem nazywa się proces ustawiania zbioru obiektów w określonym porządku Sortowanie

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Politechnika Łódzka Katedra Informatyki Stosowanej Algorytmy genetyczne Wykład 2 Przygotował i prowadzi: Dr inż. Piotr Urbanek Powtórzenie Pytania: Jaki mechanizm jest stosowany w naturze do takiego modyfikowania

Bardziej szczegółowo

Modyfikacje i ulepszenia standardowego algorytmu genetycznego

Modyfikacje i ulepszenia standardowego algorytmu genetycznego Modyfikacje i ulepszenia standardowego algorytmu genetycznego 1 2 Przypomnienie: pseudokod SGA t=0; initialize(p 0 ); while(!termination_condition(p t )) { evaluate(p t ); T t =selection(p t ); O t =crossover(t

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

Regulamin Trzeciego Ogólnopolskiego Konkursu Informatycznego dla uczniów szkół podstawowych, gimnazjalnych i ponadgimnazjalnych T.I.K? TAK!

Regulamin Trzeciego Ogólnopolskiego Konkursu Informatycznego dla uczniów szkół podstawowych, gimnazjalnych i ponadgimnazjalnych T.I.K? TAK! Regulamin Trzeciego Ogólnopolskiego Konkursu Informatycznego dla uczniów szkół podstawowych, gimnazjalnych i ponadgimnazjalnych T.I.K? TAK! 1 Organizatorzy Organizatorem konkursu jest Polskie Towarzystwo

Bardziej szczegółowo

INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA.

INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

IP Instytucje Pośredniczące. Z uwagi na złoŝoność procesu realizacji PI i PWP, wymagającego zaangaŝowania takŝe innych podmiotów w szczególności ROEFS

IP Instytucje Pośredniczące. Z uwagi na złoŝoność procesu realizacji PI i PWP, wymagającego zaangaŝowania takŝe innych podmiotów w szczególności ROEFS Konsultacje dokumentu Działania informacyjno-promocyjne na rzecz projektów innowacyjnych i współpracy ponadnarodowej PO KL. Rekomendacje Krajowej Instytucji Wspomagającej dla Instytucji Pośredniczących

Bardziej szczegółowo

KARTA PRZEDMIOTU. zaliczenie na ocenę WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

KARTA PRZEDMIOTU. zaliczenie na ocenę WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Wydział Mechaniczny PWR KARTA PRZEDMIOTU Nazwa w języku polskim: Metody numeryczne w biomechanice Nazwa w języku angielskim: Numerical methods in biomechanics Kierunek studiów (jeśli dotyczy): Inżynieria

Bardziej szczegółowo

Monitoring poinwestycyjny wnioski w zakresie metodyki prowadzenia prac. Dariusz Wysocki Katedra Anatomii i Zoologii Kręgowców Uniwersytet Szczeciński

Monitoring poinwestycyjny wnioski w zakresie metodyki prowadzenia prac. Dariusz Wysocki Katedra Anatomii i Zoologii Kręgowców Uniwersytet Szczeciński Monitoring poinwestycyjny wnioski w zakresie metodyki prowadzenia prac Dariusz Wysocki Katedra Anatomii i Zoologii Kręgowców Uniwersytet Szczeciński Plan wystąpienia: 1. Monitoring ptaków lęgowych 2. Monitoring

Bardziej szczegółowo

Selekcja, dobór hodowlany. ESPZiWP

Selekcja, dobór hodowlany. ESPZiWP Selekcja, dobór hodowlany ESPZiWP Celem pracy hodowlanej jest genetyczne doskonalenie zwierząt w wyznaczonym kierunku. Trudno jest doskonalić zwierzęta już urodzone, ale można doskonalić populację w ten

Bardziej szczegółowo

DOBÓR ŚRODKÓW TRANSPORTOWYCH DLA GOSPODARSTWA PRZY POMOCY PROGRAMU AGREGAT - 2

DOBÓR ŚRODKÓW TRANSPORTOWYCH DLA GOSPODARSTWA PRZY POMOCY PROGRAMU AGREGAT - 2 InŜynieria Rolnicza 14/2005 Michał Cupiał, Maciej Kuboń Katedra InŜynierii Rolniczej i Informatyki Akademia Rolnicza im. Hugona Kołłątaja w Krakowie DOBÓR ŚRODKÓW TRANSPORTOWYCH DLA GOSPODARSTWA PRZY POMOCY

Bardziej szczegółowo

Problemy z ograniczeniami

Problemy z ograniczeniami Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa

SCENARIUSZ LEKCJI. Streszczenie. Czas realizacji. Podstawa programowa Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH

Bardziej szczegółowo

Podejście memetyczne do problemu DCVRP - wstępne wyniki. Adam Żychowski

Podejście memetyczne do problemu DCVRP - wstępne wyniki. Adam Żychowski Podejście memetyczne do problemu DCVRP - wstępne wyniki Adam Żychowski Na podstawie prac X. S. Chen, L. Feng, Y. S. Ong A Self-Adaptive Memeplexes Robust Search Scheme for solving Stochastic Demands Vehicle

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych Algorytmy i struktury danych Funkcje i procedury Zasięg zmiennych Rekurencja Witold Marańda maranda@dmcs.p.lodz.pl 1 Modularyzacja programu Algorytmy strukturalne moŝna redukować, zastępując złoŝone fragmenty

Bardziej szczegółowo

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,

Bardziej szczegółowo